首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A group of fourteen healthy young male volunteers was examined to define more exactly the relations between lecithin cholesterol acyltransferase activity (LCAT), fractional cholesterol esterification rate (FER), total cholesterol (TC) and its free and esterified fractions (FC, CE) in skeletal muscles under physiological conditions. The mean values (+/- S.D.) of LCAT activity (95.4 +/- 16.3 mumol .1(-1) per hour), and FER (7.45 +/- 1.54% per hour) corresponded to published data on normolipidaemic healthy men of normal body weight. The mean value of TC in muscles was 332 +/- 83 micrograms per 100 mg of non-collagen protein, of which 14 +/- 7.4 per cent was formed by cholesterol esters. There was positive correlation between TC in muscles and age. Significant positive correlations between FER and the content of esterified cholesterol in muscles, and between FER and the proportion of esterified to total muscle cholesterol were found. These results suggest a close interrelation of cholesterol ester metabolism in the plasma and in slow pool tissues.  相似文献   

2.
The effect of polyenoic phospholipids on the concentration of serum lipids and the activity of lecithin cholesterol acyltransferase (LCAT, E.C. 2.3.1.43) was investigated in 18 patients with chronic glomerulonephritis accompanied by hyperlipaemia and reduced rate of cholesterol esterification in the plasma. The effects of therapy were evaluated immediately after a 2-month period of treatment and again after a 3-month drug free interval following termination of the therapy. An immediate effect of the treatment was reflected in a significant increase in the fractional esterification rate (FER % .h-1) and a marked reduction of the concentration of triglycerides (TG). Discontinuation of the drug resulted in the return of TG and FER values to the initial levels and in a rise of total (TCH) and unesterified cholesterol (UCH), HDL-cholesterol (HDL-TCH) and the molar esterification rate (MER mumol.1-1.h-1). The activity of LCAT estimated by radioassay in common and endogenous substrates varied in parallel.  相似文献   

3.
Previous studies have indicated that LCAT may play a role in the generation of cholesteryl esters (CE) in plasma apolipoprotein B (apoB) lipoproteins. The purpose of the present study was to examine the quantitative importance of LCAT on apoB lipoprotein CE fatty acid (CEFA) composition. LCAT(-/-) mice were crossed into the LDL receptor (LDLr)(-/-) and apoE(-/-) background to retard the clearance and increase the concentration of apoB lipoprotein in plasma. Plasma free cholesterol was significantly elevated but total and esterified cholesterol concentrations were not significantly affected by removal of functioning LCAT in either the LDLr(-/-) or apoE(-/-) mice consuming a chow diet. However, when functional LCAT was removed from LDLr(-/-) mice, the CEFA ratio (saturated + monounsaturated/polyunsaturated) of plasma LDL increased 7-fold because of a 2-fold increase in saturated and monounsaturated CE, a 40% reduction in cholesteryl linoleate, and a complete absence of long chain (>18 carbon) polyunsaturated CE (20:4, 20:5n-3, and 22:6n-3), from 29.3% to 0%. Removal of functional LCAT from apoE(-/-) mice resulted in only a 1.6-fold increase in the CEFA ratio, due primarily to a complete elimination of long chain CE (7.7% to 0%).Our results demonstrate that LCAT contributes significantly to the CEFA pool of apoB lipoprotein and is the only source of plasma long chain polyunsaturated CE in these mice.  相似文献   

4.
In order to study the effects of very low density (VLDL) and low density (LDL) lipoproteins on the activity and specificity of lecithin:cholesterol acyltransferase (LCAT), we determined the molecular species of cholesteryl esters (CE) synthesized in the plasma from three abetalipoproteinemic (ABL) patients, before and after supplementation with normal VLDL or LDL. The patients' plasma had significantly lower concentration of 18:2 CE and higher concentrations of 16:0 CE and 18:1 CE compared to normal plasma. Incubation of ABL plasma with [4-14C]cholesterol at 37 degrees C and the subsequent analysis of labeled CE formed by high performance liquid chromatography revealed that the major species formed was 16:0 CE (34% of total label), whereas similar incubation of the d greater than 1.063 g/ml fraction of normal plasma resulted in the formation of predominantly 18:2 CE (45% of total label). Addition of normal VLDL or LDL to ABL plasma stimulated the total LCAT activity by 30-80% and normalized the CE species synthesized. The LCAT activity of a normal d greater than 1.063 g/ml fraction also was stimulated by the normal VLDL or LDL, but there was no alteration in the species of CE formed. Most of the CE synthesized was found in the added VLDL or LDL with both ABL and normal plasma, indicating that the CE transfer (CET) activity was not affected in ABL plasma. These results suggest that while the VLDL and LDL are required for the maximal activity of LCAT, the species of CE formed are primarily determined by the molecular species composition of phosphatidylcholine in the plasma.  相似文献   

5.
Although it is known that plasma lecithin:cholesterol acyltransferase (LCAT) is activated by several apolipoproteins (apo) including A-I, C-I, D, A-IV, and E, it is not clear what the physiological importance of having different apolipoprotein activators is. One possible explanation is that the activation by different apolipoproteins may result in the utilization of different species of phosphatidylcholine (PC), leading to the formation of different species of cholesteryl esters (CE). In order to determine this possibility, we analyzed the molecular species composition of PC and CE in two patients with familial deficiency of apoA-I and apoC-III. The LCAT activity, assayed by three different procedures, was found to be 36-63% of the control value. The lower LCAT activity, however, was due to deficiency of the enzyme rather than the absence of apoA-I. The patients' plasma was relatively enriched with sn-2 18:2 PC species reflecting the partial deficiency of LCAT activity. The fatty acid composition of plasma CE was not significantly different from that of controls. HPLC analysis of labeled CE formed after incubation of plasma with [C14]cholesterol showed no significant difference in the species of CE synthesized by the LCAT reaction. The transfer of pre-existing as well as newly formed CE from HDL to the apoB-containing lipoproteins was accelerated compared to control plasma. These results show that the absence of apoA-I does not significantly affect either the activity or the specificity of LCAT, and that the other apolipoprotein activators can substitute adequately for it.  相似文献   

6.
The size of low density lipoproteins (LDL) is strongly correlated with LDL cholesteryl ester (CE) content and coronary artery atherosclerosis in monkeys fed cholesterol and saturated fat. African green monkeys fed 11% (weight) fish oil diets have smaller LDL and less CE per LDL particle than lard-fed animals. We hypothesized that this might be due to a lower plasma lecithin:cholesterol acyltransferase (LCAT) activity in fish oil-fed animals. Using recombinant particles made of egg yolk lecithin-[14C]cholesterol-apoA-I as exogenous substrate, we found no difference in plasma LCAT activity (27 versus 28 nmol CE formed per h/ml) of fish oil- versus lard-fed animals, respectively; furthermore, no diet-induced difference in immunodetectable LCAT was found. However, plasma phospholipids from fish oil-fed animals were over 4-fold enriched in n-3 fatty acids in the sn-2 position compared to those of lard-fed animals. Additionally, the proportion of n-3 fatty acid-containing CE products formed by LCAT, relative to the available n-3 fatty acid in the sn-2 position of phospholipids, was less than one-tenth of that for linoleic acid. The overall rate of LCAT-catalyzed CE formation with phospholipid substrates from fish oil-fed animals was lower (5-50%) than with phospholipid substrates from lard-fed animals. These data show that n-3 fatty acids in phospholipids are not readily utilized by LCAT for formation of CE; rather, LCAT preferentially utilizes linoleic acid for CE formation. The amount of linoleic acid in the sn-2 position of plasma phospholipids is reduced and replaced with n-3 fatty acids in fish oil-fed animals. As a result, LCAT-catalyzed plasma CE formation in vivo is likely reduced in fish oil-fed animals contributing to the decreased cholesteryl ester content and smaller size of LDL particles in the animals of this diet group.  相似文献   

7.
Enzymatic and lipid transfer reactions involved in reverse cholesterol transport were studied in healthy and lecithin:cholesterol acyltransferase (LCAT), deficient subjects. Fasting plasma samples obtained from each individual were labeled with [3H]cholesterol and subsequently fractionated by gel chromatography. The radioactivity patterns obtained corresponded to the elution volumes of the three major ultracentrifugally isolated lipoprotein classes (very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL)). In healthy subjects, the LCAT activity was consistently found in association with the higher molecular weight portion of HDL. Similar observations were made when exogenous purified LCAT was added to the LCAT-deficient plasma prior to chromatography. Incubation of the plasma samples at 37 degrees C resulted in significant reduction of unesterified cholesterol (FC) and an increase in esterified cholesterol (CE). Comparison of the data of FC and CE mass measurements of the lipoprotein fractions from normal and LCAT-deficient plasma indicates that: (i) In normal plasma, most of the FC for the LCAT reaction originates from LDL even when large amounts of FC are available from VLDL. (ii) The LCAT reaction takes place on the surface of HDL. (iii) The product of the LCAT reaction (CE) may be transferred to either VLDL or LDL although VLDL appears to be the preferred acceptor when present in sufficient amounts. (iv) CE transfer from HDL to lower density lipoproteins is at least partially impaired in LCAT-deficient patients. Additional studies using triglyceride-rich lipoproteins indicated that neither the capacity to accept CE from HDL nor the lower CE transfer activity were responsible for the decreased amount of CE transferred to VLDL and chylomicrons in LCAT-deficient plasma.  相似文献   

8.
9.
We examined whether postprandial (PP) chylomicrons (CMs) can serve as vehicles for transporting cholesterol from endogenous cholesterol-rich lipoprotein (LDL+HDL) fractions and cell membranes to the liver via lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) activities. During incubation of fresh fasting and PP plasma containing [(3)H]cholesteryl ester (CE)-labeled LDL+HDL, both CMs and VLDL served as acceptors of [(3)H]CE or cholesterol from LDL+HDL. The presence of CMs in PP plasma suppressed the ability of VLDL to accept [(3)H]CE from LDL+HDL. In reconstituted plasma containing an equivalent amount of triglycerides from isolated VLDL or CMs, a CM particle was about 40 times more potent than a VLDL particle in accepting [(3)H]CE or cholesterol from LDL+HDLs. When incubated with red blood cells (RBCs) as a source for cell membrane cholesterol, the cholesterol content of CMs, VLDL, LDL, and HDL in PP plasma increased by 485%, 74%, 13%, and 30%, respectively, via LCAT and CETP activities. The presence of CMs in plasma suppressed the ability of endogenous lipoproteins to accept cholesterol from RBCs. Our data suggest that PP CMs may play an important role in promoting reverse cholesterol transport in vivo by serving as the preferred ultimate vehicle for transporting cholesterol released from cell membranes to the liver via LCAT and CETP.  相似文献   

10.
Our previous studies have indicated that lecithin-cholesterol acyltransferase (LCAT) contributes significantly to the apoB lipoprotein cholesteryl ester (CE) pool. Cholesterol esterification rate (CER) in apoA-I(-)(/)(-) apoE(-)(/)(-) mouse plasma was <7% that of C57Bl/6 (B6) mouse plasma, even though apoA-I(-)(/)(-) apoE(-)(/)(-) plasma retained (1)/(3) the amount of B6 LCAT activity. This suggested that lack of LCAT enzyme did not explain the low CER in apoA-I(-)(/)(-) apoE(-)(/)(-) mice and indicated that apoE and apoA-I are the only major activators of LCAT in mouse plasma. Deleting apoE on low-density lipoprotein (LDL) reduced CER (1% free cholesterol (FC) esterified/h) compared to B6 (6% FC esterified/h) and apoA-I(-)(/)(-) (11% FC esterified/h) LDL. Similar sized LDL particles from all four genotypes were isolated by fast protein liquid chromatography (FPLC) after radiolabeling with [(3)H]-free cholesterol (FC). LDLs (1 microg FC) from each genotype were incubated with purified recombinant mouse LCAT; LDL particles from B6 and apoA-I(-)(/)(-) plasma were much better substrates for CE formation (5.7% and 6.3% CE formed/30 min, respectively) than those from apoE(-)(/)(-) and apoE(-)(/)(-) apoA-I(-)(/)(-) plasma (1.2% and 1.1% CE formed/30 min). Western blot analysis showed that the amount of apoA-I on apoE(-)(/)(-) LDLs was higher compared to B6 LDL. Adding apoE to incubations of apoA-I(-)(/)(-) apoE(-)(/)(-) very low density lipoprotein (VLDL) resulted in a 3-fold increase in LCAT CER, whereas addition of apoA-I resulted in a more modest 80% increase. We conclude that apoE is a more significant activator of LCAT than apoA-I on mouse apoB lipoproteins.  相似文献   

11.
In this study we compared several parameters characterizing differences in the lipoprotein profile between members of families with a positive or negative family history of coronary artery disease (CAD). In addition to regular parameters such as the body mass index (BMI), total plasma cholesterol (TC), low density (LDL-C) and high density (HDL-C) cholesterol and triglycerides (TG) we estimated the fractional esterification rate of cholesterol in apoB lipoprotein-depleted plasma (FER(HDL)) which reflects HDL and LDL particle size distribution. A prevalence of smaller particles for the atherogenic profile of plasma lipoproteins is typical. Log (TG/HDL-C) as a newly established atherogenic index of plasma (AIP) was calculated and correlated with other parameters. The cohort in the study consisted of 29 young (< 54 years old) male survivors of myocardial infarction (MI), their spouses and at least one offspring (MI group; n=116). The control group consisted of 29 apparently healthy men with no family history of premature CAD in three generations, their spouses and at least one offspring (control group; n=124). MI families had significantly higher BMI than the controls, with the exception of spouses. Plasma TC did not significantly differ between MI and the controls. MI spouses had significantly higher TG. Higher LDL-C had MI survivors only, while lower HDL-C had both MI survivors and their spouses compared to the controls. FER(HDL) was significantly higher in all the MI subgroups (probands 25.85+/-1.22, spouses 21.55+/-2.05, their daughters 16.93+/-1.18 and sons 19.05+/-1.33 %/h) compared to their respective controls (men 20.80+/-1.52, spouses 14.70+/-0.98, daughters 13.23+/-0.74, sons 15.7+/-0.76 %/h, p<0.01 to p<0.05). Log(TG/HDL-C) ranged from negative values in control subjects to positive values in MI probands. High correlation between FER(HDL) and Log (TG/HDL-C) (r=0.80, p<0.0001) confirmed close interactions among TG, HDL-C and cholesterol esterification rate. The finding of significantly higher values of FER(HDL) and Log (TG/HDL-C) indicate higher incidence of atherogenic lipoprotein phenotype in members of MI families. The possibility that, in addition to genetic factors, a shared environment likely contributes to the familial aggregation of CAD risk factors is supported by a significant correlation of the FER(HDL) values within spousal pairs (control pairs: r=0.51 p<0.01, MI pairs: r=0.41 p<0.05).  相似文献   

12.
Factors affecting the esterification rate of cholesterol by lecithin cholesterol acyltransferase (LCAT E.C. 2.3.1.43) in native cold labelled substrates (human, rabbit, rat serum, plasma, VLDL, LDL depleted serum, rabbit intraocular fluids) repaired by use of ready-made 14C-cholesterol discs (Cholesterol kinetics LCAT-test, UVVVR, Czechoslovakia) were investigated. EDTA added to the serum during the cold incubation (18 h, 0 degrees C-4 degrees C) increased the rate of esterification due to elimination of Ca2+ ions. The similar stimulating effect was found in the presence of mercaptoethanol (ME) in the serum, while in the plasma already stimulated by EDTA no additional effect by ME could be noticed. Freezing and thawing did not affect the fractional esterification rate (FER-per cent of total serum unesterified cholesterol esterified per hour) in normolipidaemic sera, whereas in hyperlipidaemic sera, particularly those with high levels of VLDL, FER was stimulated. Esterification partially proceeded during the cold incubation of serum or plasma with 14C-cholesterol ready-to-use discs, attaining the values of about 0.3%/h and 2-6%/h, respectively, in human sera and in rabbit and rat sera. The starting level of esterification did not affect the linearity of LCAT reaction during warm incubation (30 min at 37 degrees C), neither was the absolute value of FER changed as compared with cold labelled sera with those inhibited by DTNB and reactivated by ME. Substantial LCAT activity was also detected in extremely diluted substrates--such as intraocular fluid collected from rabbits with induced uveitis or after preceding paracentesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
1. Esterification of radiolabelled cholesterol in the plasma of rat, mouse, pig, ox and, to a lesser extent, guinea pig was partially inhibited by hypoxanthine, xanthine and guanine; esterification in human plasma and in plasma from 12 other vertebrate species was unaffected by purines. 2. Esterification of endogenous cholesterol and the formation of lysolecithin in rat plasma were decreased in the presence of purines indicating that it was the lecithin:cholesterol acyltransferase (LCAT) reaction that was inhibited rather than the isotopic equilibration of labelled cholesterol with the endogenous substrate lipoproteins. 3. Maximum inhibition of the LCAT reaction in rat plasma occurred at 1.4 mM hypoxanthine or xanthine; inhibition was not dependent upon the concentration of LCAT or plasma lipoproteins but increased with the amount of lipoprotein depleted rat plasma (LDRP) present in the incubation mixture. 4. Partial inhibition of the LCAT reaction in rat or mouse plasma by purines had no significant effect on the fatty acyl composition of the cholesteryl esters (CE) formed by LCAT. 5. In the presence of heated rat plasma, LDRP or, to a lesser extent, rat high density lipoproteins (HDL) prepared from heated plasma, the LCAT reaction in human plasma was inhibited by hypoxanthine. 6. Rat HDL and LDRP prepared from plasma pre-incubated at 37 degrees C for 4 hr before heating increased and decreased, respectively, the inhibitory effect of hypoxanthine on human plasma LCAT compared with HDL and LDRP prepared from unincubated rat plasma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The fractional esterification rate of cholesterol in apolipoprotein B (apoB)-depleted plasma (FER(HDL)) is a good indicator of particle size distribution in high density lipoprotein (HDL) and low density lipoprotein (LDL). However, there has been a discrepancy in the absolute values of FER(HDL) published by different laboratories. Because the main difference between the methods was in the labeling of lipoproteins with [(3)H]cholesterol we investigated the effect of using Corning immunoplates and paper discs as carriers of the labeled unesterified cholesterol. We found that Corning plates trap some (3)H-labeled free cholesterol, which is released during incubation at 37 degrees C. This means that this additional (3)H-labeled free cholesterol is exposed to lecithin: cholesterol acyltransferase (LCAT) for a shorter time and artificially decreases FER(HDL). Using paper discs discarded before incubation as carriers of the (3)H-labeled free cholesterol results in complete labeling of HDL and thus yields higher values of FER(HDL).  相似文献   

15.
Oral nicotine impairs clearance of plasma low density lipoproteins   总被引:1,自引:0,他引:1  
The effect of chronic oral nicotine intake on plasma low density lipoprotein (LDL) clearance, lipid transfer protein, and lecithin:cholesterol acyltransferase (LCAT) was examined in male atherosclerosis susceptible squirrel monkeys. Eighteen yearling primates were divided into two groups: 1) Controls fed isocaloric liquid diet; and 2) Nicotine monkeys given liquid diet supplemented with nicotine at 6 mg/kg body wt/day for a two-year period. Averaged over 24 months of treatment, animals in the Nicotine group had significantly higher levels of plasma and LDL cholesterol compared to Controls while plasma LCAT activity was similar for both groups. Following simultaneous injection of 3H LDL and 14C high density lipoprotein (HDL) cholesteryl ester (CE), removal of the latter was not altered by oral nicotine while plasma clearance of 3H LDL was dramatically delayed in Nicotine monkeys. Transfer of 14C HDL CE to very low density lipoprotein (VLDL)-LDL particles was greatly accelerated in the Nicotine group vs Controls while the reciprocal movement of 3H LDL CE to HDL was only higher in experimental animals at two time points following injection of the isotopes. Results from this study provide evidence that one major detrimental effect of long-term oral nicotine use is an increase in the circulating pool of atherogenic LDL which is due to: 1) accelerated transfer of lipid from HDL; and 2) impaired clearance of LDL from the plasma compartment. Diminished removal of LDL is of particular importance because an extended residence time of these particles in circulation would increase the likelihood of their deposition in the arterial wall.  相似文献   

16.
Although sphingomyelin (SM) is the most abundant phospholipid in the plasma, next to phosphatidylcholine (PC), its physiological function in plasma is unclear. Here we employed plasma from various genetic models of mice which naturally differ in their plasma SM/PC ratios, to study the role of SM as a modulator of LCAT, the enzyme responsible for HDL maturation and the synthesis of cholesteryl esters (CE) in normal plasma. Serine palmitoyltransferase deficient mice, and SM synthase deficient mice, both of which have below normal SM/PC ratios, showed significantly elevated LCAT activities when assayed with the endogenous substrates. On the other hand, LDL receptor knockout mice, and apo E knockout mice, both of which have high SM/PC ratios, had markedly reduced (-80%) LCAT activities. The LCAT levels in plasma, as assayed with an exogenous substrate, were similar in all groups, except for a 45% decrease in apo E knockout mice. Plasma samples with high SM/PC ratios had lower percentage of 20:4, 22:5, and 22:6 CE all of which are formed by LCAT, and a higher percentage of the atherogenic 18:1 CE which is mainly derived from the action of liver ACAT, showing that in vivo, the contribution of LCAT to plasma CE is reduced while that of liver ACAT is increased. These results show that SM is a physiological modulator of LCAT activity as well as plasma CE composition, and this may contribute to the previously reported pro-atherogenic effect of high plasma SM levels.  相似文献   

17.
The positional specificity of purified human lecithin-cholesterol acyltransferase (LCAT) was studied by analyzing the labeled cholesteryl ester (CE) species formed in the presence of proteoliposome substrates containing mixed chain phosphatidylcholine (PC) species, labeled cholesterol and apoprotein A-I. Whereas over 90% of the acyl groups used for CE synthesis were derived from the sn-2 position of most of the naturally occurring PC substrates, about 75% of the CE species formed in the presence of sn-1-myristoyl 2-arachidonoyl PC, sn-1-palmitoyl-2-arachidonoyl (PAPC) and sn-1-palmitoyl 2-docosahexaenoyl PC were derived from the sn-1-position. On the other hand, rat LCAT utilized mostly sn-2-acyl group from either PAPC or from sn-1-palmitoyl 2-linoleoyl PC. The positional specificity of the human enzyme was not affected by the alteration in the matrix fluidity, type of the apoprotein activator used, or by the free cholesterol/PC ratio in the substrate. These results show that the positional specificity of human plasma LCAT is altered in the presence of sn-2-arachidonoyl PC, or sn-2-docosahexaenoyl PC, probably due to steric restrictions at the active site, and this may account for the formation of disproportionately high concentrations of saturated CE, and low concentrations of long-chain polyunsaturated CE in human plasma, relative to the composition of sn-2-acyl groups in plasma PC.  相似文献   

18.
Lecithin-cholesterol acyltransferase (LCAT) mass, activity and endogenous cholesterol esterification rate were measured in plasma and apolipoprotein A-I-free (A-I-free) plasma from two normolipidemic and two hyperlipidemic subjects, and from a patient with Tangier disease. A-I was removed from plasma by an anti-A-I immunosorbent. LCAT activity was measured using an exogenous substrate. The plasma LCAT concentration of the four non-Tangier subjects was 4.63 +/- 0.64 micrograms/ml (mean +/- S.D.); means of 26 +/- 7% of total LCAT mass and 22 +/- 11% of plasma LCAT activity were found in their A-I-free plasma. The plasma LCAT concentration of the Tangier subject was 1.49 micrograms/ml. About 95% of LCAT mass and all LCAT activity were found in the A-I-free plasma. Thus, the LCAT mass (1.4 micrograms/ml) and activity (43.1 nmol/h per ml) in Tangier A-I-free plasma were not significantly different from that found in the four non-Tangier A-I-free plasmas (mass = 1.21 +/- 0.44 micrograms/ml; activity: 27.3 +/- 18.4 nmol/h per ml). Although the LCAT activity per unit mass of the enzyme in plasma and A-I-free plasma were comparable (24.9 +/- 2.8 vs. 22.8 +/- 7.8 nmol/h per micrograms LCAT, n = 5), the plasma cholesterol esterification rate of A-I-free plasma from all subjects was lower than that found in plasma (7.5 +/- 2.7 vs. 13.0 +/- 3.8 nmol/h per micrograms LCAT). In conclusion, although A-I-containing lipoproteins are the preferred substrates of LCAT, other LCAT substrates and cofactors are found in A-I-free plasma along with LCAT. Thus, non-A-I-containing particles can serve as physiological substrates for cholesterol esterification mediated by LCAT.  相似文献   

19.
We have previously identified a single amino acid mutation (hE149A) in human LCAT that increases its in vitro reactivity with phosphatidylcholine species containing sn-2 arachidonate (Wang et al. 1997. J. Biol. Chem. 272: 280-286). The purpose of the present study was to determine whether in vivo overexpression of hE149A compared with human wild-type LCAT (hLCAT-wt) would be sufficient to enrich the steady state composition of plasma HDL cholesteryl esters (CE) with long chain (>18 carbon) polyunsaturated fatty acyl species. Transgenic lines with 20-fold overexpression of hLCAT were created and studied between 12 and 16 weeks of age while consuming a chow diet. Transgenic overexpression of hE149A compared with hLCAT-wt significantly enriched HDL with CE species containing 20:4 (45%) and 22:6 n-3 (108%), at the expense of those containing 18:2, without a significant change in the plasma HDL concentration, particle size, or phospholipid fatty acyl composition. Removing the contribution of endogenous mouse LCAT by crossing the transgenic mice into the mouse LCAT knockout background resulted in even greater changes in HDL CE composition, with a 2.4-, 5-, and 5-fold increase in 20:4, 20:5 n-3, and 22:6 n-3 cholesteryl esters in the hE149A mice compared with hLCAT-wt Tg mice, respectively. Our results demonstrate that in vivo expression of hE149A significantly enriches HDL cholesteryl esters in 20- and 22-carbon fatty acyl species without affecting HDL concentration or size. Furthermore, the data suggest that endogenous mouse LCAT in hLCAT transgenic mice contributes to the plasma HDL CE pool out of proportion to its mass, presumably because the hLCAT transgene is poorly activated by mouse apolipoprotein A-I.  相似文献   

20.
Postprandial triglyceride-rich lipoproteins (TRL) exert proatherogenic effects at the arterial wall, including lipid deposition. Following consumption of a mixed meal (1200 kcal), plasma-mediated cellular free cholesterol (FC) efflux, lecithin:cholesterol acyltransferase (LCAT), and cholesteryl ester transfer protein (CETP) activities were determined in subjects (n = 12) displaying type IIB hyperlipidemia and compared with those in a normolipidemic control group (n = 14). The relative capacity of plasma to induce FC efflux from Fu5AH cells via the SR-BI receptor was significantly increased 4 h postprandially (+23%; P < 0.005) in the type IIB group, whereas it remained unchanged for postprandial plasma from normolipidemic subjects. LCAT activity was significantly elevated 2 h postprandially in both the IIB and control groups, (+46% and +36%, respectively; P < 0.005 vs. respective baseline value). In type IIB subjects, total cholesteryl ester (CE) mass transfer from HDL to total TRL [chylomicrons (CMs) + VLDL-1 + VLDL-2 + IDL] increased progressively from 15 +/- 2 micro g CE/h/ml at baseline to 28 +/- 2 micro g CE transferred/h/ml (+87%; P = 0.0004) at 4 h postprandially. CE transfer to CMs and VLDL-1 was preferentially stimulated (2.6-fold and 2.3-fold respectively) at 4 h in IIB subjects and occurred concomitantly with elevation in mass and particle number of both CMs (2.3-fold) and VLDL-1 (1.3-fold). Furthermore, in type IIB subjects, CETP-mediated total CE flux over the 8 h postprandial period from HDL to potentially atherogenic TRL was significantly enhanced, and notably to VLDL-1 (32-fold elevation; P < 0.005), relative to control subjects. Such CE transfer flux was reflected in a significant postprandial increase in CE-TG ratio in both CMs and VLDL-1 in type IIB plasmas. In conclusion, HDL-CE is preferentially targeted to VLDL-1 via the action of CETP during alimentary lipemia, thereby favoring formation and accumulation of atherogenic CE-rich remnant particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号