首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mangrove zooplankton of North Queensland,Australia   总被引:2,自引:2,他引:0  
McKinnon  A. D.  Klumpp  D. W. 《Hydrobiologia》1997,348(1-3):127-143
Food consumption, growth, fish length distributions,population sizes and habitat use of the salmonids intwo lakes in the Høylandet area were studied in1986–89. The allopatric brown trout (Salmotrutta L.) in the tarn Røyrtjønna (27 ha) fed mainlyon organisms at the lake surface , crustaceanplankton, Trichoptera and Chironomidae. Only 5% ofthe trout reached an age of 6 years and a length of25 cm. Sexual maturation started at age 3 and a lengthof 14 cm. Through mark – recapture technique thenumber of trout >10 cm was estimated to 115 ha-1.Growth, fish length frequencies and sexualmaturation of the sympatric brown trout and Arcticcharr (Salvelinus alpinus (L.)) in LakeStorgrønningen (530 ha) were not much different. TheStorgrønningen charr fed chiefly on zooplankton whichby volume represented 33% for the trout. The foodconsumption of Storgrønningen trout was at maximum inJuly with 2.06 mg food (d.w.) per g live fish and forcharr in September with 1.26 mg food. The maximumsize-independent growth rate of trout was 5.2%day-1 in late June, and for charr 4.1%day-1 in late July. Seventy percent of theirseasonal growth took place before 15 August. The charrstayed mainly deeper than 3-4 m, at water temperatures<15 °C. Brown trout stayed mainly the littoralzone and in near surface water of the pelagic. Thenumber of pelagic charr was estimated hydroacusticallyto 50 ind. ha-1. The charr spawn in thelake. Mean numbers of juvenile trout in the twolargest tributaries were 26 and 48 per 100 m2.Their annual length increment was 2.8–3.4 cm. Noindication of acidification or other human inducedimpacts were found. The lakes and their tributariesrepresent complex aquatic systems, representative forpristine oligotrophic Norwegian lowland lakes.John W. Jensen died shortly after easter in 1996  相似文献   

2.
Crustacean plankton in Høylandet   总被引:4,自引:3,他引:1  
Crustacean plankton was studied in 12 lakes in theHøylandet area in 1986–87. Basic lake characteristicsare elevation 134–415 m, surface area 9–530 ha, pH 5.9–7.1,conductivity (25 °C) 12–40 µS cm-1 andSecchi depth 4–9 m. Number ofspecies present varied between 3 and 11. Populationnumbers between 4000 and 400 000 per m2 andbiomasses were within the range 30 to1800 mg m-2 dry weight. Cladocera dominated overCopepoda in lakes with allopatric brown trout (Salmo trutta L.), on the contrary to lakes also populatedby Arctic charr (Salvelinus alpinus (L.)). Thesevariations are caused by differences in elevation,lake morphometry, water quality, fish predation andthe general distribution of the species. The largestlakes at lowest elevation were richest in species. Theacid sensitive genus Daphnia was represented by 3species. The lakes Storgrønningen (530 ha) andRøyrtjønna (27 ha) were sampled monthly in theice-free seasons of 1986–89, and Storgrønningen moreintensively from June to November in 1987 and 1988. The same6 species of Cladocera and 5 of Copepoda were presentin both lakes. Their life cycles were traditional orknown from several other Scandinavian lakes. Meanseasonal biomasses were of the range600–750 mg m-2. At the species level, there wereconsiderable variations between years inStorgrønningen and particularly in Røyrtjønna. Noeffects of human impacts on the crustacean planktonwere found. The Høylandet lakes are representative forScandinavian oligotrophic to almost ultra-oligotrophiclakes. Storgrønningen is well qualified as a referencesystem. The between year variations in Røyrtjønna areso extreme, that any human impact could only be traced at alevel causing the extinction of species.  相似文献   

3.
Lake Pisses and Lake Labarre are two oligotrophic high altitude alpine lakes that have sympatric populations of Arctic charr and brown trout. These two lakes have similar morphometric, physical and chemical characteristics. The zooplanktonic and benthic fauna show little diversity. But the density of benthos (Chironomidae) and zooplankton is higher in Lake Pisses. The fish fauna of Lake Pisses is slightly more abundant than that of Lake Labarre, althought in both lakes fish density is low. A study of the diet of the two species revealed differences. In Lake Pisses, where the food supply is better, Arctic charr takes exclusively pelagic and benthic prey, whereas in Lake Labarre it also takes exogenous prey and thus comes into competition with trout. Length and body weight growth rates for Arctic charr are higher in Lake Pisses than in Lake Labarre. For trout, maximum length recorded was in Lake Pisses. The results show that the abundance of Chironomidae favours coexistence of the two species in Lake Pisses and confirm that, in the face of shortage of food, Arctic charr is better adapted than trout. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
1. Generalist fish species are recognised as important couplers of benthic and pelagic food‐web compartments in lakes. However, interspecific niche segregation and individual specialisation may limit the potential for generalistic feeding behaviour. 2. We studied summer habitat use, stomach contents and stable isotopic compositions of the generalist feeder Arctic charr coexisting with its common resource competitor brown trout in five subarctic lakes in northern Norway to reveal population‐level and individual‐level niche plasticity. 3. Charr and trout showed partial niche segregation in all five lakes. Charr used all habitat types and a wide variety of invertebrate prey including zooplankton, whereas trout fed mainly on insects in the littoral zone. Hence, charr showed a higher potential to promote habitat and food‐web coupling compared to littoral‐dwelling trout. 4. The level of niche segregation between charr and trout and between pelagic‐caught and littoral‐caught charr depended on the prevailing patterns of interspecific and intraspecific resource competition. The two fish species had partially overlapping trophic niches in one lake where charr numerically dominated the fish community, whereas the most segregated niches occurred in lakes where trout were more abundant. 5. In general, pelagic‐caught charr had substantially narrower dietary and isotopic niches and relied less on littoral carbon sources compared to littoral‐caught conspecifics that included generalist as well as specialised benthivorous and planktivorous individuals. Despite the partially specialised planktivorous niche and thus reduced potential of pelagic‐dwelling charr to promote benthic–pelagic coupling, the isotopic compositions of both charr subpopulations suggested a significant reliance on both littoral and pelagic carbon sources in all five study lakes. 6. Our study demonstrates that both interspecific niche segregation between and individual trophic specialisation within generalist fish species can constrain food‐web coupling and alter energy mobilisation to top consumers in subarctic lakes. Nevertheless, pelagic and littoral habitats and food‐web compartments may still be highly integrated due to the potentially plastic foraging behaviour of top consumers.  相似文献   

5.
Little research has been conducted on effects of iteroparous anadromous fishes on Arctic lakes. We investigated trophic ecology, fish growth, and food web structure in six lakes located in Nunavut, Canada; three lakes contained anadromous Arctic charr (Salvelinus alpinus) whereas three lakes did not contain Arctic charr. All lakes contained forage fishes and lake trout (Salvelinus namaycush; top predator). Isotope ratios (δ13C, δ15N) of fishes and invertebrates did not differ between lakes with and without anadromous Arctic charr; if anadromous Arctic charr deliver marine-derived nutrients and/or organic matter to freshwater lakes, these inputs could not be detected with δ13C and/or δ15N. Lake trout carbon (C):nitrogen (N) and condition were significantly higher in lakes with Arctic charr (C:N = 3.42, K = 1.1) than in lakes without Arctic charr (C:N = 3.17, K = 0.99), however, and ninespine stickleback (Pungitius pungitius) condition was significantly lower in lakes with Arctic charr (K = 0.58) than in lakes without Arctic charr (K = 0.64). Isotope data indicated that pre-smolt and resident Arctic charr may be prey for lake trout and compete with ninespine stickleback. Linear distance metrics applied to isotope data showed that food webs were more compact and isotopically redundant in lakes where Arctic charr were present. Despite this, lake trout populations in lakes with Arctic charr occupied a larger isotope space and showed greater inter-individual isotope differences. Anadromous Arctic charr appear to affect ecology and feeding of sympatric freshwater species, but effects are more subtle than those seen for semelparous anadromous species.  相似文献   

6.
Some of the highest recordings of radioactive fallout from the Chernobyl accident in Norway were found in the south-eastern Oppland and Hedmark counties. Cesium content and decay rates were followed in populations of brown trout and Arctic char in Lake Atnsjøen over the years 1986–1995. These results were compared with samples for adjacent lakes to test for between-lake variabilities within the same region. The data on brown trout was compared with samples from a wider region, where more than 1800 individual samples of brown trout were collected from nearly 100 localities. Back-calculated initial activity per 1 January 1987 showed a strong regional and within-lake variability for these localities, ranging from 437 to 18000 Bq kg–1 (average: 2416 Bq kg–1), while trout and char from Atnsjøen had initial activities of 1259 and 1122 Bq kg–1, respectively. Most of the other populations from the Atna region also had initial activities below the average (around 2000 Bq kg–1). Ecological half-life for both brown trout and Artic char in lake Atnsjøen was close to 1.7 years (corresponding to a decay rate of 0.4 year), which was consistently lower than the 2.5 years average for the entire lake data set. Decay constants from linear regressions of total decay over time ranged from 0.15 to 0.28. For trout populations, a positive correlation was found between initial load and decay constants. Although trout and char clearly differ in their diet, no consistent differences were recorded in initial activities or decay rates for these two species in the Atna area.  相似文献   

7.
Size and frequency of occurrence of prey of brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.) were recorded in 13 Norwegian lakes during 1973–1990. Piscivores usually comprised less than 5% of the total population. Arctic charr were less piscivorous than brown trout. Trout and charr became piscivorous at 13 and 16 cm length, respectively. These size thresholds were similar to those of other facultative piscivorous freshwater fish species. When present, three-spined sticklebacks, Gasterosteus aculeatus (L.), were preferred by all length groups of piscivorous brown trout and Arctic charr. Length of prey increased with increasing predator length, and the mean body length of prey was about 33 and 25% of predator length for trout and charr, respectively. Yearlings of charr were not recorded as prey.  相似文献   

8.
1. Variations in the strength of ecological interactions between seasons have received little attention, despite an increased focus on climate alterations on ecosystems. Particularly, the winter situation is often neglected when studying competitive interactions. In northern temperate freshwaters, winter implies low temperatures and reduced food availability, but also strong reduction in ambient light because of ice and snow cover. Here, we study how brown trout [Salmo trutta (L.)] respond to variations in ice-cover duration and competition with Arctic charr [Salvelinus alpinus (L.)], by linking laboratory-derived physiological performance and field data on variation in abundance among and within natural brown trout populations. 2. Both Arctic charr and brown trout reduced resting metabolic rate under simulated ice-cover (darkness) in the laboratory, compared to no ice (6-h daylight). However, in contrast to brown trout, Arctic charr was able to obtain positive growth rate in darkness and had higher food intake in tank experiments than brown trout. Arctic charr also performed better (lower energy loss) under simulated ice-cover in a semi-natural environment with natural food supply. 3. When comparing brown trout biomass across 190 Norwegian lakes along a climate gradient, longer ice-covered duration decreased the biomass only in lakes where brown trout lived together with Arctic charr. We were not able to detect any effect of ice-cover on brown trout biomass in lakes where brown trout was the only fish species. 4. Similarly, a 25-year time series from a lake with both brown trout and Arctic charr showed that brown trout population growth rate depended on the interaction between ice breakup date and Arctic charr abundance. High charr abundance was correlated with low trout population growth rate only in combination with long winters. 5. In conclusion, the two species differed in performance under ice, and the observed outcome of competition in natural populations was strongly dependent on duration of the ice-covered period. Our study shows that changes in ice phenology may alter species interactions in Northern aquatic systems. Increased knowledge of how adaptations to winter conditions differ among coexisting species is therefore vital for our understanding of ecological impacts of climate change.  相似文献   

9.
Summary Stomach contents analyses and other biological information of Arctic charr (Savelinus alpinus (L.)), brown trout (Salmo trutta L.) and small Atlantic salmon (S. salar L.) caught 1982–85 close to the Åelv estuary (69°N) on the island of Senja, N. Norway are presented, and extracts of a 1975–85 fishing log given. this appears to be the first case study of the feeding habits of all three European anadromous salmonids in marine sympatry, and also one of very few reports on the marine food of the Arctic charr from Europe. The general feeding habits of the charr were similar to that found in N. Canada. Pelagic fish (herring, sand-eel) seem to be preferred. Plankton (crab megalopae, krill) and hyperbenthos (amphipods, mysids) are also taken, especially when suitable fish are scarce. In 1985 high herring densities provided superabundant food, and diet overlap between charr, trout and salmon was high. Salmonid nursery rivers are abundant in N. Norway and during summer the three species coexist in a near-shore, surface-oriented pelagic guild of fishes. The salmon seems to be a relatively specialized piscivore, while the trout takes a wider range of fish and also invertebrate prey. The charr probably is the most euryphagous of the three, being able to exploit the more marginal parts of the prey resources of their common habitat.  相似文献   

10.
We studied habitat choice, diet, food consumption and somatic growth of Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) during the ice-covered winter period of a subarctic lake in northern Norway. Both Arctic charr and brown trout predominantly used the littoral zone during winter time. Despite very cold winter conditions (water temperature <1°C) and poor light conditions, both fish species fed continuously during the ice-covered period, although at a much lower rate than during the summer season. No somatic growth could be detected during the ice-covered winter period and the condition factor of both species significantly declined, suggesting that the winter feeding rates were similar to or below the maintenance requirements. Also, the species richness and diversity of ingested prey largely decreased from summer to winter for both fish species. The winter diet of Arctic charr <20 cm was dominated by benthic insect larvae, chironomids in particular, and Gammarus lacustris, but zooplankton was also important in December. G. lacustris was the dominant prey of charr >20 cm. The winter diet of brown trout <20 cm was dominated by insect larvae, whereas large-sized trout mainly was piscivorous, feeding on juvenile Arctic charr. Piscivorous feeding behaviour of trout was in contrast rarely seen during the summer months when their encounter with potential fish prey was rare as the small-sized charr mainly inhabited the profundal. The study demonstrated large differences in the ecology and interactions of Arctic charr and brown trout between the winter and summer seasons.  相似文献   

11.
The habitat and diet choice and the infection (prevalence and abundance) of trophically transmitted parasites were compared in Arctic charr and brown trout living sympatrically in two lakes in northern Norway. Arctic charr were found in all main lake habitats, whereas the brown trout were almost exclusively found in the littoral zone. In both lakes the parasite fauna reflected the niche segregation between trout and charr. Surface insects were most common in the diet of trout, but transmit few parasites, and accordingly the brown trout had a relatively low diversity and abundance of parasites. Parasites transmitted by benthic prey such as Gammarus and insect larva, were common in both salmonid host species. Copepod transmitted parasites were much more common in Arctic charr, as brown trout did not include zooplankton in their diets. Parasite species that may use small fish as transport hosts, were far more abundant in piscivorous fish, especially brown trout. The seasonal dynamics in parasite infection were also consistent with the developments in the diet throughout the year. The study demonstrates that the structure of parasite communities of charr and the trout is highly dependent on shifts in habitat and diet of their hosts both on an annual base and through the ontogeny, in addition to the observed niche segregation between the two salmonid species.  相似文献   

12.
Trophic niche divergence is considered to be a major process by which species coexistence is facilitated. When studying niche segregation in lake ecosystems, we tend to view the niche on a one-dimensional pelagic-littoral axis. In reality, however, the niche use may be more complex and individual fidelity to a niche may be variable both between and within populations. In order to study this complexity, relative simple systems with few species are needed. In this paper, we study how competitor presence affects the resource use of brown trout (Salmo trutta) in 11 species-poor Faroese lakes by comparing relative abundance, stable isotope ratios and diet in multiple habitats. In the presence of three-spined sticklebacks (Gasterosteus aculeatus), a higher proportion of the trout population was found in the pelagic habitat, and trout in general relied on a more pelagic diet base as compared to trout living in allopatry or in sympatry with Arctic charr (Salvelinus alpinus). Diet analyses revealed, however, that niche-segregation may be more complex than described on a one-dimensional pelagic-littoral axis. Trout from both littoral and offshore benthic habitats had in the presence of sticklebacks a less benthic diet as compared to trout living in allopatry or in sympatry with charr. Furthermore, we found individual habitat specialization between littoral/benthic and pelagic trout in deep lakes. Hence, our findings indicate that for trout populations interspecific competition can drive shifts in both habitat and niche use, but at the same time they illustrate the complexity of the ecological niche in freshwater ecosystems.  相似文献   

13.
Renibacterium salmoninarum (Rs) is common in wild Arctic charr Salvelinus alpinus and brown trout Salmo trutta in Iceland. Of 22 charr and nine trout populations none were free of Rs antigens. In two charr populations only one fish exceeded the Rs antigen detection limit and in one of these cases the ELISA value was within uncertainty limits of the infection criterion. Mean prevalence of infection was 46% for Arctic charr (range: 3–100%) and 35% for brown trout (range: 6–81%). No infected fish showed gross pathological signs of bacterial kidney disease (BKD). The ubiquity and high prevalences of infection indicated that the bacterium has been endemic for a long time, and is probably a normal, low density resident in the fish. A lack of correlation in mean intensity of Rs antigen and prevalence of infection between sympatricpopulations of Arctic charr and brown trout suggests that the dynamics of infection and internal proliferation of bacteria can be quite independent in the two species even if they live in the same lake. Rs intensity and its coefficient of variation decreased with age in older fish, suggesting a connection between Rs intensity and host mortality. However, this can be caused by other ecological factors that decrease survival, especially low food availability, which simultaneously increase the susceptibility to Rs infection and internal proliferation.  相似文献   

14.
Piscivory and cannibalism in Arctic charr   总被引:3,自引:0,他引:3  
Piscivory and cannibalism in Arctic charr, Salvelinus alpinus , were studied in three lakes in northern Norway: Guolasjavri, which contains only charr, Takvatn, where Arctic charr coexist with three-spined sticklebacks, Gasterosteus aculeatus and brown trout, Salmo trutta , and Stuorajavri, where whitefish, Coregonus lavarelun dominate a fish community containing six species. The prevalence of piscivory in the Arctic charr populations generally increased with increasing predator size. In all three lakes, many charr larger than 20 cm were piscivorous, but the extent of piscivory and cannibalism varied. The greatest prevalence of cannibalism was found in Guolasjavri, where 27% of charr greater than 20 cm in length had fed upon smaller conspeciflcs. In Takvatn, 5% of charr larger than 20 cm were cannibalistic, and an additional 9% had eaten three-spined sticklebacks. In Stuorajavri, up to 74% of the charr greater than 20 cm had eaten whitefish but cannibalism was not recorded. The possible role of cannibalism in population regulation within Arctic charr populations is considered.  相似文献   

15.
16.
SUMMARY. 1. Habitat utilization, as well as inter- and intraspecific relations of different size groups of arctic charr (Salvelinus alpinus (L.)) and brown trout (Salmo trutta L.) in Lake Atnsjø, south-east Norway, were investigated by analysing food and spatial niches from monthly benthic and pelagic gillnet catches during June-October 1985.
2. Small individuals (150–230 mm) of both arctic charr and brown trout occurred in shallow benthic habitats. However, they were spatially segregated as arctic charr dominated at depths of 5–15 m and brown trout at depths of 0–5 m.
3. Larger (>230 mm) arctic charr and brown trout coexisted in the pelagic zone. Both species occurred mainly in the uppermost 2-3 m of the pelagic, except in August, when arctic charr occurred at high densities throughout the 0–12 m depth interval. On this occasion, arctic charr were segregated in depth according to size, with significantly larger fish in the top 6 m. This was probably due to increased intraspecific competition for food.
4. The two species differed in food choice in both habitats, Arctic charr fed almost exclusively on zooplankton, whereas brown trout had a more variable diet, consisting of surface insects, zooplankton. aquatic insects and fish.
5. The data suggest that the uppermost pelagic was the more favourable habitat for both species. Large individuals having high social position occupied this habitat, whereas small individuals lived in benthic habitat where they were less vulnerable to agonistic behaviour from larger individuals and less exposed to predators. The more aggressive and dominant brown trout occupied the more rewarding part of the benthic habitat.  相似文献   

17.
Understanding the processes underlying diversification can aid in formulating appropriate conservation management plans that help maintain the evolutionary potential of taxa, particularly under human-induced activities and climate change. Here we assessed the microsatellite genetic diversity and structure of three salmonid species, two native (Arctic charr, Salvelinus alpinus and brown trout, Salmo trutta) and one introduced (brook charr, Salvelinus fontinalis), from an alpine lake in sub-arctic Sweden, Lake Ånn. The genetic diversity of the three species was similar and sufficiently high from a conservation genetics perspective: corrected total heterozygosity, H’T = 0.54, 0.66, 0.60 and allelic richness, AR = 4.93, 5.53 and 5.26 for Arctic charr, brown trout and brook charr, respectively. There were indications of elevated inbreeding coefficients in brown trout (GIS = 0.144) and brook charr (GIS = 0.129) although sibling relationships were likely a confounding factor, as a high proportion of siblings were observed in all species within and among sampling locations. Overall genetic structure differed between species, Fst = 0.01, 0.02 and 0.04 in Arctic charr, brown trout and brook charr respectively, and there was differentiation at only a few specific locations. There was clear evidence of hybridisation between the native Arctic charr and the introduced brook charr, with 6% of individuals being hybrids, all of which were sampled in tributary streams. The ecological and evolutionary consequences of the observed hybridisation are priorities for further research and the conservation of the evolutionary potential of native salmonid species.  相似文献   

18.
The ability to distinguish among chemical cues from multiple predators is of key adaptive value for many prey fish. We examined the attractiveness and repulsiveness of chemical stimuli from different coexisting fish species fed on different diets on the behaviour of hatchery reared Arctic charr young in a Y-maze fluviarum, where the charr could choose between two sides either with control water or stimulus water with fish odour. We used stimuli from (1) matching sized conspecifics, large (2) Arctic charr, (3) salmon, (4) brown trout and (5) brown trout fed on Arctic charr fry. Other salmonids were given pellet food. Additional fish odour treatments included piscivorous (6) pike and (7) burbot. In the control trials both sides received control water. Arctic charr young were expected to respond adaptively to the stimuli from coexisting piscivorous fish. The charr most strongly preferred water with the odour of their matching sized conspecifics, which was the only fish odour they were familiar with before the experiments. They also showed significant preference for other salmonid odours, even though these fish are potential predators on small charr. Chemical stimuli from pike and burbot, on the contrary, were strongly avoided, and burbot odour even prevented the charr to swim and enter the lateral halves of the fluviarum. Moreover, odour from brown trout fed on Arctic charr fry was avoided when compared to stimuli from trout fed on pellets. Although the Arctic charr young were completely naive regarding piscivores, the fact that they could distinguish between different predator taxa and diets on the basis of chemical cues only reflects the long coevolutionary history of these fish populations.  相似文献   

19.
According to logistic regressions derived for pike Esox lucius and burbot Lota lota , the probability of ingesting fishes in Lake Muddusjärvi, northern Finland, was 50% at 19·3 and 22·1 cm L T, whereas Arctic charr Salvelinus alpinus and brown trout Salmo trutta shifted to piscivory at the lengths of 25·7 and 26·4 cm L T. The specialist piscivores, pike and burbot, consumed more prey species and took a wider range of prey sizes than Arctic charr and brown trout. The prey length for all predators increased in relationship to predator length. Whitefish Coregonus lavaretus was the dominant prey species in the lake and in the diet of all the piscivorous species. The whitefish population was divided into three forms, of which the slow-growing, and the most numerous densely rakered whitefish form (DR), was selected by all predator species. This form also had the smallest average size and widest habitat range, utilizing both pelagic and epibenthic habitats. Two sparsely rakered whitefish forms (LSR and SSR) occupied only epibenthic habitats and had lower relative densities than DR. These forms, LSR and SSR, had a minor importance in the diet of predator species.  相似文献   

20.
Between 1984 and 1989, the experimental removal of 31 tons (666000 fish) of stunted Arctic charr, Salvelinus alpinus, from Takvatn in northern Norway, had strong effects on the populations of Arctic charr, brown trout, Salmo trutta, and three-spined sticklebacks, Gasterosteus aculeatus. The littoral catch per unit effort (CPUE) of charr had decreased by 90% in 1990 and then increased to about 50% of the initial level by 1994 while the pelagic CPUE had decreased to zero. Growth in both charr and trout greatly improved when the charr density had decreased, and large fish of both species appeared in the catches. These large fish became predators on small charr in the littoral zone. The incidence of trout increased from below 1% to 15% from 1988 to 1999 after a brief peak at 30% in 1992 and 1993. The charr population attained a bimodal size distribution and did not return to the stunted state during the 10 years following the intensive fishing period. The mass removal experiment showed that it is possible to change the structure of a charr population by intensive fishing. Predation on small charr from cannibals and large trout was probably essential for maintaining the new population structure. An increase in the growth of young charr from 1995 to 1997 was related to a high consumption of Daphnia and Eurycercus. Rapid changes in the growth of charr followed the density fluctuations in sticklebacks, which show large annual variations in this system; the rapid changes in charr growth were probably caused by variations in the competition intensity for cladoceran prey between young charr and sticklebacks. Twenty years of data has provided important information, but even more time is needed to follow the long-term trends in northern lakes such as Takvatn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号