首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Flowers of common ivy (Hedera helix L.) provide late season pollen and nectar for several insect groups, and its fruits are a winter and spring food source for frugivorous birds. Ivy benefits from insect pollination in order to set fruit, but it is unknown which flower-visiting insects are the most effective pollinators. Our observations suggest that Vespula wasps are potentially the most effective pollinators since they were frequent visitors, had relatively fast foraging rates, carried large numbers of pollen grains on their bodies and had the highest ‘Pollination potential PP index’ score (a measure of pollinator effectiveness) of all the insect groups examined. There was also a positive linear relationship between the proportion of ivy flowers that set fruit and wasp foraging activity in 0.5 m2 quadrats. Visits by Vespula wasps may therefore be important for ensuring a supply of ivy fruits for birds.  相似文献   

2.
Growth promotion of ivy (Hedera helix L.) by paclobutrazol   总被引:1,自引:0,他引:1  
Paclobutrazol was applied to juvenile ivy plants in an attempt to induce the mature form by the inhibition of gibberellin biosynthesis. Contrary to expectation, shoot elongation and adventitious root formation on aerial shoots were promoted.  相似文献   

3.
4.
Abstract Photosynthetic and anatomical parameters of leaves from the juvenile and adult part of an ivy plant (Hedera helix L.) have been determined and compared with each other. Light-saturated net photosynthesis (per unit leaf area) was about 1.5 times higher in adult leaves than in juvenile ones. The lower photosynthetic capacity of juvenile leaves was caused by a lower stomatal and especially a lower residual conductance to the CO2-transfer. This corresponds with anatomical features of the leaves, i.e. lower stomatal frequency, fewer chloroplasts per cell, and – most important – thinner leaves, as well as with a less efficient photosynthetic apparatus measured as Hill reaction of isolated broken chloroplasts and activity of ribulose bisphosphate carboxylase. No differences in the respiration in light (relative to net photosynthesis) and in the CO2-compensation concentration could be detected between the two leaf types. These observed anatomical and photosynthetic parameters of the juvenile and adult ivy leaves resemble those reported for shade and sun leaves, respectively, although the leaves investigated originated from the same light environment.  相似文献   

5.
J. Remacle 《Plant and Soil》1972,36(1-3):199-203
Summary The development ofAzotobacter chroococcum is promoted in the ivy (Hedera helix L.) rhizosphere when it is colonized by the pectinolytic moldMucor fragilis. The multiplication of Azotobacter cells in the mineral solution of ivy cultures induces a decrease of the amount of sugars excreted by the roots and a increase of the amount of nitrogen. Within the experimental period Azotobacter does not influence the growth of ivy roots although it seems to be promoted by Mucor. Filtrates of Mucor culture are, however, harmful to the plant.  相似文献   

6.
Andergassen  Sigrid  Bauer  Helmut 《Plant Ecology》2002,161(2):207-213
The common ivy (Hedera helix L.) remains juvenileat its northern, eastern and altitudinal distribution limits although juvenileparts are largely killed by severe frost spells. In order to explain thisdiscrepancy we investigated the seasonal course of frost resistance in variousorgans of juvenile and adult parts of the same H. helixplants. Maximum frost resistance of leaves (LT50–25°C) and axis (xylem parenchyma:LT50 –29°C; cambium: LT50–35°C) was quite the same in juvenile and adultparts. Thus, H. helix is able to acquire full frostresistance in its juvenile phase. However, hardening of leaves was slower anddehardening of axis was faster in juvenile parts. Leaves of juvenile partsremain 2 to 4 K less resistant than those of adult parts untilattaining the maximum resistance. This explains why mainly leaves of thejuvenile parts were damaged following severe frost episodes with temperaturesbelow –20°C. The occurrence of H.helix in its juvenile phase at the frost-caused distribution limitsmay be explained as follows: Leaves of juvenile plants may occasionally bekilled by severe frosts, but regeneration from dormant eyes enables survival.Loss of leaves may impede the change to the adult phase, but even if the plantsbecame adult frost killing of rest buds (2 to 3 K less resistantthan leaves) would induce rejuvenation.  相似文献   

7.
Root climbers such as English ivy (Hedera helix) rely on specialized adventitious roots for attachment, enabling the plants to climb on a wide range of natural and artificial substrates. Despite their importance for the climbing habit, the biomechanical properties of these specialized adventitious roots compared with standard roots and their performance in the attachment to different host species or inert substrates have not been studied. Here organs and tissues involved in the attachment are characterized and their significance in regard to a broader functional and ecological aspect is discussed. Depending on the substrate, the root clusters show different types of failure modes at various frequencies, demonstrating the close interaction between the climber and its substrates. With a Young's Modulus of 109.2 MPa, the attachment roots are relatively stiff for non-woody roots. The central cylinders of the attachment roots show a high tensile strength of 38 MPa and a very high extensibility of 34%. In host trees naturally co-distributed with English ivy, a 'balanced' occurrence of failure of the attachment system of the climber and the bark of the host is found, suggesting a co-evolution of climber and host. Maximum loads of root clusters normalized by the number of roots match those of individually tested attachment roots. In comparison with most subterranean roots the properties and structure of the attachment roots of English ivy show distinct differences. There exist similarities to the properties found for roots of Galium aparine, suggesting a trend in not fully self-supporting plants towards a higher extensibility.  相似文献   

8.
When shoots of young plants of hemp (Cannabis sativa L.) and spinach (Spinacea oleracea L.) were cultured as cuttings and allowed to regenerate advenitious roots, ca. 80–85% became female (formed pistillate flowers) regardless of whether the leaves were left on the plants or were cut off (except for the 2–3 uppermost ones) after the beginning of adventitious-root formation. But when the leaves were cut off and the cuttings treated with gibberellic acid (GA3, 25 mg/l) ca. 77–80% of the plants became male (formed staminate flowers). The result was quite similar when roots and leaves of young hemp plants were removed at the same time and the cuttings treated with GA3. It is suggested that the leaves play an essential role in sex expression in hemp and spinach and that this role is related to gibberellin synthesis in the leaves.  相似文献   

9.
Hoflacher, H. and Bauer, H. 1982. Light acclimation in leaves of the juvenile and adult life phases of ivy (Hedera helix). – Physiol. Plant. 56: 177–182. Light acclimation was investigated during the juvenile and adult life phases of the whole-plant-development in Hedera helix L. For this purpose, cuttings of the juvenile and adult parts of one single parent plant were grown under low-light (PAR 30–50 μmol photons m?2 s?1) and high-light (PAR 300–500 μmol m?2 s?1) conditions: CO2 exchange, chloroplast functions, and specific anatomy of fully developed leaves differentiated under these conditions were determined. In juvenile plants the leaves formed under low and high light had light-saturated rates of net photosynthesis of 6.5 and 11.1 mg CO2 (dm leaf area)?2 h?1, respectively. In adult plants the rates were 9.4 and 22.2 mg dm?2 h?1, indicating a more pronounced capacity for acclimation to strong light in the adult life phase. Higher photosynthetic capacities were accompanied by higher conductances for the CO2 transfer through the stomata, leading to almost the same CO2 concentration in the intercellular spaces. Thus, stomatal conductances were not primarily responsible for the different photo-synthetic capacities. The higher rates in adult and high-light grown leaves were mainly the result of formation of thicker leaves with more chloroplasts per unit leaf area. Expressed per chloroplast, the photosynthetic capacity, the Hill reaction, and the activity of ribulose bisphosphate carboxylase were almost identical in plants grown in low-light and high-light. Measurements of photosynthetic capacity and thickness of leaves of Hedera sampled from field habitats with contrasting light regimes confirm the results of growth chamber studies. It is, therefore, concluded that both life phases of Hedera are capable of acclimating to strong light, but that during the juvenile phase this capacity is not fully developed.  相似文献   

10.
Soluble waxes were extracted from the cuticle of ivy (Hedera helix L.) leaves with dichloromethane in a yield of ca. 13%. The cuticular waxes were directly analysed by GC-MS, high-temperature GC-MS and ESI-MS/MS. The GC-MS analysis showed mostly n-alkanols (45.3%), monoacids (18.8%), triterpenes (9.7%), n-aldehydes (8.7%) and n-alkanes (7.7%). The high-temperature GC-MS and the ESI-MS/MS analyses showed the presence of ester waxes, namely alkyl alkanoates and alkyl coumarates. Alkyl alkanoates comprised esters of the hexadecanoic acid with n-alkanols ranging from C16 to C34. Alkyl coumarates included esters of coumaric acid with n-alkanols ranging from C16 to C32. The cuticular waxes were hydrolysed and the resulting organic and aqueous phases analysed by GC-MS. The hydrolysate showed a major increase in the quantities of n-alkanols, hexadecanoic acid and coumaric acid derived from the alkyl and acyl moieties from the ester waxes. A content of ester waxes of 38% was estimated based on the results from the GC-MS analysis of the non-hydrolysed and hydrolysed cuticular waxes. Alkyl alkanoates were analysed by ESI-MS/MS as [M + Li]+ adduct ions and the alkyl coumarates as [M - H]- deprotonated ions. The ESI-MS/MS analysis allowed the detection of a wider range of ester waxes than high-temperature GC-MS, and was shown to be a useful technique for the qualitative analysis of ester waxes from plant cuticles.  相似文献   

11.
A reduction in concentration of gibberellins has been implicated in the phase change from juvenile to mature forms of ivy (Hedera helix L.). Attempts were made to increase the effective internal concentration of gibberellins by exogenous application of GA3, and to decrease them by various applications of abscisic acid (ABA) and paclobutrazol (PP333), alone or in combination with GA3. ABA and GA3 were fed directly into the xylem of ivy plants by a wick system (a less drastic procedure than the defoliation or decapitation used by earlier workers) whereas PP333 was applied as a soil drench.Mature ivy responded to the application of GA3 by reversion to the juvenile form, although this reversion was incomplete with respect to leaf lobing and red (anthocyanin) pigmentation and could occur spontaneously without the application of GA3. Contrary to expectation, applications of ABA and PP333 caused the stimulation of growth in juvenile ivy. No adult characteristics were induced. As similar concentrations of ABA and PP333 produced severe retardation of growth (which could be alleviated by the application of GA3) in other species, it is suggested that ivy may be an unsuitable model system for the investigation of phase change in woody plants.  相似文献   

12.
Recent studies have highlighted the role of lianas in shaping stand dynamics both in tropical and temperate forests. However, English ivy (Hedera helix L.), one of the most widespread lianas in Europe, has received little attention. We conducted a study in the Siro Negri alluvial forest (NW Italy) to determine what factors most affected ivy distribution and investigate its interactions with the trees in the stand. We evaluated the influence of tree size, age, species, and neighborhood crowding on ivy occurrence. In addition, growth ring widths were used to explore the development pattern of climbing stems. Fifty-two percent of trees in our study plots carried ivy, a value comparable to liana incidence found in mature tropical forests. Tree characteristics and their spatial pattern significantly influenced ivy distribution. Preferred hosts were large, isolated trees, while the effect of tree age and species on ivy occurrence was marginal. Growth pattern analysis revealed that radial growth was positively related to the available space on the tree trunk for each ivy stem. We conclude that neighborhood crowding around trees and competition among climbing stems relying on the same trunk may reduce the colonization rate of ivy.  相似文献   

13.
14.
15.
We investigated to what extent south-exposed leaves (E-leaves) of the evergreen ivy (Hedera helix L.) growing in the shadow of two deciduous trees suffered from photoinhibition of photosynthesis when leaf-shedding started in autumn. Since air temperatures drop concomitantly with increase in light levels, changes in photosynthetic parameters (apparent quantum yield, i and maximal photosynthetic capacity of O2 evolution, Pmax; chlorophyll-a fluorescence at room temperature) as well as pigment composition were compared with those in north-exposed leaves of the same clone (N-leaves; photosynthetic photon flux density PPFD< 100 mol · m–2 · s–2) and phenotypic sun leaves (S-leaves; PPFD up to 2000 mol · m–2 · s–1).In leaves exposed to drastic light changes during winter (E-leaves) strong photoinhibition of photosynthesis could be observed as soon as the incident PPFD increased in autumn. In contrast, in N-leaves the ratio of variable fluorescence to maximum fluorescence (FV/FMm) and i did not decline appreciably prior to severe frosts (up to -12° C) in January. At this time, i was reduced to a similar extent in all leaves, from about 0.073 mol O2 · mol–1 photons before stress to about 0.020. Changes in i were linearly correlated with changes in fv/fm (r = 0.955). The strong reduction in FV/FM on exposure to stress was caused by quenching in FM. The initial fluorescence (F0), however, was also quenched in all leaves. The diminished fluorescence yield was accompanied by an increase in zeaxanthin content. These effects indicate that winter stress in ivy primarily induces an increase in non-radiative energy-dissipation followed by photoinhibitory damage of PSII. Although a pronounced photooxidative bleaching of chloroplast pigments occurred in January (especially in E-leaves), photosynthetic parameters recovered completely in spring. Thus, the reduction in potential photosynthetic yield in winter may be up to three times greater in leaves subjected to increasing light levels than in leaves not exposed to a changing light environment.Abbreviations and Symbols F0, FM initial and maximal fluorescence yield when all PSII centres are open and closed - FV variable fluorescence (FM-F0) - Pmax maximal photosynthetic capacity at 1000 umol · m–2 · s–1 PPFD and CO2 saturation - PPFD photosynthetic photon flux density - i apparent quantum yield of photosynthetic O2 evolution - E-leaves, N-leaves shade leaves exposed, not exposed to drastic light changes during winter - S-leaves sun leaves from an open ivy stand Dedicated to Professor Otto Härtel on the occasion of his 80th birthdayThis work was supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung.  相似文献   

16.
The ontogenetic and seasonal development of wax composition and cuticular transpiration of sun and shade leaves of ivy (Hedera helix L.) was analysed by investigating leaves varying in age between 4 and 202 d. It was discovered that the total amount of solvent-extractable wax was composed of two distinct fractions, separable by column chromatography: (i) a less polar or apolar monomeric wax fraction consisting of the typical linear, long-chain aliphatics usually described as cuticular wax components and (ii) a polar, oligomeric wax fraction consisting of primary alcohols and acids mostly esterified to C12-, C14- and C16-ω-hydroxyfatty acids. The apolar wax fraction, which could be analysed directly by gas chromatography coupled with mass spectrometry (GC-MS), exhibited pronounced seasonal changes in composition. Wax amounts in the apolar fraction reached a maximum after about 30 d and gradually decreased again during the remaining period of the season investigated. In contrast, the polar wax fraction, which was analysable by GC-MS only after transesterification, rapidly increased early in the season, reaching a plateau after 40 d, and then remained constant during the rest of the season. Thus, total amounts of solvent-extractable cuticular waxes, which can be determined gravimetrically, will only be detected by GC-MS after fractionation and transesterification, a methodological approach rarely applied in the past in cuticular wax analysis. Additionally, investigation of the cutin polymer matrix after depolymerisation through transesterification, revealed that only those primary alcohols and acids forming an essential part of the apolar and the polar wax fractions were esterified during the investigated season and incorporated in increasing amounts into the cutin polymer matrix (matrix-bound wax fraction). Thus, it can be concluded that a complete analysis of cuticular wax of ivy and its seasonal development can only be achieved if all the relevant fractions (i) the less polar or apolar, (ii) the polar and (iii) the wax fraction bound to the cutin polymer matrix are investigated. Cuticular transpiration rapidly decreased within the first 30 d and essentially remained constant during the rest of the season. Thus, changes in cuticular water permeability were closely correlated with the most prominent changes in wax amounts and composition occurring during the first 30 d of ontogenetic leaf development. However, during the remainder of the year, up to 202 d, cuticular transport properties remained constant, although significant quantitative and qualitative changes in cuticular wax composition continued to occur. Thus, our study clearly demonstrated that there will be no simple relationship between chemical composition of cuticular waxes and transport properties of isolated ivy leaf cuticles. Received: 2 March 1998 / Accepted: 26 June 1998  相似文献   

17.
Abstract The purpose of this study was to determine the respective extents to which winter reduction of photosynthetic capacity in ivy (Hedera helix L.) is caused by direct frost injury to the photosynthetic apparatus and by preceding protoplasmic changes connected with the acquisition of frost tolerance. Potted juvenile ivy plants were placed in the open under natural weather conditions whilst others were hardened under controlled conditions and subjected to the desired frost stress. Low non-freezing temperatures induced frost tolerance in ivy leaves down to about – 12°C (50% injury = TL50) without impairing net photosynthetic rate as measured under standard conditions (20°C, light saturation, natural CO2 level; = Standard-Fn. Only if the leaves froze (below ? 3°C to ?4°C) was a reversible inhibition of Standard-Fn observed. As long as the temperatures did not fall below approximately ?8°C the inhibition was small and Standard-Fn reached about 80–90% of the control. In this case the stomatal opening narrowed, giving a poorer supply of CO2 to the mesophyll cells. Maximal frost tolerance (TL5O?20°C to ?24°C) developed only with severe frosts below about ? 10°C. After such frosts, Standard-Fn was reduced to less than 20% of the control. The dependence of the rate of net photosynthesis on the internal CO2 concentration showed a lower initial slope, thus indicating disturbances of chloroplast functions. However, neither in outdoor plants nor in those artificially frosted at – 20°C could there be found an appreciable inhibition of the electron transport capacity from H2O to dichlorophenol indophenol or of ribulose bisphosphate carboxylase. If intact, severely frosted ivy plants were then held at higher temperatures (20/15°C), Standard-Fn recovered completely in approximately 10 d. Furthermore, following a frost period with temperatures down to ?12°C, mild weather caused a distinct improvement in Standard-Fn in outdoor plants, and there was no loss of maximum frost tolerance. Thus it can be concluded that the inhibition of Standard-Fn after severe frosts is not due to the development of maximal frost tolerance, but rather may be attributed to frost damage to the photosynthetic apparatus.  相似文献   

18.
Proteins in the leaves of different forms of Hedera helix L.   总被引:1,自引:0,他引:1  
Maturation in Hedera helix involves both quantitative and qualitativechanges in leaf proteins. These changes appear to reside inthe total soluble, globulin and albumin fractions. Senescense,on the other hand, appears to be primarily quantitative withthe greater differenced found in the Kjeldahl and total solublefractions. 1Contribution from the Missouri Agricultural Experiment StationJournal Paper No. 5745 (Received May 4, 1970; )  相似文献   

19.
Six triterpene saponins, including two new compounds, were isolated from the fruits of Hedera helix L. (Araliaceae). The structures of the new compounds, named helixosides A and B, were established as 3-O-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl hederagenin 28-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester, and 3-O-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl oleanolic acid 28-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester, respectively, on the basis of chemical and spectral data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号