共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular basis for dissimilar nuclear trafficking of the actin-bundling protein isoforms T- and L-plastin 总被引:3,自引:0,他引:3
Delanote V Van Impe K De Corte V Bruyneel E Vetter G Boucherie C Mareel M Vandekerckhove J Friederich E Gettemans J 《Traffic (Copenhagen, Denmark)》2005,6(4):335-345
T- and L-plastin are highly similar actin-bundling proteins implicated in the regulation of cell morphology, lamellipodium protrusion, bacterial invasion and tumor progression. We show that T-plastin localizes predominantly to the cytoplasm, whereas L-plastin distributes between nucleus and cytoplasm in HeLa or Cos cells. T-plastin shows nuclear accumulation upon incubation of cells with the CRM1 antagonist leptomycin B (LMB). We identified a Rev-like nuclear export sequence (NES) in T-plastin that is able to export an otherwise nuclear protein in an LMB-dependent manner. Deletion of the NES promotes nuclear accumulation of T-plastin. Mutation of residues L17, F21 or L26 in the T-plastin NES inhibits nuclear efflux. L-plastin harbors a less conserved NES and lacks the F21 T-plastin residue. Insertion of a Phe residue in the L-plastin NES specifically enhances its export activity. These findings explain why both isoforms exhibit specific distribution patterns in eukaryotic cells. 相似文献
2.
3.
Tubb B Mulholland DJ Vogl W Lan ZJ Niederberger C Cooney A Bryan J 《Experimental cell research》2002,275(1):92-109
During spermiogenesis, significant morphological changes occur as round spermatids are remodeled into the fusiform shape of mature spermatozoa. These changes are correlated with a reorganization of microfilaments and microtubules in the head and tail regions of elongating spermatids. There is also altered expression of specialized actin- and tubulin-associated proteins. We report the characterization of a novel, spermatid-specific murine paralog of the actin-bundling protein fascin (FSCN1); this paralog is designated testis fascin or FSCN3. Testis fascin is distantly related to fascins but retains its primary sequence organization. cDNA clones of mouse testis fascin predict a 498 amino acid protein of molecular mass 56 kD that shares 29% identity with mouse fascin. Mapping of murine and human FSCN3 genes shows localization to the 7q31.3 chromosome. Northern analysis indicates that FSCN3 expression is highly specific to testis and that in situ hybridization further restricts expression to elongating spermatids. Antibodies raised against recombinant FSCN3 protein identify a band at 56 kD in testis, epididymis, and epididymal spermatozoa, suggesting that testis fascin persists in mature spermatozoa. In accord with the in situ hybridization results, immunofluorescent microscopy localizes testis fascin protein to areas of the anterior spermatid head that match known distributions of F-actin in the dorsal and ventral subacrosomal spaces. It is possible that testis fascin may function in the terminal elongation of the spermatid head and in microfilament rearrangements that accompany fertilization. 相似文献
4.
Growth factor withdrawal from proliferating myoblasts induces the expression of muscle-specific genes essential for myogenesis. By suppression subtractive hybridization (SSH), we have cloned a novel human cDNA that encodes a Cys3His zinc finger protein named CHCR (Cys3His CCG1-Required). CHCR is related to Muscleblind (Mbl), a Drosophila melanogaster protein required for terminal muscle differentiation. It also displays sequence similarity to EXP/MBNL, a human Mbl protein that interacts with CUG expansions associated with the degenerative muscular disease, myotonic dystrophy (DM1). This relationship with EXP/MBNL and Mbl suggests that CHCR also functions during muscle differentiation. We have found that CHCR mRNA and protein levels decrease upon differentiation of mouse myoblast cells. Constitutive expression of CHCR in C2C12 cells inhibits the induction of sarcomeric myosin heavy chain (MyHC) upon serum deprivation. Induction of myogenin, an earlier marker of muscle differentiation, is inhibited to a lesser extent, while expression of the cell cycle inhibitor, p21, remains unaffected. Loss of CHCR function by morpholino antisense oligonucleotide treatment accelerates MyHC induction during differentiation of myoblast cells. These complementary gain- and loss-of-function results suggest that CHCR is an inhibitor of myogenesis. CHCR represents the first muscleblind-related protein that antagonizes, instead of promotes, muscle differentiation. 相似文献
5.
Ataxia telangiectasia (A-T) is an autosomal, recessive disorder mainly characterized by neuronal degeneration. However, the reason for neuronal degeneration in A-T patients is still unclear. ATM (A-T, mutated), the gene mutated in A-T, encodes a 370-kDa protein kinase. We measured the levels of the ATM protein found in differentiated neuron-like rat PC12 cells and differentiated neuron-like human SH-SY5Y cells. We found that, in rat PC12 cells, ATM levels decreased dramatically after differentiation, which is consistent with previous results observed in differentiated mouse neural progenitor cells. In contrast, the levels of ATM were similar before and after differentiation in human SH-SY5Y cells. Using an indirect immunofluorescence assay, we showed that ATM translocates from the nucleus to the cytoplasm in differentiated human SH-SY5Y cells. The translocation of ATM was further verified by subcellular fractionation experiments. The constitutive expression and cytoplasmic translocation of ATM in differentiated SH-SY5Y cells suggest that ATM is important for maintaining the regular function of human neuronal cells. Our results further demonstrated that, in response to insulin, ATM protects differentiated neuron-like SH-SY5Y cells from serum starvation-induced apoptosis. These data provide the first evidence that cytoplasmic ATM promotes survival of human neuronal cells in an insulin-dependent manner. 相似文献
6.
7.
Wei Gu Feng Pan Honglai Zhang Gary J Bassell Robert H Singer 《The Journal of cell biology》2002,156(1):41-51
The localization of beta-actin mRNA to the leading lamellae of chicken fibroblasts and neurite growth cones of developing neurons requires a 54-nt localization signal (the zipcode) within the 3' untranslated region. In this study we have identified and isolated five proteins binding to the zipcode. One of these we previously identified as zipcode binding protein (ZBP)1, a 4-KH domain protein. A second is now investigated in detail: a 92-kD protein, ZBP2, that is especially abundant in extracts from embryonic brain. We show that ZBP2 is a homologue of the human hnRNP protein, KSRP, that appears to mediate pre-mRNA splicing. However, ZBP2 has a 47-amino acid (aa) sequence not present in KSRP. Various portions of ZBP2 fused to GFP indicate that the protein most likely shuttles between the nucleus and the cytoplasm, and that the 47-aa insert promotes the nuclear localization. Expression of a truncated ZBP2 inhibits the localization of beta-actin mRNA in both fibroblast and neurons. These data suggest that ZBP2, although predominantly a nuclear protein, has a role in the cytoplasmic localization of beta-actin mRNA. 相似文献
8.
We report the production of a monoclonal antibody (MAb 526) that recognizes a novel, developmentally regulated nuclear protein expressed in neurons throughout the rat nervous system. Analysis of whole brain and cell nuclear extracts by SDS-PAGE and immunoblotting determined that MAb 526 recognizes a single nuclear protein (np) of apparent molecular weight 42 kD, designated np526, as well as a slightly larger (ca. 44 kD) cytoplasmic protein. Light microscopic immunocytochemistry showed np526 to be present in neurons of all types throughout the central and peripheral nervous systems. Nuclei of both fibrous and protoplasmic astrocytes were also immunoreactive, but oligodendrocyte nuclei were negative. Positive, but highly variable immunocytochemical staining of nonneural cell nuclei in a variety of other tissues was also observed. Electron microscopic (EM) immunocytochemistry using pre-embedding peroxidase methods revealed that np526 is associated with euchromatin or with the edges of condensed chromatin bundles in neurons, indicating that it is likely to be a chromosomal protein. Most interestingly, the expression of np526 was found to be developmentally regulated in brain. Immunocytochemical analysis of the developing cerebral cortex from embryonic day (E) 16 to postnatal day (P) 4 and cerebellum from P4 to P18 revealed that np526 first appears in central neurons following the cessation of mitosis and that the intensity of nuclear staining increases during subsequent neuronal maturation. To our knowledge, np526 is the first presumptive chromosomal protein whose expression has been precisely correlated with the early postmitotic differentiation of mammalian neurons. 相似文献
9.
J Ausseil M O Soyer-Gobillard M L Géraud Y Bhaud I Baines T Preston H Moreau 《Protist》1999,150(2):197-211
The presence of myosin in dinoflagellates was tested using an anti-Acanthamoeba castellanii myosin II polyclonal antibody on the heterotrophic dinoflagellate Crypthecodinium cohnii Seligo. Western blots revealed the presence of a unique band of 80 kDa in total protein extracts and after immunoprecipitation. Expression of this 80 kDa protein appeared constant during the different phases of the cell cycle. In protein extracts from various other dinoflagellates, this 80 kDa protein was detected only in the autotrophic species Prorocentrum micans Ehr. Screening of a C. cohnii cDNA expression library with this antibody revealed a cDNA coding for an amino acid sequence without homology in the databases. However, particular regions were detected: - a polyglutamine repeat domain in the N-terminal part of the protein, - four peptide sequences associated with GTP-binding sites, - a sequence with slight homology to the rod tail of Caenorhabditis elegans myosin II, -a sequence with homology to a human kinesin motor domain. Immunocytolocalization performed on C. cohnii thin sections with a polyclonal antibody raised against the recombinant protein showed p80 to be present both within the nucleus and in the cytoplasm. Labelling was widespread in the nucleoplasm and more concentrated at the periphery of the permanently condensed chromosomes. In the cytoplasm, labelling appeared in a punctate region close to the nucleus and in the flagellum. Potential functions of this novel protein are discussed. 相似文献
10.
Orstavik S Eide T Collas P Han IO Taskén K Kieff E Jahnsen T Skålhegg BS 《Biology of the cell / under the auspices of the European Cell Biology Organization》2000,92(1):27-37
Previously, we have identified and characterized nuclear AKAP95 from man which targets cyclic AMP (cAMP)-dependent protein kinase (PKA)-type II to the condensed chromatin/spindle region at mitosis. Here we report the cloning of a novel nuclear protein with an apparent molecular mass of 95 kDa that is similar to AKAP95 and is designated HA95 (homologous to AKAP95). HA95 cDNA sequence encodes a protein of 646 amino acids that shows 61% homology to the deduced amino acid sequence of AKAP95. The HA95 gene is located on chromosome 19p13.1 immediately upstream of the AKAP95 gene. Both HA95 and AKAP95 genes contain 14 exons encoding similar regions of the respective proteins, indicating a previous gene duplication event as the origin of the two tandem genes. Despite their apparent similarity, HA95 does not bind RII in vitro. HA95 contains a putative nuclear localization signal in its N-terminal domain. It is localized exclusively into the nucleus as demonstrated in cells transfected with HA95 fused to either green fluorescence protein or the c-myc epitope. In the nucleus, the HA95 protein is found as complexes directly associated with each other or indirectly associated via other nuclear proteins. In interphase, HA95 is co-localized with AKAP95, but the two proteins are not biochemically associated. At metaphase, both proteins co-localize with condensed chromosomes. The similarity in sequence and localization of HA95 and AKAP95 suggests that the two molecules constitute a novel family of nuclear proteins that may exhibit related functions. 相似文献
11.
De Felice B Wilson RR Mondola P Matrone G Damiano S Garbi C Nezi L Su TT 《Biochemical and biophysical research communications》2003,307(2):224-228
We have recently identified in Drosophila melanogaster a new gene encoding a nuclear protein, DIP1. Here we report the developmental expression and the finding that DIP1 subcellular localization is in the nucleus and at the nuclear periphery during interphase in embryos. Interestingly, in humans, DIP1 antibody identified signals in nuclei from cultured cells and reacted with a rough 30kDa protein in Western blotting experiments, demonstrating evolutionary conservation. 相似文献
12.
Rong Zou Yahui Xu Yifan Feng Minqian Shen Fei Yuan Yuanzhi Yuan 《Cell biology international》2020,44(7):1416-1425
Nuclear‐cytoplasmic transport is necessary for the biological function of nuclear proteins. The mechanism underlying this process is very complex and has been a subject of intense research. Yes‐associated protein (YAP), a Hippo signaling pathway effector, localizes to both the cytoplasm and the nucleus and can influence cell proliferation, stem cell status, and tissue homeostasis. Recent studies have focused on the significance of YAP distribution between the nucleus and the cytoplasm in disease, but it remains unclear how this dynamic process is regulated. In this review, we discuss YAP nuclear‐cytoplasmic transport under different physiological and pathological conditions in terms of mechanical signaling, protein modification, and metabolism. Understanding the mechanisms underlying nuclear‐cytoplasmic YAP transport mechanism under different physiological and pathological conditions may help identify important targets for disease treatment. 相似文献
13.
14.
Ohfuchi E Kato M Sasaki M Sugimoto K Oma Y Harata M 《European journal of cell biology》2006,85(5):411-421
Actin-related proteins (Arps) were recently shown to contribute to the organization and regulation of chromatin structures. The nuclear functions of Arps have been investigated principally in budding yeast in which six of the ten Arp subfamilies are localized in the nucleus. In vertebrates, only two isoforms of Arp4 have so far been identified as showing localization to the nucleus. Here we show the predominant nuclear localization of another Arp subfamily, Arp6, in vertebrate cells. Vertebrate Arp6 directly interacted with heterochromatin protein 1 (HP1) orthologs and the two proteins colocalized in pericentric heterochromatin. Yeast Arp6 is involved in telomere silencing, while Drosophila Arp6 is localized in the pericentric heterochromatin. Our data strongly suggest that Arp6 has an evolutionarily conserved role in heterochromatin formation and also provide new insights into the molecular organization of heterochromatin. 相似文献
15.
The skALP isoform has been shown to play a critical role in actin organization and anchorage within the Z-discs of skeletal muscles, but no data is available on the function of the smALP isoform in skeletal muscle cells. Here, we show that upon induction of differentiation a nuclear translocation of smALP from the cytoplasm to the nucleus of C2C12 myoblasts, concomitant to an up-regulation of the protein expression, occurs in parallel with the nuclear accumulation of myogenin. Moreover, we demonstrate that the LIM domain of smALP is essential for the nuclear translocation of the protein. 相似文献
16.
17.
18.
Winton MJ Igaz LM Wong MM Kwong LK Trojanowski JQ Lee VM 《The Journal of biological chemistry》2008,283(19):13302-13309
TAR DNA-binding protein 43 (TDP-43) is the disease protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Although normal TDP-43 is a nuclear protein, pathological TDP-43 is redistributed and sequestered as insoluble aggregates in neuronal nuclei, perikarya, and neurites. Here we recapitulate these pathological phenotypes in cultured cells by altering endogenous TDP-43 nuclear trafficking and by expressing mutants with defective nuclear localization (TDP-43-DeltaNLS) or nuclear export signals (TDP-43-DeltaNES). Restricting endogenous cytoplasmic TDP-43 from entering the nucleus or preventing its exit out of the nucleus resulted in TDP-43 aggregate formation. TDP-43-DeltaNLS accumulates as insoluble cytoplasmic aggregates and sequesters endogenous TDP-43, thereby depleting normal nuclear TDP-43, whereas TDP-43-DeltaNES forms insoluble nuclear aggregates with endogenous TDP-43. Mutant forms of TDP-43 also replicate the biochemical profile of pathological TDP-43 in FTLD-U/ALS. Thus, FTLD-U/ALS pathogenesis may be linked mechanistically to deleterious perturbations of nuclear trafficking and solubility of TDP-43. 相似文献
19.
Nup180, a novel nuclear pore complex protein localizing to the cytoplasmic ring and associated fibrils 总被引:11,自引:7,他引:4 下载免费PDF全文
《The Journal of cell biology》1993,123(6):1345-1354
Using an autoimmune serum from a patient with overlap connective tissue disease we have identified by biochemical and immunocytochemical approaches an evolutionarily conserved nuclear pore complex (NPC) protein with an estimated molecular mass of 180 kD and an isoelectric point of approximately 6.2 which we have designated as nup180. Extraction of isolated nuclear envelopes with 2 M urea and chromatography of the solubilized proteins on WGA-Sepharose demonstrated that nup180 is a peripheral membrane protein and does not react with WGA. Affinity-purified antibodies yielded a punctate immunofluorescent pattern of the nuclear surface of mammalian cells and stained brightly the nuclear envelope of cryosectioned Xenopus oocytes. Nuclei reconstituted in vitro in Xenopus egg extract were also stained in the characteristic punctate fashion. Immunogold EM localized nup180 exclusively to the cytoplasmic ring of NPCs and short fibers emanating therefrom into the cytoplasm. Antibodies to nup180 did not inhibit nuclear protein transport in vivo nor in vitro. Despite the apparent lack of involvement in NPC assembly or nucleocytoplasmic transport processes, the conservation of nup180 across species and its exclusive association with the NPC cytoplasmic ring suggests an important, though currently undefined function for this novel NPC protein. 相似文献