首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
High hydrostatic pressure (HHP) present in natural environments impacts on cell membrane biophysical properties and protein quaternary structure. We have investigated the effect of high hydrostatic pressure on G22E-MscL, a spontaneously opening mutant of Escherichia coli MscL, the bacterial mechanosensitive channel of large conductance. Patch-clamp technique combined with a flying-patch device and hydraulic setup allowed the study of the effects of HHP up to 90 MPa (as near the bottom of the Marianas Trench) on the MscL mutant channel reconstituted into liposome membranes, in addition to recording in situ from the mutant channels expressed in E. coli giant spheroplasts. In general, against thermodynamic predictions, hydrostatic pressure in the range of 0.1–90 MPa increased channel open probability by favoring the open state of the channel. Furthermore, hydrostatic pressure affected the channel kinetics, as manifested by the propensity of the channel to gate at subconducting levels with an increase in pressure. We propose that the presence of water molecules around the hydrophobic gate of the G22E MscL channel induce hydration of the hydrophobic lock under HHP causing frequent channel openings and preventing the channel closure in the absence of membrane tension. Furthermore, our study indicates that HHP can be used as a valuable experimental approach toward better understanding of the gating mechanism in complex channels such as MscL.  相似文献   

2.
Pressure effects on alamethicin conductance in bilayer membranes.   总被引:1,自引:0,他引:1       下载免费PDF全文
We report here the first observations of the effects of elevated hydrostatic pressure on the kinetics of bilayer membrane conductance induced by the pore-forming antibiotic, alamethicin. Bacterial phosphatidylethanolamine-squalene bilayer membranes were formed by the apposition of lipid monolayers in a vessel capable of sustaining hydrostatic pressures in the range, 0.1-100 MPa (1-1,000 atm). Principal observations were (a) the lifetimes of discrete conductance states were lengthened with increasing pressure, (b) both the onset and decay of alamethicin conductance accompanying application and removal of supra-threshold voltage pulses were slowed with increasing pressure, (c) the onset of alamethicin conductance at elevated pressure became distinctly sigmoidal, suggesting an electrically silent intermediate state of channel assembly, (d) the magnitudes of the discrete conductance levels observed did not change with pressure, and, (e) the voltage threshold for the onset of alamethicin conductance was not altered by pressure. Apparent activation volumes for both the formation and decay of conducting states were positive and of comparable magnitude, namely, approximately 100 A3/event. Observation d indicates that channel geometry and the kinetics of ion transport through open channels were not affected by pressure in the range employed. The remaining observations indicate that, while the relative positions of free-energy minima characterizing individual conducting states at a given voltage were not modified by pressure, the heights of intervening potential maxima were increased by its application.  相似文献   

3.
Activity of the bacterial mechanosensitive channels of small conductance MscS/MscK of E. coli was investigated under high hydrostatic pressure (HHP) using the “flying-patch” patch-clamp technique. The channels were gated by negative pipette voltage and their open probability was measured at HHP of 0.1 to 80 MPa. The channel open probability decreased with increasing HHP. When the osmolyte methylamine N-oxide (TMAO) was applied to the cytoplasmic side of the inside-out excised membrane patches of E. coli giant spheroplasts the inhibitory effect of HHP on the channel activity was suppressed at pressures of up to 40 MPa. At 40 MPa and above the channel open probability decreased in a similar fashion with or without TMAO. Our study suggests that TMAO helps to counteract the effect of HHP up to 40 MPa on the MscS/MscK open state by “shielding” the cytoplasmic domain of the channels.  相似文献   

4.
Activity of the bacterial mechanosensitive channels of small conductance MscS/MscK of E. coli was investigated under high hydrostatic pressure (HHP) using the “flying-patch” patch-clamp technique. The channels were gated by negative pipette voltage and their open probability was measured at HHP of 0.1 to 80 MPa. The channel open probability decreased with increasing HHP. When the osmolyte methylamine N-oxide (TMAO) was applied to the cytoplasmic side of the inside-out excised membrane patches of E. coli giant spheroplasts the inhibitory effect of HHP on the channel activity was suppressed at pressures of up to 40 MPa. At 40 MPa and above the channel open probability decreased in a similar fashion with or without TMAO. Our study suggests that TMAO helps to counteract the effect of HHP up to 40 MPa on the MscS/MscK open state by “shielding” the cytoplasmic domain of the channels.  相似文献   

5.
Porin OmpC from Escherichia coli was reconstituted in liposomes and its gating kinetics were recorded at high hydrostatic pressure, up to 90 MPa, using a development of the patch clamp technique. The composition of the recording solution influenced the results but generally high hydrostatic pressure favoured channel opening.  相似文献   

6.
Ion channels are distinctive membrane proteins which provide a gated pathway for diffusing ions. High pressure (<100 MPa) affects the kinetics of gating but not the conductance of the channel. Dynamic structural studies of channels at high pressure are, thus far, conspicuously absent but functional properties are studied at the single channel level with the patch clamp technique.  相似文献   

7.
Mechanosensitive channels are detected in all cells and are speculated to play a key role in many functions including osmoregulation, growth, hearing, balance, and touch. In prokaryotic cells, a direct gating of mechanosensitive channels by membrane tension was clearly demonstrated because the purified channels could be functionally reconstituted in a lipid bilayer. No such evidence has been presented yet in the case of mechanosensitive channels from animal cells. TREK-1, a two-pore domain K+ channel, was the first animal mechanosensitive channel identified at the molecular level. It is the target of a large variety of agents such as volatile anesthetics, neuroprotective agents, and antidepressants. We have produced the mouse TREK-1 in yeast, purified it, and reconstituted the protein in giant liposomes amenable to patch clamp recording. The protein exhibited the expected electrophysiological properties in terms of kinetics, selectivity, and pharmacology. Negative pressure (suction) applied through the pipette had no effect on the channel, but positive pressure could completely and reversibly close the channel. Our interpretation of these data is that the intrinsic tension in the lipid bilayer is sufficient to maximally activate the channel, which can be closed upon modification of the tension. These results indicate that TREK-1 is directly sensitive to membrane tension.  相似文献   

8.
The mechanosensitive channel with large conductance of Escherichia coli is the first to be cloned among stretch-activated channels. Although its activity was characterized by a patch clamp method, a physiological role of the channel has not been proved. The marine bacterium, Vibrio alginolyticus, is sensitive to osmotic stress and cell lysis occurs under osmotic downshock. We introduced an mscL gene into Vibrio alginolyticus, and the mechanosensitive channel with large conductance functions was found to alleviate cell lysis by osmotic downshock. This is the first report to show a physiological role of the mechanosensitive channel with large conductance.  相似文献   

9.
The activity of the BK channel of bovine chromaffin cells was studied at high hydrostatic pressure, using inside-out patches in symmetrical KCl solution, Ca2+-free and at V(H) = -60 to -40 mV. Pressure increased the probability of channels being open (900 atm increasing the probability 30-fold), and it increased the minimum number of channels apparent in the patches. The pressure activation of the channel was reversed on decompression. Channel conductance was unaffected. It was shown that pressure did not act by raising the temperature, or by affecting [Ca] or pH, or the order of the membrane bilayer, and it was concluded that pressure most likely acted directly on the channel proteins and/or their modulating reactions.  相似文献   

10.
The influence of polyhydric alcohols (sorbitol, xylitol, erythritol, glycerol) on the thermal stability of Rhizomucor miehei lipase has been studied at high hydrostatic pressure (up to 500 MPa). In the absence of additives, a protective effect (PE) (the ratio between the residual activities determined at 480 MPa for the enzyme in the presence or absence of polyhydric alcohols) of low-applied pressures (from 50 MPa to 350 MPa) against thermal deactivations (at 50°C and 55°C) has been noticed. In the presence of additives, a strong correlation between PE and the total hydroxyl group concentration has been obtained, for the first time, under treatments of combining denaturing temperatures and high hydrostatic pressures. This relationship does not seem to be dependent on the nature polyhydric alcohols as the same effect could be observed with 1 M sorbitol and 2 M glycerol. This PE, against thermal and high pressure combined lipase deactivation, increases with polyhydric alcohol concentrations, and when temperature increases from 25°C to 55°C.  相似文献   

11.
To contribute to the understanding of membrane protein function upon application of pressure, we investigated the influence of hydrostatic pressure on the conformational order and phase behavior of the multidrug transporter LmrA in biomembrane systems. To this end, the membrane protein was reconstituted into various lipid bilayer systems of different chain length, conformation, phase state and heterogeneity, including raft model mixtures as well as some natural lipid extracts. In the first step, we determined the temperature stability of the protein itself and verified its reconstitution into the lipid bilayer systems using CD spectroscopic and AFM measurements, respectively. Then, to yield information on the temperature and pressure dependent conformation and phase state of the lipid bilayer systems, generalized polarization values by the Laurdan fluorescence technique were determined, which report on the conformation and phase state of the lipid bilayer system. The temperature-dependent measurements were carried out in the temperature range 5-70 °C, and the pressure dependent measurements were performed in the range 1-200 MPa. The data show that the effect of the LmrA reconstitution on the conformation and phase state of the lipid matrix depends on the fluidity and hydrophobic matching conditions of the lipid system. The effect is most pronounced for fluid DMPC and DMPC with low cholesterol levels, but minor for longer-chain fluid phospholipids such as DOPC and model raft mixtures such as DOPC/DPPC/cholesterol. The latter have the additional advantage of using lipid sorting to avoid substantial hydrophobic mismatch. Notably, the most drastic effect was observed for the neutral/glycolipid natural lipid mixture. In this case, the impact of LmrA incorporation on the increase of the conformational order of the lipid membrane was most pronounced. As a consequence, the membrane reaches a mechanical stability which makes it very insensitive to application of pressures as high as 200 MPa. The results are correlated with the functional properties of LmrA in these various lipid environments and upon application of high hydrostatic pressure and are discussed in the context of other work on pressure effects on membrane protein systems.  相似文献   

12.
Outwardly rectifying chloride channels in lymphocytes   总被引:5,自引:0,他引:5  
Summary Outwardly rectifying Cl channels in cultured human Jurkat T-lymphocytes were activated by excising a patch of membrane using the inside-out (i/o) patch-clamp configuration and holding at depolarized voltages for prolonged periods of time (1–6 min at +80 mV, 20°C). The single-channel current at +80 mV was 4.5 ± 0.3 pA and at –80 mV, it was 1.0 ± 0.4 pA. After activation, the probability of being open (P 0)for the lymphocyte channel was voltage independent. Activation of the Cl channel in lymphocytes was temperature dependent. Nineteen percent of i/o recordings from lymphocytes made at 20°C exhibited Cl channel activity. In contrast, 49% of recordings made at 30°C showed channel activity. The number of channels in an active patch was not significantly different at the two temperatures. Channel activation in excised, depolarized patches also occurred 20-fold faster at 30°C than at 20°C. There was no marked change in the single-channel conductance at 30°C. Open-channel conductance was blocked by 200 m indanyloxyacetic acid (IAA) or 1 mm SITS when applied to the intracellular side of the patch. The characteristics of this channel are similar to epithelial outwardly rectifying Cl channels thought to be involved in fluid secretion  相似文献   

13.
Mechanosensitive channel of small conductance (MscS), a tension-driven osmolyte release valve residing in the inner membrane of Escherichia coli, exhibits a complex adaptive behavior, whereas its functional counterpart, mechanosensitive channel of large conductance (MscL), was generally considered nonadaptive. In this study, we show that both channels exhibit similar adaptation in excised patches, a process that is completely separable from inactivation prominent only in MscS. When a membrane patch is held under constant pressure, adaptation of both channels is manifested as a reversible current decline. Their dose–response curves recorded with 1–10-s ramps of pressure are shifted toward higher tension relative to the curves measured with series of pulses, indicating decreased tension sensitivity. Prolonged exposure of excised patches to subthreshold tensions further shifts activation curves for both MscS and MscL toward higher tension with similar magnitude and time course. Whole spheroplast MscS recordings performed with simultaneous imaging reveal activation curves with a midpoint tension of 7.8 mN/m and the slope corresponding to ∼15-nm2 in-plane expansion. Inactivation was retained in whole spheroplast mode, but no adaptation was observed. Similarly, whole spheroplast recordings of MscL (V23T mutant) indicated no adaptation, which was present in excised patches. MscS activities tried in spheroplast-attached mode showed no adaptation when the spheroplasts were intact, but permeabilized spheroplasts showed delayed adaptation, suggesting that the presence of membrane breaks or edges causes adaptation. We interpret this in the framework of the mechanics of the bilayer couple linking adaptation of channels in excised patches to the relaxation of the inner leaflet that is not in contact with the glass pipette. Relaxation of one leaflet results in asymmetric redistribution of tension in the bilayer that is less favorable for channel opening.  相似文献   

14.
The small mechanosensitive channel, MscS, is a part of the turgor-driven solute efflux system that protects bacteria from lysis in the event of osmotic downshift. It has been identified in Escherichia coli as a product of the orphan yggB gene, now called mscS (Levina et al., 1999, EMBO J. 18:1730). Here I show that that the isolated 31-kDa MscS protein is sufficient to form a functional mechanosensitive channel gated directly by tension in the lipid bilayer. MscS-6His complexes purified in the presence of octylglucoside and lipids migrate in a high-resolution gel-filtration column as particles of approximately 200 kDa. Consistent with that, the protein cross-linking patterns predict a hexamer. The channel reconstituted in soybean asolectin liposomes was activated by pressures of 20-60 mm Hg and displayed the same asymmetric I-V curve and slight anionic preference as in situ. At the same time, the single-channel conductance is proportional to the buffer conductivity in a wide range of salt concentrations. The rate of channel activation in response to increasing pressure gradient across the patch was slower than the rate of closure in response to decreasing steps of pressure gradient. Therefore, the open probability curves were recorded with descending series of pressures. Determination of the curvature of patches by video imaging permitted measurements of the channel activity as a function of membrane tension (gamma). Po(gamma) curves had the midpoint at 5.5 +/- 0.1 dyne/cm and gave estimates for the energy of opening DeltaG = 11.4 +/- 0.5 kT, and the transition-related area change DeltaA = 8.4 +/- 0.4 nm(2) when fitted with a two-state Boltzmann model. The correspondence between channel properties in the native and reconstituted systems is discussed.  相似文献   

15.
The mechanosensitive (MS) ion channel is gated by changes in bilayer deformation. It is functional without the presence of any other proteins and gating of the channel has been successfully achieved using conventional patch clamping techniques where a voltage has been applied together with a pressure over the membrane. Here, we have for the first time analyzed the large conducting (MscL) channel in a supported membrane using only an external electrical field. This was made possible using a newly developed technique utilizing a tethered lipid bilayer membrane (tBLM), which is part of an engineered microelectronic array chip. Single ion channel activity characteristic for MscL was obtained, albeit with lower conductivity. The ion channel was gated using solely a transmembrane potential of 300 mV. Computations demonstrate that this amount of membrane potential induces a membrane tension of 12 dyn/cm, equivalent to that calculated to gate the channel in patch clamp from pressure-induced stretching of the bilayer. These results strengthen the supposition that the MscL ion channel gates in response to stress in the lipid membrane rather than pressure across it. Furthermore, these findings illustrate the possibility of using the MscL as a release valve for engineered membrane devices; one step closer to mimicking the true function of the living cell.  相似文献   

16.
Patch clamp electrophysiology is the main technique to study mechanosensitive ion channels (MSCs), however, conventional patch clamping is laborious and success and output depends on the skills of the operator. Even though automated patch systems solve these problems for other ion channels, they could not be applied to MSCs. Here, we report on activation and single channel analysis of a bacterial mechanosensitive ion channel using an automated patch clamp system. With the automated system, we could patch not only giant unilamellar liposomes but also giant Escherichia coli (E. coli) spheroplasts. The tension sensitivity and channel kinetics data obtained in the automated system were in good agreement with that obtained from the conventional patch clamp. The findings will pave the way to high throughput fundamental and drug screening studies on mechanosensitive ion channels.  相似文献   

17.
Electrophysiology is a central tool for measuring how different driving forces (e.g., ligand concentration, transmembrane voltage, or lateral tension) cause a channel protein to gate. Upon formation of the high resistance seal between a lipid bilayer and a glass pipette, the so-called “giga-seal”, channel activity can be recorded electrically. In this article, we explore the implications of giga-seal formation on the mechanical state of a lipid bilayer patch. We use a mechanical model for the free energy of bilayer geometry in the presence of glass-bilayer adhesion to draw three potentially important conclusions. First, we use our adhesion model to derive an explicit relationship between applied pressure and patch shape that is consistent with the Laplace-Young Law, giving an alternative method of calculating patch tension under pressure. With knowledge of the adhesion constant, which we find to be in the range ∼0.4–4 mN/m, and the pipette size, one can precisely calculate the patch tension as a function of pressure, without the difficultly of obtaining an optical measurement of the bilayer radius of curvature. Second, we use data from previous electrophysiological experiments to show that over a wide range of lipids, the resting tension on a electrophysiological patch is highly variable and can be 10–100 times higher than estimates of the tension in a typical cell membrane. This suggests that electrophysiological experiments may be systematically altering channel-gating characteristics and querying the channels under conditions that are not the same as their physiological counterparts. Third, we show that reversible adhesion leads to a predictable change in the population response of gating channels in a bilayer patch.  相似文献   

18.
Mechanosensitive channels act as molecular transducers of mechanical force exerted on the membrane of living cells by opening in response to membrane bilayer deformations occurring in physiological processes such as touch, hearing, blood pressure regulation, and osmoregulation. Here, we determine the likely structure of the open state of the mechanosensitive channel of large conductance using a combination of patch clamp, fluorescence resonance energy transfer (FRET) spectroscopy, data from previous electron paramagnetic resonance experiments, and molecular and Brownian dynamics simulations. We show that structural rearrangements of the protein can be measured in similar conditions as patch clamp recordings while controlling the state of the pore in its natural lipid environment by modifying the lateral pressure distribution via the lipid bilayer. Transition to the open state is less dramatic than previously proposed, while the N terminus remains anchored at the surface of the membrane where it can either guide the tilt of or directly translate membrane tension to the conformation of the pore-lining helix. Combining FRET data obtained in physiological conditions with simulations is likely to be of great value for studying conformational changes in a range of multimeric membrane proteins.  相似文献   

19.
Whole-cell patch clamp recordings were done on giant protoplasts of Escherichia coli. The pressure sensitivity of the protoplasts was studied. Two different unit conductance mechanosensitive channels, 1100 ± 25 pS and 350 ± 14 pS in 400 mm symmetric KCl solution, were observed upon either applying positive pressure to the interior of the cells or down shocking the cells osmotically. The 1100 pS conductance channel discriminated poorly among the monovalent ions tested and it was permeable to Ca2+ and glutamate?. Both of the two channels were sensitive to the osmotic gradient across the membrane; the unit conductances of the channels remained constant while the mean current of the cell was increased by increasing the osmotic gradient. Both of the channels were voltage sensitive. Voltage-ramp results showed that the pressure sensitivity of protoplasts was voltage dependent: there were more channels active upon depolarization than hyperpolarization. The mech anosensitive channels were reversibly blocked by gadolinium ion. Also they could reversibly be inhibited by protons. Mutations in two of the potassium efflux systems, KefB and KefC, did not affect the channel activity, while a null mutation in the gene for KefA changed the channel activity significantly. This indicates a potential modulation of these channels by KefA.  相似文献   

20.
The objective of this study is to determine the effect of high hydrostatic pressure (HHP) on inactivation of Alicyclobacillus acidoterrestris vegetative cells in a model system (BAM broth) and in orange, apple and tomato juices. The shelf-life stability of pressurized juices is also studied. In general the viability loss was enhanced significantly as the level of pressure and temperature were increased (P < 0.05). 4.70 log cycle reduction was obtained after pressurization at 350 MPa at 50 °C for 20 min in BAM broth whereas thermal treatment at 50 °C for 20 min caused only 1.13 log cycle inactivation showing the effectiveness of HHP treatment on inactivation. The D values for pressure (350 MPa at 50 °C) and temperature (50 °C) treatments were 4.37 and 18.86 min in BAM broth, respectively. All juices were inoculated with A. acidoterrestris cells to 106 c.f.u./ml and were pressurized at 350 MPa at 50 °C for 20 min. More than 4 log cycle reduction was achieved in all juices studied immediately after pressurization. The pressurized juices were also stored up to 3 weeks at 30 °C and the viable cell numbers of A. acidoterrestris in orange, apple and tomato juices were 3.79, 2.59 and 2.27 log cycles, respectively after 3 weeks. This study has indicated that A. acidoterrestris vegetative cells can be killed by HHP at a predictable rate even at temperatures at which the microorganism would normally grow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号