首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.

Background

The cytoplasmic peptide:N-glycanase (PNGase) is a deglycosylating enzyme involved in the ER-associated degradation (ERAD) process, while ERAD-independent activities are also reported. Previous biochemical analyses indicated that the cytoplasmic PNGase orthologue in Arabidopsis thaliana (AtPNG1) can function as not only PNGase but also transglutaminase, while its in vivo function remained unclarified.

Methods

AtPNG1 was expressed in Saccharomyces cerevisiae and its in vivo role on PNGase-dependent ERAD pathway was examined.

Results

AtPNG1 could facilitate the ERAD through its deglycosylation activity. Moreover, a catalytic mutant of AtPNG1 (AtPNG1(C251A)) was found to significantly impair the ERAD process. This result was found to be N-glycan-dependent, as the AtPNG(C251A) did not affect the stability of the non-glycosylated RTA? (ricin A chain non-toxic mutant). Tight interaction between AtPNG1(C251A) and the RTA? was confirmed by co-immunoprecipitation analysis.

Conclusion

The plant PNGase facilitates ERAD through its deglycosylation activity, while the catalytic mutant of AtPNG1 impair glycoprotein ERAD by binding to N-glycans on the ERAD substrates.

General significance

Our studies underscore the functional importance of a plant PNGase orthologue as a deglycosylating enzyme involved in the ERAD.  相似文献   

2.
The endoplasmic reticulum-associated degradation (ERAD) of misfolded (glyco)proteins ensures that only functional, correctly folded proteins exit from the ER and that misfolded ones are degraded by the ubiquitin-proteasome system. During the degradation of misfolded glycoproteins, some of them are subjected to deglycosylation by the cytoplasmic peptide:N-glycanase (PNGase). The cytosolic PNGase is widely distributed throughout eukaryotes. Here we show that the nematode Caenorhabditis elegans PNG-1, the cytoplasmic PNGase orthologue in this organism, exhibits dual enzyme functions, not only as PNGase but also as an oxidoreductase (thioredoxin). Using an in vitro assay as well as an in vivo assay system in budding yeast, the N-terminal thioredoxin domain and the central transglutaminase domain were found to be essential for oxidoreductase activity and PNGase activity, respectively. Occurrence of a C. elegans mutation affecting a catalytic residue in the PNGase domain strongly suggests the functional importance of this protein in higher eukaryotes.  相似文献   

3.
Studies have revealed in plant chloroplasts, mitochondria, cell walls, and cytoplasm the existence of transglutaminase (TGase) activities, similar to those known in animals and prokaryotes having mainly structural roles, but no protein has been associated to this type of activity in plants. A recent computational analysis has shown in Arabidopsis the presence of a gene, AtPng1p, which encodes a putative N-glycanase. AtPng1p contains the Cys-His-Asp triad present in the TGase catalytic domain. AtPng1p is a single gene expressed ubiquitously in the plant but at low levels in all light-assayed conditions. The recombinant AtPng1p protein could be immuno-detected using animal TGase antibodies. Furthermore, western-blot analysis using antibodies raised against the recombinant AtPng1p protein have lead to its detection in microsomal fraction. The purified protein links polyamines-spermine (Spm) > spermidine (Spd) > putrescine (Put)-and biotin-cadaverine to dimethylcasein in a calcium-dependent manner. Analyses of the gamma-glutamyl-derivatives revealed that the formation of covalent linkages between proteins and polyamines occurs via the transamidation of gamma-glutamyl residues of the substrate, confirming that the AtPng1p gene product acts as a TGase. The Ca(2+)- and GTP-dependent cross-linking activity of the AtPng1p protein can be visualized by the polymerization of bovine serum albumine, obtained, like the commercial TGase, at basic pH and in the presence of dithiotreitol. To our knowledge, this is the first reported plant protein, characterized at molecular level, showing TGase activity, as all its parameters analyzed so far agree with those typically exhibited by the animal TGases.  相似文献   

4.
Cytoplasmic peptide:N-glycanase (PNGase) is a de-N-glycosylating enzyme which may be involved in the proteasome-dependent pathway for degradation of misfolded glycoproteins formed in the endoplasmic reticulum (ER) that are exported into the cytoplasm. A cytoplasmic PNGase found in Saccharomyces cerevisiae, Png1p, is widely distributed in higher eukaryotes as well as in yeast (Suzuki, T., et al. J. Cell Biol. 149, 1039-1051, 2000). The recently uncovered complete genome sequence of Arabidopsis thaliana prompted us to search for the protein homologue of Png1p in this organism. Interestingly, when the mouse Png1p homologue sequence was used as a query, not only a Png1p homologue containing a transglutaminase-like domain that is believed to contain a catalytic triad for PNGase activity, but also four proteins which had a domain of 46 amino acids in length that exhibited significant similarity to the N-terminus of mouse Png1p were identified. Moreover, three of these homologous proteins were also found to possess a UBA or UBX domain, which are found in various proteins involved in the ubiquitin-related pathway. We name this newly found homologous region the PUB (Peptide:N-glycanase/UBA or UBX-containing proteins) domain and propose that this domain may mediate protein-protein interactions.  相似文献   

5.
Su W  Liu Y  Xia Y  Hong Z  Li J 《Molecular plant》2012,5(4):929-940
The endoplasmic reticulum-associated degradation (ERAD) is a highly conserved mechanism to remove misfolded membrane/secretory proteins from the endoplasmic reticulum (ER). While many of the individual components of the ERAD machinery are well characterized in yeast and mammals, our knowledge of a plant ERAD process is rather limited. Here, we report a functional study of an Arabidopsis homolog (AtOS9) of an ER luminal lectin Yos9 (OS-9 in mammals) that recognizes a unique asparagine-linked glycan on misfolded proteins. We discovered that AtOS9 is an ER-localized glycoprotein that is co-expressed with many known/predicted ER chaperones. A T-DNA insertional atos9-t mutation blocks the degradation of a structurally imperfect yet biochemically competent brassinosteroid (BR) receptor bri1-9, causing its increased accumulation in the ER and its consequent leakage to the cell surface responsible for restoring the BR sensitivity and suppressing the dwarfism of the bri1-9 mutant. In addition, we identified a missense mutation in AtOS9 in a recently discovered ERAD mutant ems-mutagenized bri1 suppressor 6 (ebs6-1). Moreover, we showed that atos9-t also inhibits the ERAD of bri1-5, another ER-retained BR receptor, and a misfolded EFR, a BRI1-like receptor for the bacterial translation elongation factor EF-Tu. Furthermore, we found that AtOS9 interacted biochemically and genetically with EBS5, an Arabidopsis homolog of the yeast Hrd3/mammalian Sel1L known to collaborate with Yos9/OS-9 to select ERAD clients. Taken together, our results demonstrated a functional role of AtOS9 in a plant ERAD process that degrades misfolded receptor-like kinases.  相似文献   

6.
Misfolded proteins are usually arrested in the endoplasmic reticulum (ER) and degraded by the ER-associated degradation (ERAD) machinery. Several mutant alleles of PMA1 , the gene coding for the plasma membrane H +-ATPase, render misfolded proteins that are subjected to ERAD. A subset of misfolded PMA1 mutants exhibits a dominant negative effect on yeast growth since, when co-expressed with the wild type allele, both proteins are retained in the ER and degraded. We have used a PMA1 -D378T dominant lethal allele to analyse the mechanism underlying the retention of the wild type enzyme by the dominant negative mutant. A genetic screen was performed for isolation of intragenic suppressors of PMA1 -D378T allele. This analysis pointed to transmembrane helix 10 (TM10) as an important element in the establishment of the dominant lethality. Deletion of the TM10 was able to suppress not only the PMA1 -D378T but all the dominant lethal alleles tested. Biochemical analyses suggest that dominant lethal proteins obstruct, through TM10, the correct folding of the wild type enzyme leading to its retention and degradation by ERAD.  相似文献   

7.
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a quality control system for newly synthesized proteins in the ER; nonfunctional proteins, which fail to form their correct folding state, are then degraded. The cytoplasmic peptide:N-glycanase is a deglycosylating enzyme that is involved in the ERAD and releases N-glycans from misfolded glycoproteins/glycopeptides. We have previously identified a mutant plant toxin protein, RTA (ricin A-chain nontoxic mutant), as the first in vivo Png1 (the cytoplasmic peptide:N-glycanase in Saccharomyces cerevisiae)-dependent ERAD substrate. Here, we report a new genetic device to assay the Png1-dependent ERAD pathway using the new model protein designated RTL (RTA-transmembrane-Leu2). Our extensive studies using different yeast mutants identified various factors involved in RTL degradation. The degradation of RTA/RTL was independent of functional Sec61 but was dependent on Der1. Interestingly, ER-mannosidase Mns1 was not involved in RTA degradation, but it was dependent on Htm1 (ERAD-related α-mannosidase in yeast) and Yos9 (a putative degradation lectin), indicating that mannose trimming by Mns1 is not essential for efficient ERAD of RTA/RTL. The newly established RTL assay will allow us to gain further insight into the mechanisms involved in the Png1-dependent ERAD-L pathway.  相似文献   

8.
Misfolded proteins are usually arrested in the endoplasmic reticulum (ER) and degraded by the ER-associated degradation (ERAD) machinery. Several mutant alleles of PMA1, the gene coding for the plasma membrane H(+)-ATPase, render misfolded proteins that are retained in the ER and degraded by ERAD. A subset of misfolded PMA1 mutants exhibit a dominant negative effect on yeast growth since, when coexpressed with the wild-type allele, both proteins are retained in the ER. We have used a pma1-D378T dominant negative mutant to identify new genes involved in ERAD. A genetic screen was performed for isolation of multicopy suppressors of a GAL1-pma1-D378T allele. ATG19, a member of the cytoplasm to vacuole targeting (Cvt) pathway, was found to suppress the growth arrest phenotype caused by the expression of pma1-D378T. ATG19 accelerates the degradation of pma1-D378T thus allowing the co-retained wild-type Pma1 to reach the plasma membrane. ATG19 was also able to suppress other dominant lethal PMA1 mutations. The degradation of the mutant ATPase occurs in the proteasome and requires intact both ERAD and Cvt/autophagy pathways. We propose the cooperation of both pathways for an efficient degradation of misfolded Pma1.  相似文献   

9.
In Saccharomyces cerevisiae, proteins with misfolded lumenal, membrane, and cytoplasmic domains are cleared from the endoplasmic reticulum (ER) by ER-associated degradation (ERAD)-L, -M, and -C, respectively. ERAD-L is N-glycan-dependent and is characterized by ER mannosidase (Mns1p) and ER mannosidase-like protein (Mnl1p), which generate Man(7)GlcNAc(2) (d1) N-glycans with non-reducing α1,6-mannosyl residues. Glycoproteins bearing this motif bind Yos9p and are dislocated into the cytoplasm and then deglycosylated by peptide N-glycanase (Png1p) to yield free oligosaccharides (fOS). Here, we examined yeast fOS metabolism as a function of cell growth in order to obtain quantitative and mechanistic insights into ERAD. We demonstrate that both Png1p-dependent generation of Man(7-10)GlcNAc(2) fOS and vacuolar α-mannosidase (Ams1p)-dependent fOS demannosylation to yield Man(1)GlcNAc(2) are strikingly up-regulated during post-diauxic growth which occurs when the culture medium is depleted of glucose. Gene deletions in the ams1Δ background revealed that, as anticipated, Mns1p and Mnl1p are required for efficient generation of the Man(7)GlcNAc(2) (d1) fOS, but for the first time, we demonstrate that small amounts of this fOS are generated in an Mnl1p-independent, Mns1p-dependent pathway and that a Man(8)GlcNAc(2) fOS that is known to bind Yos9p is generated in an Mnl1p-dependent, Mns1p-independent manner. This latter observation adds mechanistic insight into a recently described Mnl1p-dependent, Mns1p-independent ERAD pathway. Finally, we show that 50% of fOS generation is independent of ERAD-L, and because our data indicate that ERAD-M and ERAD-C contribute little to fOS levels, other important processes underlie fOS generation in S. cerevisiae.  相似文献   

10.
Peptide:N-glycanase has been thought to be responsible for proteasome-dependent degradationof misfolded glycoproteins translocated from the endoplasmic reticulum (ER) to the cytosol.Therefore,theenzyme was supposed to be able to distinguish between native and non-native glycoproteins.In the presentstudy,a recombinant,yeast peptide:N-glycanase,Png lp, was expressed in Escherichia coli as inclusionbodies and was purified,refolded and characterized.The results showed that the recombinant enzymehas a broad pH range adaptation,from pH 4.0 to pH 10.0,and has an optimum temperature of 30 ℃.This enzyme is a zinc metalloenzyme.Its activity was abolished with the addition of EDTA and notrestored by adding metal ions.Furthermore,the deglycosylation efficiency of recombinant Pnglpfrom E.coli was investigated with respect to the substrate conformation in vitro.When ribonuclease B(RNase B) was denatured at 60-65 ℃ or by 40-60 mM dithiothreitol, indicated by its obvious structuralchange and sharpest activity change,its deglycosylation by Pnglp was most prominent.The deglycosylationefficiency of RNase B by Pnglp was found to be related to its structural conformation and enzymaticactivity.  相似文献   

11.
Peptide:N-glycanase (PNGase) is the enzyme responsible for de-N-glycosylation of misfolded glycoproteins in the cytosol. Here, we report the molecular identification and characterization of PNGase (png-1, F56G4.5) from Caenorhabditis elegans. This enzyme released both high mannose- and complex-type N-glycans from glycopeptides and denatured glycoproteins. Deglycosylation activity was inhibited by Zn(2+) and z-VAD-fmk, but not by EDTA. PNG-1 has a thioredoxin-like domain in addition to a transglutaminase domain, the core domain of PNGases, and exhibited protein disulphide reductase activity in vitro. Our biochemical studies revealed that PNG-1 is a unique bifunctional protein possessing two enzyme activities.  相似文献   

12.
Endoplasmic-reticulum associated degradation (ERAD) is a major cellular misfolded protein disposal pathway that is well conserved from yeast to mammals. In yeast, a mutant of carboxypeptidase Y (CPY*) was found to be a luminal ER substrate and has served as a useful marker to help identify modifiers of the ERAD pathway. Due to its ease of genetic manipulation and the ability to conduct a genome wide screen for modifiers of molecular pathways, C. elegans has become one of the preferred metazoans for studying cell biological processes, such as ERAD. However, a marker of ERAD activity comparable to CPY* has not been developed for this model system. We describe a mutant of pro-cathepsin L fused to YFP that no longer targets to the lysosome, but is efficiently eliminated by the ERAD pathway. Using this mutant pro-cathepsin L, we found that components of the mammalian ERAD system that participate in the degradation of ER luminal substrates were conserved in C. elegans. This transgenic line will facilitate high-throughput genetic or pharmacological screens for ERAD modifiers using widefield epifluorescence microscopy.  相似文献   

13.
In the endoplasmic reticulum, immature polypeptides coincide with terminally misfolded proteins. Consequently, cells need a well-balanced quality control system, which decides about the fate of individual proteins and maintains protein homeostasis. Misfolded and unassembled proteins are sent for destruction via the endoplasmic reticulum-associated degradation (ERAD) machinery to prevent the accumulation of potentially toxic protein aggregates. Here, we report the identification of Arabidopsis thaliana OS9 as a component of the plant ERAD pathway. OS9 is an ER-resident glycoprotein containing a mannose-6-phosphate receptor homology domain, which is also found in yeast and mammalian lectins involved in ERAD. OS9 fused to the C-terminal domain of YOS9 can complement the ERAD defect of the corresponding yeast Δyos9 mutant. An A. thaliana OS9 loss-of-function line suppresses the severe growth phenotype of the bri1-5 and bri1-9 mutant plants, which harbour mutated forms of the brassinosteroid receptor BRI1. Co-immunoprecipitation studies demonstrated that OS9 associates with Arabidopsis SEL1L/HRD3, which is part of the plant ERAD complex and with the ERAD substrates BRI1-5 and BRI1-9, but only the binding to BRI1-5 occurs in a glycan-dependent way. OS9-deficiency results in activation of the unfolded protein response and reduces salt tolerance, highlighting the role of OS9 during ER stress. We propose that OS9 is a component of the plant ERAD machinery and may act specifically in the glycoprotein degradation pathway.  相似文献   

14.
Quality control in the endoplasmic reticulum ensures that only properly folded proteins are retained in the cell through mechanisms that recognize and discard misfolded or unassembled proteins in a process called endoplasmic reticulum-associated degradation (ERAD). We previously cloned EDEM (ER degradation-enhancing alpha-mannosidase-like protein) and showed that it accelerates ERAD of misfolded glycoproteins. We now cloned mouse EDEM3, a soluble homolog of EDEM. EDEM3 consists of 931 amino acids and has all the signature motifs of Class I alpha-mannosidases (glycosyl hydrolase family 47) in its N-terminal domain and a protease-associated motif in its C-terminal region. EDEM3 accelerates glycoprotein ERAD in transfected HEK293 cells, as shown by increased degradation of misfolded alpha1-antitrypsin variant (null (Hong Kong)) and of TCRalpha. Overexpression of EDEM3 also greatly stimulates mannose trimming not only from misfolded alpha1-AT null (Hong Kong) but also from total glycoproteins, in contrast to EDEM, which has no apparent alpha1,2-mannosidase activity. Furthermore, overexpression of the E147Q EDEM3 mutant, which has the mutation in one of the conserved acidic residues essential for enzyme activity of alpha1,2-mannosidases, abolishes the stimulation of mannose trimming and greatly decreases the stimulation of ERAD by EDEM3. These results show that EDEM3 has alpha1,2-mannosidase activity in vivo, suggesting that the mechanism whereby EDEM3 accelerates glycoprotein ERAD is different from that of EDEM.  相似文献   

15.
Eukaryotic methionine aminopeptidase type 2 (MetAP2, MetAP2 gene (MAP2)), together with eukaryotic MetAP1, cotranslationally hydrolyzes initiator methionine from nascent polypeptides when the side chain of the second residue is small and uncharged. In this report, we took advantage of the yeast (Saccharomyces cerevisiae) map1 null strain's reliance on MetAP2 activity for the growth and viability to provide evidence of the first dominant negative mutant of eukaryotic MetAP2. Replacement of the conserved His(174) with alanine within the C-terminal catalytic domain of yeast MetAP2 eliminated detectable catalytic activity against a peptide substrate in vitro. Overexpression of MetAP2 (H174A) under the strong GPD promoter in a yeast map1 null strain was lethal, whereas overexpression under the weaker GAL1 promoter slightly inhibited map1 null growth. Deletion mutants further revealed that the N-terminal region of MetAP2 (residues 2-57) is essential but not sufficient for MetAP2 (H174A) to fully interfere with map1 null growth. Together, these results indicate that catalytically inactive MetAP2 is a dominant negative mutant that requires its N-terminal region to interfere with wild-type MetAP2 function.  相似文献   

16.
Membrane and secretory proteins fold in the endoplasmic reticulum (ER), and misfolded proteins may be retained and targeted for ER-associated protein degradation (ERAD). To elucidate the mechanism by which an integral membrane protein in the ER is degraded, we studied the fate of the cystic fibrosis transmembrane conductance regulator (CFTR) in the yeast Saccharomyces cerevisiae. Our data indicate that CFTR resides in the ER and is stabilized in strains defective for proteasome activity or deleted for the ubiquitin-conjugating enzymes Ubc6p and Ubc7p, thus demonstrating that CFTR is a bona fide ERAD substrate in yeast. We also found that heat shock protein 70 (Hsp70), although not required for the degradation of soluble lumenal ERAD substrates, is required to facilitate CFTR turnover. Conversely, calnexin and binding protein (BiP), which are required for the proteolysis of ER lumenal proteins in both yeast and mammals, are dispensable for the degradation of CFTR, suggesting unique mechanisms for the disposal of at least some soluble and integral membrane ERAD substrates in yeast.  相似文献   

17.
Proteins misfolded in the endoplasmic reticulum (ER) are degraded in the cytosol by a ubiquitin-dependent proteasome system, a process collectively termed ER-associated degradation (ERAD). Unraveling the molecular mechanisms of mammalian ERAD progresses more slowly than that of yeast ERAD due to the laborious procedures required for gene targeting and the redundancy of components. Here, we utilized the chicken B lymphocyte-derived DT40 cell line, which exhibits an extremely high homologous recombination frequency, to analyze ERAD mechanisms in higher eukaryotes. We disrupted the SEL1L gene, which encodes the sole homologue of yeast Hrd3p in both chickens and mammals; Hrd3p is a binding partner of yeast Hrd1p, an E3 ubiquitin ligase. SEL1L-knockout cells grew only slightly more slowly than the wild-type cells. Pulse chase experiments revealed that chicken SEL1L was required for ERAD of misfolded luminal proteins such as glycosylated NHK and unglycosylated NHK-QQQ but dispensable for that of misfolded transmembrane proteins such as NHK(BACE) and CD3-δ, as in mammals. The defect of SEL1L-knockout cells in NHK degradation was restored by introduction of not only chicken SEL1L but also mouse and human SEL1L. Deletion analysis showed the importance of Sel1-like tetratricopeptide repeats but not the fibronectin II domain in the function of SEL1L. Thus, our reverse genetic approach using the chicken DT40 cell line will provide highly useful information regarding ERAD mechanisms in higher eukaryotes which express ERAD components redundantly.  相似文献   

18.
19.
The endoplasmic reticulum (ER) harbors elaborate quality control mechanisms to ensure proper folding and post-translational modifications of polypeptides targeted to this organelle. Once an aberrant protein is detected, it is dislocated from the ER and routed to the proteasome for destruction. Autophagy has been recently implicated in the elevation of the ER stress response; however, the involvement of this pathway in selective removal of ER-associated degradation (ERAD) substrates has not been demonstrated. In the present study, we show that an ER membrane lesion, associated with the accumulation of the yeast ERAD-M substrate 6Myc-Hmg2p elicits the recruitment of Atg8 and elements of the cytosol to vacuole targeting (CVT) to the membrane, leading to attenuation in the degradation process. Deletion of peptide:N-glycanase (PNG1) stabilizes this association, a process accompanied by slowdown of 6Myc-Hmg2p degradation. Truncation of the unstructured C-terminal 23 amino acids of 6Myc-Hmg2p rendered its degradation PNG1-independent and allowed its partial delivery to the vacuole in an autophagy-dependent manner. These findings demonstrate a new conduit for the selective vacuolar/lysosomal removal of ERAD misfolded proteins by an autophagy-related machinery acting concomitantly with the proteasome.  相似文献   

20.
Peptide N-glycanase removes N-linked oligosaccharides from misfolded glycoproteins as part of the endoplasmic reticulum-associated degradation pathway. This process involves the formation of a tight complex of peptide N-glycanase with Rad23 in yeast and the orthologous HR23 proteins in mammals. In addition to its function in endoplasmic reticulum-associated degradation, HR23 is also involved in DNA repair, where it plays an important role in damage recognition in complex with the xeroderma pigmentosum group C protein. To characterize the dual role of HR23, we have determined the high resolution crystal structure of the mouse peptide N-glycanase catalytic core in complex with the xeroderma pigmentosum group C binding domain from HR23B. Peptide N-glycanase features a large cleft between its catalytic cysteine protease core and zinc binding domain. Opposite the zinc binding domain is the HR23B-interacting region, and surprisingly, the complex interface is fundamentally different from the orthologous yeast peptide N-glycanase-Rad23 complex. Different regions on both proteins are involved in complex formation, revealing an amazing degree of divergence in the interaction between two highly homologous proteins. Furthermore, the mouse peptide N-glycanase-HR23B complex mimics the interaction between xeroderma pigmentosum group C and HR23B, thereby providing a first structural model of how the two proteins interact within the nucleotide excision repair cascade in higher eukaryotes. The different interaction interfaces of the xeroderma pigmentosum group C binding domains in yeast and mammals suggest a co-evolution of the endoplasmic reticulum-associated degradation and DNA repair pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号