首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under physiological conditions, biotransformation reactions, such as methylation, can modify green tea polyphenols (GTPs) and therefore limit their in vivo cancer-preventive activity. Although a recent study suggested that methylated polyphenols are less cancer-protective, the molecular basis is unknown. We previously reported that ester bond-containing GTPs, for example (-)-epigallocatechin-3-gallate [(-)-EGCG] or (-)-epicatechin-3-gallate [(-)-ECG], potently and specifically inhibit the proteasomal chymotrypsin-like activity. In this study, we hypothesize that methylated GTPs have decreased proteasome-inhibitory abilities. To test this hypothesis, methylated (-)-EGCG and (-)-ECG analogs that can be found in vivo were synthesized and studied for their structure-activity relationships (SARs) using a purified 20S proteasome. The addition of a single methyl group on (-)-EGCG or (-)-ECG led to decreased proteasome inhibition and, as the number of methyl groups increased, the inhibitory potencies further decreased. These SARs were supported by our findings from in silico docking analysis published recently. Previously, we synthesized a peracetate-protected (-)-EGCG molecule, Pro-EGCG (1), to enhance its cellular permeability and stability, and current HPLC analysis confirms conversion of Pro-EGCG (1) to (-)-EGCG in cultured human leukemic Jurkat T cells. Furthermore, in this study, peracetate-protected forms of methylated GTPs were added in intact Jurkat T cells to observe the intracellular effects of methylation. Peracetate-protected, monomethylated (-)-EGCG induced greater cellular proteasome inhibition and apoptosis than did peracetate-protected, trimethylated (-)-EGCG, consistent with the potencies of the parent methylated analogs against a purified 20S proteasome. Therefore, methylation on GTPs, under physiological conditions, could decrease their proteasome-inhibitory activity, contributing to decreased cancer-preventive effects of tea consumption.  相似文献   

2.
Synthetic analogs of green tea polyphenols as proteasome inhibitors   总被引:2,自引:0,他引:2  
BACKGROUND: Animal, epidemiological and clinical studies have demonstrated the anti-tumor activity of pharmacological proteasome inhibitors and the cancer-preventive effects of green tea consumption. Previously, one of our laboratories reported that natural ester bond-containing green tea polyphenols (GTPs), such as (-)-epigallocatechin-3-gallate [(-)-EGCG] and (-)-gallocatechin-3-gallate [(-)-GCG], are potent and specific proteasome inhibitors. Another of our groups, for the first time, was able to enantioselectively synthesize (-)-EGCG as well as other analogs of this natural GTP. Our interest in designing and developing novel synthetic GTPs as proteasome inhibitors and potential cancer-preventive agents prompted our current study. MATERIALS AND METHODS: GTP analogs, (+)-EGCG, (+)-GCG, and a fully benzyl-protected (+)-EGCG [Bn-(+)-EGCG], were prepared by enantioselective synthesis. Inhibition of the proteasome or calpain (as a control) activities under cell-free conditions were measured by fluorogenic substrate assay. Inhibition of intact tumor cell proteasome activity was measured by accumulation of some proteasome target proteins (p27, I kappa B-alpha and Bax) using Western blot analysis. Inhibition of tumor cell proliferation and induction of apoptosis by synthetic GTPs were determined by G(1) arrest and caspase activation, respectively. Finally, inhibition of the transforming activity of human prostate cancer cells by synthetic GTPs was measured by a colony formation assay. RESULTS: (+)-EGCG and (+)-GCG potently and specifically inhibit the chymotrypsin-like activity of purified 20S proteasome and the 26S proteasome in tumor cell lysates, while Bn-(+)-EGCG does not. Treatment of leukemic Jurkat T or prostate cancer LNCaP cells with either (+)-EGCG or (+)-GCG accumulated p27 and IkappaB-alpha proteins, associated with an increased G(1) population. (+)-EGCG treatment also accumulated the pro-apoptotic Bax protein and induced apoptosis in LNCaP cells expressing high basal levels of Bax, but not prostate cancer DU-145 cells with low Bax expression. Finally, synthetic GTPs significantly inhibited colony formation by LNCaP cancer cells. CONCLUSIONS: Enantiomeric analogs of natural GTPs, (+)-EGCG and (+)-GCG, are able to potently and specifically inhibit the proteasome both, in vitro and in vivo, while protection of the hydroxyl groups on (+)-EGCG renders the compound completely inactive.  相似文献   

3.
4.
Smith DM  Daniel KG  Wang Z  Guida WC  Chan TH  Dou QP 《Proteins》2004,54(1):58-70
Previously, we demonstrated that natural and synthetic ester bond-containing green tea polyphenols were potent and specific non-peptide proteasome inhibitors. However, the molecular mechanism of inhibition is currently unknown. Here, we report that inhibition of the chymotrypsin activity of the 20S proteasome by (-)-epigallocatechin-3-gallate (EGCG) is time-dependent and irreversible, implicating acylation of the beta5-subunit's catalytic N-terminal threonine (Thr 1). This knowledge is used, along with in silico docking experiments, to aid in the understanding of binding and inhibition. On the basis of these docking experiments, we propose that (-)-EGCG binds the chymotrypsin site in an orientation and conformation that is suitable for a nucleophilic attack by Thr 1. Consistently, the distance from the electrophilic carbonyl carbon of (-)-EGCG to the hydroxyl group of Thr 1 was measured as 3.18 A. Furthermore, the A ring of (-)-EGCG acts as a tyrosine mimic, binding to the hydrophobic S1 pocket of the beta5-subunit. In the process, the (-)-EGCG scissile bond may become strained, which could lower the activation energy for attack by the hydroxyl group of Thr 1. This model is validated by comparison of predicted and actual activities of several EGCG analogs, either naturally occurring, previously synthesized, or rationally synthesized.  相似文献   

5.
Green tea has been shown to have many biological effects, including effects on metabolism, angiogenesis, oxidation, and cell proliferation. Unfortunately, the most abundant green tea polyphenol (-)-epigallocatechin gallate or (-)-EGCG is very unstable in neutral or alkaline medium. This instability leads to a low bioavailability. In an attempt to enhance the stability of (-)-EGCG, we introduced peracetate protection groups on the reactive hydroxyls of (-)-EGCG (noted in text as 1). HPLC analysis shows that the protected (-)-EGCG analog is six times more stable than natural (-)-EGCG under slightly alkaline conditions. A series of bioassays show that 1 has no inhibitory activity against a purified 20S proteasome in vitro, but exhibits increased proteasome-inhibitory activity in intact leukemic cells over natural (-)-EGCG, indicating an intercellular conversion. Inhibition of cellular proteasome activity by 1 is associated with induction of cell death. Therefore, our results indicate that the protected analog 1 may function as a prodrug of the green tea polyphenol proteasome inhibitor (-)-EGCG.  相似文献   

6.
7.
Tea polyphenols, their biological effects and potential molecular targets   总被引:1,自引:0,他引:1  
Tea is the most popular beverage in the world, second only to water. Tea contains an infusion of the leaves from the Camellia sinensis plant rich in polyphenolic compounds known as catechins, the most abundant of which is (-)-EGCG. Although tea has been consumed for centuries, it has only recently been studied extensively as a health-promoting beverage that may act to prevent a number of chronic diseases and cancers. The results of several investigations indicate that green tea consumption may be of modest benefit in reducing the plasma concentration of cholesterol and preventing atherosclerosis. Additionally, the cancer-preventive effects of green tea are widely supported by results from epidemiological, cell culture, animal and clinical studies. In vitro cell culture studies show that tea polyphenols potently induce apoptotic cell death and cell cycle arrest in tumor cells but not in their normal cell counterparts. Green tea polyphenols were shown to affect several biological pathways, including growth factor-mediated pathway, the mitogen-activated protein (MAP) kinase-dependent pathway, and ubiquitin/proteasome degradation pathways. Various animal studies have revealed that treatment with green tea inhibits tumor incidence and multiplicity in different organ sites such as skin, lung, liver, stomach, mammary gland and colon. Recently, phase I and II clinical trials have been conducted to explore the anticancer effects of green tea in humans. A major challenge of cancer prevention is to integrate new molecular findings into clinical practice. Therefore, identification of more molecular targets and biomarkers for tea polyphenols is essential for improving the design of green tea trials and will greatly assist in a better understanding of the mechanisms underlying its anti-cancer activity.  相似文献   

8.
9.
Many beneficial proprieties have been associated with polyphenols from green tea, such as chemopreventive, anticarcinogenic, antiatherogenic and antioxidant actions. In this study, we investigated the effects of green tea polyphenols (GTPs) and their principal catechins on the function of P-glycoprotein (P-gp), which is involved in the multidrug resistance phenotype of cancer cells. GTPs (30 microg/ml) inhibit the photolabeling of P-gp by 75% and increase the accumulation of rhodamine-123 (R-123) 3-fold in the multidrug-resistant cell line CH(R)C5, indicating that GTPs interact with P-gp and inhibit its transport activity. Moreover, the modulation of P-gp transport by GTPs was a reversible process. Among the catechins present in GTPs, EGCG, ECG and CG are responsible for inhibiting P-gp. In addition, EGCG potentiates the cytotoxicity of vinblastine (VBL) in CH(R)C5 cells. The inhibitory effect of EGCG on P-gp was also observed in human Caco-2 cells, which form an intestinal epithelial-like monolayer. Our results indicate that, in addition to their anti-cancer properties, GTPs and more particularly EGCG inhibit the binding and efflux of drugs by P-gp. Thus, GTPs or EGCG might be potential agents for modulating the bioavailability of P-gp substrates at the intestine and the multidrug resistance phenotype associated with expression of this transporter in cancer cells.  相似文献   

10.
Inhibitory effects of green tea catechins and their derivatives on the matrilysin-catalyzed hydrolysis of a synthetic substrate, (7-methoxycoumarin-4-yl)acetyl-L-Pro-L-Leu-Gly-L-Leu-[N(3)-(2,4-dinitrophenyl)-L-2,3-diamino-propionyl]-L-Ala-L-Arg-NH(2) [MOCAc-PLGL(Dpa)AR], were examined. The 10 catechins examined were classified into three groups according to their inhibition potency. Catechins with a galloyl group at the 3 position, including a major component of green tea catechin, (-)-epigallo-3-catechin gallate [(-)-EGCG], were the most potent inhibitors and inhibited matrilysin in a non-competitive manner with K(i) values of 0.47-1.65 micro M. The inhibitory potency of (-)-EGCG was not influenced by the presence of an inhibitor, ZnCl(2), suggesting that the inhibitions of matrilysin by (-)-EGCG and by ZnCl(2) might be independent of each other. The inhibitory effects of green tea catechins suggest that a high intake of green tea might be effective for the prevention of tumor metastasis and invasion in which matrilysin is concerned.  相似文献   

11.
12.
Excessive exposure of the skin to solar ultraviolet (UV) radiation is one of the major factors for the development of skin cancers, including non-melanoma. For the last several centuries the consumption of dietary phytochemicals has been linked to numerous health benefits including the photoprotection of the skin. Green tea has been consumed as a popular beverage world-wide and skin photoprotection by green tea polyphenols (GTPs) has been widely investigated. In this article, we have discussed the recent investigations and mechanistic studies which define the potential efficacy of GTPs on the prevention of non-melanoma skin cancer. UV-induced DNA damage, particularly the formation of cyclobutane pyrimidine dimers, has been implicated in immunosuppression and initiation of skin cancer. Topical application or oral administration of green tea through drinking water of mice prevents UVB-induced skin tumor development, and this prevention is mediated, at least in part, through rapid repair of DNA. The DNA repair by GTPs is mediated through the induction of interleukin (IL)-12 which has been shown to have DNA repair ability. The new mechanistic investigations support and explain the anti-photocarcinogenic activity, in particular anti-non-melanoma skin cancer, of green tea and explain the benefits of green tea for human health.  相似文献   

13.
Flavonoids are polyphenolic compounds widely distributed in the plant kingdom. Compelling research indicates that flavonoids have important roles in cancer chemoprevention and chemotherapy possibly due to biological activities that include action through anti-inflammation, free radical scavenging, modulation of survival/proliferation pathways, and inhibition of the ubiquitin-proteasome pathway. Plant polyphenols including the green tea polyphenol (-)-epigallocatechin gallate or (-)-EGCG, and the flavonoids apigenin, luteolin, quercetin, and chrysin have been shown to inhibit proteasome activity and induce apoptosis in human leukemia cells. However, biotransformation reactions to the reactive hydroxyl groups on polyphenols could reduce their biological activities. Although methylated polyphenols have been suggested to be metabolically more stable than unmethylated polyphenols, the practical use of methylated polyphenols as cancer preventative agents warrants further investigation. In the current study, methylated and unmethylated flavonoids were studied for their proteasome-inhibitory and apoptosis-inducing abilities in human leukemia HL60 cells. Methylated flavonoids displayed sustained bioavailability and inhibited cellular proliferation by arresting cells in the G(1) phase. However, they did not act as proteasome inhibitors in either an in vitro system or an in silico model and only weakly induced apoptosis. In contrast, unmethylated flavonoids exhibited inhibition of the proteasomal activity in intact HL60 cells, accumulating proteasome target proteins and inducing caspase activation and poly(ADP-ribose) polymerase cleavage. We conclude that methylated flavonoids lack potent cytotoxicity against human leukemia cells and most likely have limited ability as chemopreventive agents.  相似文献   

14.
Our previous study found that thyroid-stimulating hormone promoted sterol regulatory element-binding protein-2 (SREBP-2) expression and suppressed AMP-activated protein kinase (AMPK) activity in the liver, but it was unclear whether there was a direct link between TSH, AMPK and SREBP-2. Here, we demonstrate that the 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR)-induced activation of AMPK directly inhibited the expression of SREBP-2 and its target genes HMGCR and HMGCS, which are key enzymes in cholesterol biosynthesis, and suppressed the TSH-stimulated up-regulation of SREBP-2 in HepG2 cells; similar results were obtained in TSH receptor knockout mice. Furthermore, AMPK, an evolutionally conserved serine/threonine kinase, phosphorylated threonine residues in the precursor and nuclear forms of SREBP-2, and TSH interacted with AMPK to influence SREBP-2 phosphorylation. These findings may represent a molecular mechanism by which AMPK ameliorates the hepatic steatosis and hypercholesterolemia associated with high TSH levels in patients with subclinical hypothyroidism (SCH).  相似文献   

15.
Epidemiological studies have indicated that regular consumption of red wine and green tea is associated with a reduced risk of coronary heart disease and tumor progression. The development of tumors and of atherosclerosis lesions to advanced plaques, which are prone to rupture, is accelerated by the formation of new blood vessels. These new blood vessels provide oxygen and nutrients to neighboring cells. Therefore, recent studies have examined whether red wine polyphenolic compounds (RWPCs) and green tea polyphenols (GTPs) have antiangiogenic properties. In vitro investigations have indicated that RWPCs and GTPs are able to inhibit several key events of the angiogenic process such as proliferation and migration of endothelial cells and vascular smooth muscle cells and the expression of two major proangiogenic factors, vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2, by both redox-sensitive and redox-insensitive mechanisms. Antiangiogenic properties of polyphenols have also been observed in the chick embryo chorioallantoic membrane since the local application of RWPCs and GTPs strongly inhibited the formation of new blood vessels. Moreover, intake of resveratrol or green tea has been shown to reduce corneal neovascularization induced by proangiogenic factors such as VEGF and fibroblast growth factor in mice. The ability of RWPCs and GTPs to prevent the formation of new blood vessels contributes, at least in part, to explain their beneficial effect on coronary heart disease and cancer. This review focuses on the antiangiogenic properties of natural polyphenols and examines underlying mechanisms.  相似文献   

16.
Analogs of (-)-EGCG containing a para-amino group on the D-ring in place of the hydroxyl groups have been synthesized and their proteasome inhibitory activities were studied. We found that, the O-acetylated (-)-EGCG analogs possessing a p-NH(2) or p-NHBoc (Boc; tert-butoxycarbonyl) D-ring (5 and 7) act as novel tumor cellular proteasome inhibitors and apoptosis inducers with potency similar to natural (-)-EGCG and similar to (-)-EGCG peracetate. These data suggest that the acetylated amino-GTP analogs have the potential to be developed into novel anticancer agents.  相似文献   

17.
18.
Human skin is constantly exposed to numerous noxious physical, chemical and environmental agents. Some of these agents directly or indirectly adversely affect the skin. Cutaneous overexposure to environmental solar ultraviolet (UV) radiation (290-400 nm) has a variety of adverse effects on human health, including the development of melanoma and nonmelanoma skin cancers. Therefore, there is a need to develop measures or strategies, and nutritional components are increasingly being explored for this purpose. The polyphenols present in green tea (Camellia sinensis) have been shown to have numerous health benefits, including protection from UV carcinogenesis. (-)-Epigallocatechin-3-gallate (EGCG) is the major and most photoprotective polyphenolic component of green tea. In this review article, we have discussed the most recent investigations and mechanistic studies that define and support the photoprotective efficacy of green tea polyphenols (GTPs) against UV carcinogenesis. The oral administration of GTPs in drinking water or the topical application of EGCG prevents UVB-induced skin tumor development in mice, and this prevention is mediated through: (a) the induction of immunoregulatory cytokine interleukin (IL) 12; (b) IL-12-dependent DNA repair following nucleotide excision repair mechanism; (c) the inhibition of UV-induced immunosuppression through IL-12-dependent DNA repair; (d) the inhibition of angiogenic factors; and (e) the stimulation of cytotoxic T cells in a tumor microenvironment. New mechanistic information strongly supports and explains the chemopreventive activity of GTPs against photocarcinogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号