首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Role of glutathione peroxidase in iron-thiol-mediated lipid peroxidation was examined. The enzyme was unable to prevent peroxidation of extracted rat liver microsomal lipids. In contrast, when arachidonic acid was the substrate, glutathione peroxidase did decrease the formation of thiobarbituric acid-reactive material. Superoxide dismutase produced a consistent but partial inhibition of peroxidation and catalase was without effect. Our results suggest that iron-thiol-dependent lipid peroxidation cannot be completely blocked by protective enzymes that are effective in other systems.  相似文献   

2.
Glutathione and lipid peroxidation in the aging rat   总被引:2,自引:0,他引:2  
1. Tissue extracts were prepared from liver, kidney, heart, brain, lung and spleen of male Sprague-Dawley rats of different ages (1-36 months); each of the extracts was analyzed for reduced glutathione (GSH) and lipid peroxides. 2. At all ages the GSH content in the liver was 3-10 times higher than that in other tissues. 3. In the old (36 months) rat the GSH content of all the tissues studied were lower (35-60%) than that in 2.5 month old rat. 4. The lipid peroxides levels increased by age in all tissues studied. 5. These findings indicate that general characteristics of aging tissue may include a decrease in GSH content and increase in lipid peroxides showing a decrease in reducing potential in senescence.  相似文献   

3.
W G Levine 《Life sciences》1982,31(8):779-784
Depletion of hepatic glutathione leads to an increase in lipid peroxidation and depression of cytochrome P-450-catalyzed metabolism of the azo dye carcinogen, N,N-dimethyl-4-aminoazobenzene. This contributes to the marked decrease in biliary excretion of N-demethylated metabolites of the dye. Parallel time courses are seen for decreased hepatic glutathione, enhanced lipid peroxidation and depressed excretion of dye metabolites. In vitro metabolism of DAB by hepatic 10,000 g supernatant fractions is depressed by iron only after glutathione depletion. In view of the iron requirement for microsomal lipid peroxidation, it is proposed that glutathione depletion leads to an increase in the intracellular iron available for activation of lipid peroxidation. In this way, glutathione may contribute to the regulation of cytochrome P-450 activity.  相似文献   

4.
Diamide, CDNB and phorone were used to deplete glutathione in retrogradely perfused rat hearts. Following glutathione depletion the spontaneous chemiluminescence increased by 70%, irrespective of the agent used. The glutathione depletion and the chemiluminescence emission were associated to an increase of malondialdehyde content in the heart, as determined by HPLC. Under these conditions the heart function was impaired and histological examination showed a coagulative myocytolysis, a pattern already described in human and experimental pathology, where a key role is attributed to a Ca2+ homeostasis impairment.  相似文献   

5.
Intoxication of NMRI Albino mice with bromobenzene is often followed by the appearance of neurological symptoms. The possibility was investigated that the intoxication results in glutathione (GSH) depletion in central nervous systems as seen in other tissues, and that such a depletion is followed by the development of lipid peroxidation. 18-20 hours after bromobenzene administration (15 mmoles/Kg, p.o.) GSH content of prosencephalic and metencephalic regions was depleted by 39 and 55%, respectively. Lipid peroxidation (measured by the tissue content of malonildialdehyde) was observed only when GSH content reached a threshold value, which was different for prosencephalon as compared to metencephalon (2-1.5 mumoles GSH/g and 1.2-0.7 mumoles GSH/g, respectively). Possible mechanisms underlying the phenomenon are discussed.  相似文献   

6.
The effects of three anthrapyrazoles and an aminoacridine derivative on doxorubicin- and iron-stimulated lipid peroxidation in rabbit hepatic microsomes have been characterized. Two anthrapyrazoles, CI-937 and CI-942, were potent inhibitors of lipid peroxidation with 15 microM drug inhibiting the rate of peroxidation 70 to 90%. In contrast CI-941 was relatively ineffective in inhibiting lipid peroxidation with only 35% inhibition occurring at 100 microM drug. CI-921, an aminoacridine derivative, diminished lipid peroxidation by 65% at 15 microM. All four drugs failed to decrease the rate of doxorubicin-stimulated NADPH oxidation at concentrations less than 50 microM, suggesting that inhibition of lipid peroxidation was not the result of diminished enzyme activity. CI-937 formed a 2:1 complex with ferric ion, KD = 47 microM, which was reversible with EDTA.  相似文献   

7.
V T Maddaiah 《FASEB journal》1990,4(5):1513-1518
The temporal relationship of changes in state 3 respiration, lipid peroxidation, and glutathione (GSH) content was investigated in liver mitochondria of hypophysectomized rats after an injection of 3,3',5-triiodo-L-thyronine (T3). Lipid peroxidation induced by ADP/Fe3+/NADPH was determined by the amount of malondialdehyde formed. Hypophysectomy decreased respiration and lipid peroxidation (from 19.88 +/- 3.04 to 14.19 +/- 1.14 nmol malondialdehyde.mg protein-1.10 min-1) but increased GSH content (from 7.06 +/- 2.08 to 12.46 +/- 3.58 nmol/mg protein). Daily injections of a low dose (5 micrograms/100 g) of T3 for 7 days restored the parameters. Time course (up to 96 h) of these changes was followed after one injection of a moderate (100 micrograms/100 g) and high (1000 micrograms/100 g) dose of the hormone. Respiration showed a significant increase at 24 h and declined slightly at 96 h. There was a slow loss of respiratory control ratio after 24 h. Lipid peroxidation remained unchanged at 24 h and showed a gradual increase, becoming significantly higher at 72-96 h depending on the hormone dosage. Changes in GSH content followed a time course similar to that of lipid peroxidation except that it showed a decrease instead of an increase. There was a high degree of inverse linear correlation between lipid peroxidation and GSH (correlation coefficient = 0.95). Because GSH is required for detoxification of hydroperoxides generated by the respiratory chain, it is suggested that lipid peroxidation may play a major role in the modulation of intramitochondrial GSH.  相似文献   

8.
Reaction of metmyoglobin with peroxides is known to involve the formation, possibly via a porphyrin radical-cation, of a ferryl (iron(IV)-oxo) species and a protein radical; there is a little information available as to which of these species initiates the damage which is observed on incubating membrane fractions with such mixtures. It is shown in this study that the initial protein radical, which is a tyrosine phenoxyl radical centered at position 103 in the protein, does not react rapidly with erythrocyte membranes. However a tyrosine peroxyl radical, formed by addition of oxygen to this species, does react rapidly, and it is concluded that this radical, together with the ferryl species, is an important initiating species in myoglobin-induced lipid peroxidation.  相似文献   

9.
Experiments were undertaken to examine the effects of reduced (GSH) and oxidized (GSSG) glutathione on lipid peroxidation of rat liver microsomes. Dependence on microsomal alpha-tocopherol was shown for the GSH inhibition of lipid peroxidation. However, when GSH (5 mM) and GSSG (2.5 mM) were combined in the assay system, inhibition of lipid peroxidation was enhanced markedly over that with GSH alone in microsomes containing alpha-tocopherol. Surprisingly, the synergistic inhibitory effect of GSH and GSSG was also observed for microsomes that were deficient in alpha-tocopherol. These data suggest that there may be more than one factor responsible for the glutathione-dependent inhibition of lipid peroxidation. The first is dependent upon microsomal alpha-tocopherol and likely requires GSH for alpha-tocopherol regeneration from the alpha-tocopheroxyl radical during lipid peroxidation. The second factor appears to be independent of alpha-tocopherol and may involve the reduction of lipid hydroperoxides to their corresponding alcohols. One, or possibly both, of these factors may be activated by GSSG through thiol/disulfide exchange with a protein sulfhydryl moiety.  相似文献   

10.
Microsomal lipid peroxidation   总被引:1,自引:0,他引:1  
  相似文献   

11.
Biosynthesis of certain biologically active substances (prostaglandins, thromboxanes, prostacyclins and leukotrienes) in animal tissues occurs with participation of cyclooxygenases and lipoxygenases, enzymic systems of lipid peroxidation. In normal physiological and pathological processes the enzymic lipid peroxidation by microsomal dioxygenases is considerably more active than the nonenzymic one in the same membrane structures. The molecular structure of the products of the enzymic and nonenzymic peroxidation of lipids also differs essentially. An assumption is advanced that cytosol lipoxygenase may be an easily dissociating component of the cyclooxygenase multienzymic complex and its transition from the biomembrane to the cell cytoplasm is accompanied by changes in the enzyme conformation and chemical nature of the products resulted from polyenic lipids oxidation catalyzed by the enzyme.  相似文献   

12.
The potential for iron bound to transferrin to be released and promote the peroxidation of phospholipid liposomes was investigated using ADP as a low molecular weight chelator and Superoxide generated by the xanthine/ xanthine oxidase system as the reducing agent. Lipid peroxidation in this system was dependent upon transferrin as the source of iron; increasing the transferrin concentration resulted in increased rates of lipid peroxidation. Increasing the xanthine oxidase activity also caused increased rates of peroxidation. Catalase stimulated rates of peroxidation at all xanthine oxidase activities tested. Conditions resulting in the most rapid release of iron from transferrin (low pH, high ADP) did not promote the greatest rates of lipid peroxidation, indicating that at neutral pH, rates of lipid peroxidation may be limited by the availability of iron. It is concluded that transferrin is not a likely source of iron for catalysis of deleterious biological oxidations such as lipid peroxidation in vivo.  相似文献   

13.
Thiol-dependent lipid peroxidation   总被引:3,自引:0,他引:3  
Initiation of lipid peroxidation in liposomes by cysteine, glutathione, or dithiothreitol required iron, and was not inhibited by superoxide dismutase. The absence of superoxide involvement in thiol autoxidation was confirmed by the inability of superoxide dismutase to inhibit thiol reduction of cytochrome c. Furthermore, the rate of cytochrome c reduction by thiols was not decreased under anaerobic conditions. We suggest that lipid peroxidation initiated by thiols and iron occurs via direct reduction of iron. Control of cellular thiol autoxidation, and reactions occurring as a consequence, such as lipid peroxidation, must therefore involve chelation of transition metals to control their redox reactions.  相似文献   

14.
Paraquat and iron-dependent lipid peroxidation   总被引:3,自引:0,他引:3  
The aim of this work was to study the effect of paraquat (P2+) on NADPH iron-dependent lipid peroxidation (basal peroxidation) either in the presence of NADPH or in the presence of NADPH-generating systems. When NADPH is present, P2+ potentiates NADPH iron-dependent lipid peroxidation, but use of NADPH-generating systems cancels this effect. This may be attributed to certain components in NADPH-generating systems such as glucose-6-phosphate and sodium isocitrate, which act as iron chelators. The binding of iron by these molecules facilitates its reduction and enhances its reactivity toward dioxygen molecules, leading to the formation of reactive species capable of initiating lipid peroxidation, such as Fe3+-O 2 . Under these conditions of rapid basal peroxidation, any additional reduction of iron(III) by a reduced form of P2+ (P+.) has no apparent effect on the peroxidation itself, probably because the initial reaction between iron(II) and O2 followed by initiation of the peroxidation are both rate-limiting steps in the process. Consequently, any alteration of the composition of the reacting mixture (e.g., buffers or the generating system) must be taken into consideration because the formation of new iron chelates can change the rate of basal peroxidation and will modify the effect of redoxcycling molecules.  相似文献   

15.
Ferritin and superoxide-dependent lipid peroxidation   总被引:23,自引:0,他引:23  
Ferritin was found to promote the peroxidation of phospholipid liposomes, as evidenced by malondialdehyde formation, when incubated with xanthine oxidase, xanthine, and ADP. Activity was inhibited by superoxide dismutase but markedly stimulated by the addition of catalase. Xanthine oxidase-dependent iron release from ferritin, measured spectrophotometrically using the ferrous iron chelator 2,2'-dipyridyl, was also inhibited by superoxide dismutase, suggesting that superoxide can mediate the reductive release of iron from ferritin. Potassium superoxide in crown ether also promoted superoxide dismutase-inhibitable release of iron from ferritin. Catalase had little effect on the rate of iron release from ferritin; thus hydrogen peroxide appears to inhibit lipid peroxidation by preventing the formation of an initiating species rather than by inhibiting iron release from ferritin. EPR spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide was used to observe free radical production in this system. Addition of ferritin to the xanthine oxidase system resulted in loss of the superoxide spin trap adduct suggesting an interaction between superoxide and ferritin. The resultant spectrum was that of a hydroxyl radical spin trap adduct which was abolished by the addition of catalase. These data suggest that ferritin may function in vivo as a source of iron for promotion of superoxide-dependent lipid peroxidation. Stimulation of lipid peroxidation but inhibition of hydroxyl radical formation by catalase suggests that, in this system, initiation is not via an iron-catalyzed Haber-Weiss reaction.  相似文献   

16.
Inhibition of lipid peroxidation   总被引:1,自引:0,他引:1  
Lipid peroxy radicals (ROO-) were detected by electron spin resonance (ESR) at low temperature after formation by addition of H2O2 into a suspension of mice lymphocites. If lymphocytes were treated with selenomethionine (Se-Met) prior to addition of H2O2, ROO-formation was inhibited in a fashion that was dependent on Se-Met concentration. Formation of ROO- in the spleen of mice was induced by60Co irradiation. Animals that were supplemented with Na2SeO3 prior to irradiation exhibited a lower ROO-concentration than that of nontreated animals. Based on our experiments, we have concluded that Se has an oxygen-free radical scavenging effect. This should be a protective effect against lipid peroxy radical cellular attack.  相似文献   

17.
NADPH-dependent lipid peroxidation occurs in two distinct sequential radical steps. The first step, initiation, is the ADP-perferryl ion-catalyzed formation of low levels of lipid hydroperoxides. The second step, propagation, is the iron-catalyzed breakdown of lipid hydroperoxides formed during initiation generating reactive intermediates and products characteristic of lipid peroxidation. Propagation results in the rapid formation of thiobarbituric acid-reactive material and lipid hydroperoxides. Propagation can be catalyzed by ethylenediamine tetraacetate-chelated ferrous ion, diethylenetriamine pentaacetic acid-chelated ferrous ion, or by ferric cytochrome P-450. However, cytochrome P-450 is destroyed during propagation.  相似文献   

18.
Nitric oxide and lipid peroxidation.   总被引:9,自引:0,他引:9  
Nitric oxide can both promote and inhibit lipid peroxidation. By itself, nitric oxide acts as a potent inhibitor of the lipid peroxidation chain reaction by scavenging propagatory lipid peroxyl radicals. In addition, nitric oxide can also inhibit many potential initiators of lipid peroxidation, such as peroxidase enzymes. However, in the presence of superoxide, nitric oxide forms peroxynitrite, a powerful oxidant capable of initiating lipid peroxidation and oxidizing lipid soluble antioxidants. The role of nitric oxide in vascular pathology is discussed.  相似文献   

19.
Oxygen free radicals damage cells through peroxidation of membrane lipids. Gastrointestinal mucosal membranes were found to be resistant to in vitro lipid peroxidation as judged by malonaldehyde and conjugated diene production and arachidonic acid depletion. The factor responsible for this in this membrane was isolated and chemically characterised as the nonesterified fatty acids (NEFA), specifically monounsaturated fatty acid, oleic acid. Authentic fatty acids when tested in vitro using liver microsomes showed similar inhibition. The possible mechanism by which NEFA inhibit peroxidation is through iron chelation and iron-fatty acid complex is incapable of inducing peroxidation. Free radicals generated independent of iron was found to induce peroxidaton of mucosal membranes. Gastrointestinal mucosal membranes were found to contain unusually large amount of NEFA. Circulating albumin is known to contain NEFA which was found to inhibit iron induced peroxidation whereas fatty acid free albumin did not have any effect. Addition of individual fatty acids to this albumin restored its inhibitory capacity among which monounsaturated fatty acids were more effective. These studies have shown that iron induced lipid peroxidation damage is prevented by the presence of nonesterified fatty acids.  相似文献   

20.
Malondialdehyde (MDA) formation in mouse liver homogenates was measured in the presence of various glutathione depletors (5 mmol/l). After a lag phase of 90 min, the MDA formation increased from 1.25 nmol/mg protein to 14.5 nmol/mg in the presence of diethyl maleate (DEM), to 10.5 with diethyl fumarate (DEF) and to 4 with cyclohexenon by 150 min. It remained at 1.25 nmol/mg with phorone and in the control. On the other hand, glutathione (GSH) dropped from 55 nmol/mg to 50 nmol/mg in the control to, < 1 with DEM, to 46 with DEF, to 3 with cyclohexenon and to 7 with phorone. The data show that the potency to deplete GSH is not related to MDA production in this system. DEM stimulated in vitro ethane evolution in a concentration-dependent manner and was strongly inhibited by SKF 525A. From type I binding spectra to microsomal pigments the following spectroscopic binding constants were determined: 2.5 mmol/l for phorone, 1.2 mmol/l for cyclohexenon, 0.5 mmol/l for DEM and 0.3 mmol/l for DEF. In isolated mouse liver microsomes NADPH-cytochrome P-450 reductase and NADH-cytochrome b5 reductase activity were unaffected by the presence of DEM, whereas ethoxycoumarin dealkylation was inhibited. Following in vivo pretreatment, hepatic microsomal electron flow as determined in vitro was augmented in the presence of depleting as well as non-depleting agents, accompanied by a shift from O2 to H2O2 production. It is concluded that it is not the absence of GSH which causes lipid peroxidation after chemically-induced GSH depletion but rather the interaction of the chemicals with the microsomal monoxygenase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号