首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radial glia are among the first cells that develop in the embryonic central nervous system. They are progenitors of glia and neurons but their relationship with restricted precursors that are also derived from neuroepithelia is unclear. To clarify this issue, we analyzed expression of cell type specific markers (BLBP for radial glia, 5A5/E-NCAM for neuronal precursors and A2B5 for glial precursors) on cortical radial glia in vivo and their progeny in vitro. Clones of cortical cells initially expressing only BLBP gave rise to cells that were A2B5+ and eventually lost BLBP expression in vitro. BLBP is expressed in the rat neuroepithelium as early as E12.5 when there is little or no staining for A2B5 and 5A5. In E13.5-15.5 forebrain, A2B5 is spatially restricted co-localizing with a subset of the BLBP+ radial glia. Analysis of cells isolated acutely from embryonic cortices confirmed that BLBP expression could appear without, or together with, A2B5 or 5A5. The numbers of BLBP+/5A5+ cells decreased during neurogenesis while the numbers of BLBP+/A2B5+ cells remained high through the beginning of gliogenesis. The combined results demonstrate that spatially restricted subpopulations of radial glia along the dorsal-ventral axis acquire different markers for neuronal or glial precursors during CNS development.  相似文献   

2.
Poluch S  Juliano SL 《PloS one》2010,5(10):e13709
Radial glial cells play an essential role during corticogenesis through their function as neural precursors and guides of neuronal migration. Both reelin and neuregulin1 (NRG1) maintain the radial glial scaffold; they also induce expression of Brain Lipid Binding Protein (BLBP), a well known marker of radial glia. Although radial glia in normal ferrets express both vimentin and BLBP, this coexpression diverges at P3; vimentin is expressed in the radial glial processes, while BLBP appears in cells detached from the ventricular zone. Our lab developed a model of cortical dysplasia in the ferret, resulting in impaired migration of neurons into the cortical plate and disordered radial glia. This occurs after exposure to the antimitotic methylazoxymethanol (MAM) on the 24th day of development (E24). Ferrets treated with MAM on E24 result in an overall decrease of BLBP expression; radial glia that continue to express BLBP, however, show only mild disruption compared with the strongly disrupted vimentin expressing radial glia. When E24 MAM-treated organotypic slices are exposed to reelin or NRG1, the severely disrupted vimentin+ radial glial processes are repaired but the slightly disordered BLBP+ processes are not. The realignment of vimentin+ processes was linked with an increase of their BLBP expression. BLBP expressing radial glia are distinguished by being both less affected by MAM treatment and by attempts at repair. We further investigated the effects induced by reelin and found that signaling was mediated via VLDLR/Dab1/Pi3K activation while NRG1 signaling was mediated via erbB3/erbB4/Pi3K. We then tested whether radial glial repair correlated with improved neuronal migration. Repairing the radial glial scaffold is not sufficient to restore neuronal migration; although reelin improves migration of neurons toward the cortical plate signaling through ApoER2/Dab1/PI3K activation, NRG1 does not.  相似文献   

3.
Previous studies have shown that Sox3 is expressed in nascent neuroprogenitor cells and is functionally required in mammals for development of the dorsal telencephalon and hypothalamus. However, Sox3 expression during embryonic and adult neurogenesis has not been examined in detail. Using a SOX3-specific antibody, we show that murine SOX3 expression is maintained throughout telencephalic neurogenesis and is restricted to progenitor cells with neuroepithelial and radial glial morphologies. We also demonstrate that SOX3 is expressed within the adult neurogenic regions and is coexpressed extensively with the neural stem cell marker SOX2 indicating that it is a lifelong marker of neuroprogenitor cells. In contrast to the telencephalon, Sox3 expression within the developing hypothalamus is upregulated in developing neurons and is maintained in a subset of differentiated hypothalamic cells through to adulthood. Together, these data show that Sox3 regulation is region-specific, consistent with it playing distinct biological roles in the dorsal telencephalon and hypothalamus.  相似文献   

4.
During development radial glia (RG) are neurogenic, provide a substrate for migration, and transform into astrocytes. Cells in the RG lineage are functionally and biochemically heterogeneous in subregions of the brain. In the subventricular zone (SVZ) of the adult, astrocyte-like cells exhibit stem cell properties. During examination of the response of SVZ astrocytes to brain injury in adult mice, we serendipitously found a population of cells in the walls of the ventral lateral ventricle (LV) that were morphologically similar to RG. The cells expressed vimentin, glial fibrillary acidic protein (GFAP), intermediate filament proteins expressed by neural progenitor cells, RG and astrocytes. These RG-like cells had long processes extending ventrally into the nucleus accumbens, ventromedial striatum, ventrolateral septum, and the bed nucleus of the stria terminalis. The RG-like cell processes were associated with a high density of doublecortin-positive cells. Lesioning the cerebral cortex did not change the expression of vimentin and GFAP in RG-like cells, nor did it alter their morphology. To study the ontogeny of these cells, we examined the expression of molecules associated with RG during development: vimentin, astrocyte-specific glutamate transporter (GLAST), and brain lipid-binding protein (BLBP). As expected, vimentin was expressed in RG in the ventral LV embryonically (E16, E19) and during the first postnatal week (P0, P7). At P14, P21, P28 as well as in the adult (8–12 weeks), the ventral portion of the LV retained vimentin immunopositive RG-like cells, whereas RG largely disappeared in the dorsal two-thirds of the LV. GLAST and BLBP were expressed in RG of the ventral LV embryonically and through P7. In contrast to vimentin, at later stages BLBP and GLAST were found in RG-like cell somata but not in their processes. Our results show that cells expressing vimentin and GFAP (in the radial glia-astrocyte lineage) are heterogeneous dorsoventrally in the walls of the LV. The results suggest that not all RG in the ventral LV complete the transformation into astrocytes and that the ventral SVZ may be functionally dissimilar from the rest of the SVZ.  相似文献   

5.
Götz M  Barde YA 《Neuron》2005,46(3):369-372
Radial glial cells have been identified as a major source of neurons during development. Here, we review the evidence for the distinct "glial" nature of radial glial cells and contrast these cells with their progenitors, the neuroepithelial cells. Recent results also suggest that not only during neurogenesis in vivo, but also during the differentiation of cultured embryonic stem cells toward neurons, progenitors with clear glial antigenic characteristics act as cellular intermediates.  相似文献   

6.
The developing central nervous system of vertebrates contains an abundant cell type designated radial glial cells. These cells are known as guiding cables for migrating neurons, while their role as precursor cells is less clear. Since radial glial cells express a variety of astroglial characteristics and differentiate as astrocytes after completing their guidance function, they have been considered as part of the glial lineage. Using fluorescence-activated cell sorting, we show here that radial glial cells also are neuronal precursors and only later, after neurogenesis, do they shift towards an exclusive generation of astrocytes. These results thus demonstrate a novel function for radial glial cells, namely their ability to generate two major cell types found in the nervous system, neurons and astrocytes.  相似文献   

7.
A superficially located periventricular proliferative area with PCNA-immunopositive (PCNA+) cells, which corresponds to the pallial periventricular zone (PVZ) of other fish species, including its dorsal, lateral, and medial compartments, is discovered in the telencephalon of the juvenile masu salmon Oncorhynchus masou. The PCNA+ cells are also identified in the parenchyma of the masu salmon intact brain, and their maximum concentration is observed in the medial zone. After a mechanical injury, the zones of induced neurogenesis—neurogenic niches and sites of secondary neurogenesis surrounded by radial glial fibers—appear in the masu salmon telencephalon. The PVZ of the juvenile masu salmon pallium contains clusters of undifferentiated HuCD-immunopositive (HuCD+) neurons. A change in the HuCD+ cell topography is observed in the mechanically injured masu salmon telencephalon, namely, neurogenic niches in the lateral zone and an increase in the cell distribution density and cell migration patterns in the medial zone. A high level of persistent neurogenesis is characteristic of the juvenile masu salmon brain.  相似文献   

8.
Brain lipid binding protein (BLBP) is highly expressed in the radial glial cells (RGCs) of the central nervous system (CNS), in glioblastomas, and, in vitro, in U251 cells. In this report, we have demonstrated that increased BLBP expression in glioblastoma is associated with poor survival and used a double-vector CRISPR/Cas9 lentiviral system to deplete endogenous BLBP from U251 cells, we found that loss of BLBP induced cell growth inhibition and S-phase arrest. Moreover, an increase in P53 and a decrease in p-ERK1/2 were observed after BLBP depletion, suggesting a potential mechanism by which loss of BLBP results in growth inhibition.  相似文献   

9.
In the last quarter of the embryonic development of rat and shortly after a termination of neurogenesis, the transformation of the spinal cord primitive lumen (pL) to the central canal (CC) occurs. In this work, we show that this phenomenon is not an insignificant event but it is directly associated with the processes of gliogenesis. Using a light microscopy and immunohistochemistry, we monitored the development of the rat embryonic spinal cord from the end of the neurogenesis on the embryonic day 17 until the maturation of the spinal cord during the first postnatal weeks. Our observations demonstrate the importance of the transformation of the pL to the CC and its connection with gliogenesis, and the mechanism of this transformation is proposed. It is found that a segregation of the glutamate transporter (GLAST) immunopositive cells from the alar plates and transformation of the radial glial cells to the fibrous and protoplasmic astrocytes play presumably a key role in the diminution of the ventricular zone. Results indicate that the very transformation and migration of the radial glial cells during gliogenesis could result in a transformation of the pL to the CC.  相似文献   

10.
The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates.  相似文献   

11.
We studied adult neurogenesis in the short‐lived annual fish Nothobranchius furzeri and quantified the effects of aging on the mitotic activity of the neuronal progenitors and the expression of glial fibrillary acid protein (GFAP) in the radial glia. The distribution of neurogenic niches is substantially similar to that of zebrafish and adult stem cells generate neurons, which persist in the adult brain. As opposed to zebrafish, however, the N. furzeri genome contains a doublecortin (DCX) gene. Doublecortin is transiently expressed by newly generated neurons in the telencephalon and optic tectum (OT). We also analyzed the expression of the microRNA miR‐9 and miR‐124 and found that they have complementary expression domains: miR‐9 is expressed in the neurogenic niches of the telencephalon and the radial glia of the OT, while miR‐124 is expressed in differentiated neurons. The main finding of this paper is the demonstration of an age‐dependent decay in adult neurogenesis. Using unbiased stereological estimates of cell numbers, we detected an almost fivefold decrease in the number of mitotically active cells in the OT between young and old age. This reduced mitotic activity is paralleled by a reduction in DCX labeling. Finally, we detected a dramatic up‐regulation of GFAP in the radial glia of the aged brain. This up‐regulation is not paralleled by a similar up‐regulation of S100B and Musashi‐1, two other markers of the radial glia. In summary, the brain of N. furzeri replicates two typical hallmarks of mammalian aging: gliosis and reduced adult neurogenesis.  相似文献   

12.
For many years, it was assumed that neurons and glia in the central nervous system were produced from two distinct precursor pools that diverged early during embryonic development. This theory was partially based on the idea that neurogenesis and gliogenesis occurred during different periods of development, and that neurogenesis ceased perinatally. However, there is now abundant evidence that neural stem cells persist in the adult brain and support ongoing neurogenesis in restricted regions of the central nervous system. Surprisingly, these stem cells have the characteristics of fully differentiated glia. Neuroepithelial stem cells in the embryonic neural tube do not show glial characteristics, raising questions about the putative lineage from embryonic to adult stem cells. In the developing brain, radial glia have long been known to produce cortical astrocytes, but recent data indicate that radial glia might also divide asymmetrically to produce cortical neurons. Here we review these new developments and propose that the stem cells in the central nervous system are contained within the neuroepithelial --> radial glia --> astrocyte lineage.  相似文献   

13.
Hippocampus is one of the neurogenesis areas in adult mammals, but the function of astrocytes in this area is still less known. In our previous study, the fimbria–fornix (FF)-transected hippocampal extracts promoted the proliferation and neuronal differentiation of radial glial cells in vitro. To explore the effects of hippocampal extracts on gliogenesis, the hippocampal astrocytes were treated by normal or ff-transected hippocampal extracts in vitro. The cells were immunostained by brain lipid-binding protein (BLBP), nestin, and SOX2 to assess their state of activation. The effects of astrocyte-conditioned medium on the neuronal differentiation of hippocampal neural stem cells (NSCs) were also investigated. After treatment of FF-transected hippocampal extracts, the number of BLBP, nestin, and Sox-positive cells were obviously more than the cells which treated by normal hippocampal extracts, these cells maintained a state of activation and the activated astrocyte-conditioned medium also promoted the differentiation of NSCs into more neurons. These findings suggest that the astrocytes can be activated by FF-transected hippocampal extracts and these activated cells also can promote the neuronal differentiation of hippocampal NSCs in vitro.  相似文献   

14.
Radial glial cells have been shown to act as neuronal precursors in the developing cortex and to maintain their radial processes attached to the basement membrane (BM) during cell division. Here, we examined a potential role of direct signalling from the BM to radial glial cells in three mouse mutants where radial glia attachment to the BM is disrupted. This is the case if the nidogen-binding site of the laminin gamma1 chain is mutated, in the absence of alpha6 integrin or of perlecan, an essential BM component. Surprisingly, cortical radial glial cells lacking contact to the BM were not affected in their proliferation, interkinetic nuclear migration, orientation of cell division and neurogenesis. Only a small subset of precursors was located ectopically within the cortical parenchyma. Notably, however, neuronal subtype composition was severely disturbed at late developmental stages (E18) in the cortex of the laminin gamma1III4-/- mice. Thus, although BM attachment seems dispensable for precursor cells, an intact BM is required for adequate neuronal composition of the cerebral cortex.  相似文献   

15.
Glutamate is the major excitatory neurotransmitter in the retina and is removed from the extracellular space by an energy-dependent process involving neuronal and glial cell transporters. The radial glial Müller cells express the glutamate transporter, GLAST, and preferentially accumulate glutamate. However, during an ischaemic episode, extracellular glutamate concentrations may rise to excitotoxic levels. Is this catastrophic rise in extracellular glutamate due to a failure of GLAST? Using immunocytochemistry, we monitored the transport of the glutamate transporter substrate, D-aspartate, in the retina under normal and ischaemic conditions. Two models of compromised retinal perfusion were compared: (1) Anaesthetised rats had their carotid arteries occluded for 7 days to produce a chronic reduction in retinal blood flow. Retinal function was assessed by electroretinography. D-aspartate was injected into the eye for 45 min. Following euthanasia, the retina was processed for D-aspartate, GLAST and glutamate immunocytochemistry. Although reduced retinal perfusion suppresses the electroretinogram b-wave, neither retinal histology, GLAST expression, nor the ability of Müller cells to uptake D-aspartate is affected. As this insult does not appear to cause excitotoxic neuronal damage, these data suggest that GLAST function and glutamate clearance are maintained during periods of reduced retinal perfusion. (2) Occlusion of the central retinal artery for 60 min abolishes retinal perfusion, inducing histological damage and electroretinogram suppression. Although GLAST expression appears to be normal, its ability to transport D-aspartate into Müller cells is greatly reduced. Interestingly, D-aspartate is transported into neuronal cells, i.e. photoreceptors, bipolar and ganglion cells. This suggests that while GLAST is vitally important for the clearance of excess extracellular glutamate, its capability to sustain inward transport is particularly susceptible to an acute ischaemic attack. Manipulation of GLAST function could alleviate the degeneration and blindness that result from ischaemic retinal disease.  相似文献   

16.
Radial glial cells play a significant role in the repair of spinal cord injuries as they exert critical role in the neurogenesis and act as a scaffold for neuronal migration. Our previous study showed that mature astrocytes of spinal cord can undergo a de-differentiation process and further transform into pluripotential neural precursors; the occurrence of these complex events arise directly from the induction of diffusible factors released from scratch-insulted astrocytes. However, it is unclear whether astrocytes can also undergo rejuvenation to revert to a radial glial progenitor phenotype after the induction of scratch-insulted astrocytes conditioned medium (ACM). Furthermore, the mechanism of astrocyte de-differentiation to the progenitor cells is still unclear. Here we demonstrate that upon treating mature astrocytes with ACM for 10 days, the astrocytes exhibit progressive morphological and functional conversion to radial glial cells. These changes include the appearance of radial glial progenitor cells, changes in the immunophenotypical profiles, characterized by the co-expression of nestin, paired homeobox protein (Pax6) and RC2 as well as enhanced capability of multipotential differentiation. Concomitantly, ErbB2 protein level was progressively up-regulated. Thereby these results provide a potential mechanism by which ACM could induce mature astrocytes to regain the profile of radial glial progenitors due to activating the ErbB2 signaling pathways.  相似文献   

17.
Anthony TE  Klein C  Fishell G  Heintz N 《Neuron》2004,41(6):881-890
Radial glial cells function during CNS development as neural progenitors, although their precise contribution to neurogenesis remains controversial. Recent work has argued that regional differences may exist regarding the neurogenic potential of radial glia. Here, we show that the vast majority of neurons in all brain regions derive from radial glia. Cre/loxP fate mapping and clonal analysis demonstrate that radial glia throughout the CNS serve as neuronal progenitors and that radial glia within different regions of the CNS pass through their neurogenic stage of development at distinct time points. Thus, radial glial populations within different CNS regions are not heterogeneous with regard to their potential to generate neurons versus glia.  相似文献   

18.
We have previously reported the cross-talk between Reelin and Notch-1 signaling pathways, which are 2 major pathways that regulate brain development. We found that Reelin activated Notch-1 signaling, leading to the expression of brain lipid binding protein (BLBP) and the formation of radial glial cells in human neural progenitor cells (hNPCs). In the current study, we investigated the molecular mechanisms by which Reelin activates Notch-1. We show that Reelin-stimulated Notch-1 activation is dependent on Reelin signaling. The induction of Disabled-1 (Dab-1) tyrosine phosphorylation, and the subsequent activation of Src family kinases, were found to be essential steps for the activation of Notch-1 signaling by Reelin. Reelin treatment increased the interaction between Dab-1 and Notch-1 intracellular domain (NICD), and enhanced NICD translocation to the nucleus. This study advances our knowledge of the regulation of Notch-1 activation by Reelin signaling in hNPCs, as an approach to understanding cell fate determination, differentiation, and neurogenesis during brain development.  相似文献   

19.
20.
During the last decade, the role of radial glia has been radically revisited. Rather than being considered a mere structural component serving to guide newborn neurons towards their final destinations, radial glia is now known to be the main source of neurons in several regions of the central nervous system, notably in the cerebral cortex. Radial glial cells differentiate from neuroepithelial progenitors at the beginning of neurogenesis and share with their ancestors the bipolar shape and the expression of some molecular markers. Radial glia, however, can be distinguished from neuroepithelial progenitors by the expression of astroglial markers. Clonal analyses showed that radial glia is a heterogeneous population, comprising both pluripotent and different lineage-restricted neural progenitors. At late-embryonic and postnatal stages, radial glial cells give rise to the neural stem cells responsible for adult neurogenesis. Embryonic pluripotent radial glia and adult neural stem cells may be clonally linked, thus representing a lineage displaying stem cell features in both the developing and mature central nervous system. This work was supported by AIRC (Associazione Italiana per la Ricerca sul Cancro) NUSUG grant (In vivo screening for genes implicated in glioma formation and development of new animal models of glial tumors) and by Fondazione CARIGE grant (Basi molecolari e cellulari dei gliomi: individuazione di marcatori diagnostici e di nuovi bersagli terapeutici).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号