首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sami Aikio 《Oikos》2004,104(1):51-58
Individuals allocate resources to the expansion of their foraging area and those resources are no longer available for the traits that determine how well those individuals are able to protect their foraging area against competitors. The resulting trade‐off between foraging area size and the traits associated with the ability to compete for the resources within the foraging area applies to ecological scenarios as different as territorial defence by individuals and colonies, and light competition in plants. Whether the trade‐off affects species performance in competition for resources at the area of overlap between foraging areas depends on the symmetry of resource division. In symmetric competition resources are divided equally between the competitors, while in asymmetric competition the individual with the smallest foraging area, and consequently the greatest competitive ability, gains all the resources. Competition may also be a combination of the symmetric and asymmetric processes. I studied the effects of competitive asymmetry on population dynamics and coexistence of two annual species with different sized foraging areas using an individual‐based spatially explicit simulation model. Symmetric competition favoured the species with the larger foraging area and did not allow coexistence. Competitive asymmetry favoured the species with smaller foraging area and allowed coexistence, which was due to the consequences of losing an asymmetric competition being more severe than losing a symmetric competition. The mechanism of coexistence is the larger foraging area's superiority in low population densities (little competition) and the smaller foraging area's ability to win a large foraging area when competition was intense. Competitive asymmetry and small size of both foraging areas led to population dynamics dominated by long‐term fluctuations of small intensity. Symmetric competition and large size of the foraging areas led to large short‐term fluctuations, which often resulted in the extinction of one or both of the species due to demographic stochasticity.  相似文献   

2.
The growth of each individual in plant populations was simulatedby a spatial competition model for five density levels and fourdifferent spatial distribution patterns of individuals, varyingfrom highly clumped to regular. The simulation results wereanalysed using the diffusion model for evaluating the effectsof density and distribution pattern on the size-structure dynamicsin relation to the degree of competitive asymmetry. At low densities,changes in statistics of plant weight over time such as mean,coefficient of variation, skewness, and Box-Cox-transformedkurtosis differed greatly among spatial patterns, irrespectiveof the degree of competitive asymmetry. In completely symmetriccompetition, the spatial effect on size-structure dynamics remainedrelatively large irrespective of densities, although mean plantweight became similar among the spatial patterns with increasingdensity. However, the spatial effect diminished with increaseddensity in strongly asymmetric competition, when similar sizedistributions were realized irrespective of the spatial patterns.Therefore, it was concluded that: (1) irrespective of the degreeof competitive asymmetry, spatial pattern is important for size-structuredynamics at low densities; (2) spatial pattern is nearly immaterialunder strongly asymmetric competition at high densities; and(3) under crowded conditions, neighbourhood effects are muchmore apparent at the population level in less asymmetric competition.These processes and outcomes are linked to the forms of thefunctions of mean growth rate of individuals [G(t,x) function]and variance in growth rate [D(t,x) function]. These functionsare variable depending on the spatial pattern under symmetriccompetition, but are rather stable under strongly asymmetriccompetition at high densities irrespective of the spatial patterns.Therefore, size structure under strongly asymmetric competitioncan be regarded as a stable system, whereas that under symmetriccompetition is regarded as a variable system in relation tothe spatial pattern and process. From this, it was inferredthat: (1) the goodness-of-fit of spatial competition modelsfor crowded plant populations is higher in less asymmetric competition;and (2) higher species diversity in plant communities is associatedwith the lower degree of competitive asymmetry.Copyright 1994,1999 Academic Press Asymmetric competition, diffusion model, neighbourhood effect, size-structure stability, spatial competition model, spatial distribution pattern, species diversity, symmetric competition  相似文献   

3.
In virtually all natural systems, interference competition amongindividuals is asymmetric. Here, we used game theoretical modelson contest behavior to predict how time lost in agonistic interactionscould affect strength of interference under asymmetric competition.We hypothesized that interference through time lost in agonisticinteractions would result in a greater reduction in availableforaging time and overall feeding rate under symmetric competitionthan under asymmetric competition. We tested this hypothesisfor male shore crabs (Carcinus maenas) that foraged on mussels(Mytilus edulis) in an experiment where prey levels were keptconstant. We varied absolute size of crabs (juveniles, smalladults, large adults), mussel density (4, 16, 32 per 0.25 m2),and competitor size (smaller, equal, larger). Large adults spentmore time in aggressive behaviors than juveniles or small adults,possibly because large adults were more persistent in interferingor because large adults were intrinsically more aggressive,as the experiment was conducted in the mating season. When handlingprey, crabs mostly avoided competitors, but juveniles and smalladults did so more than large adults. When searching for prey,crabs mostly displaced smaller competitors but threatened oravoided size-matched or larger competitors. By avoiding a competitor,the focal crab lost time but the competitor often did not, andthis asymmetry in agonistic behavior is not yet incorporatedin models on contest behavior. However, overall, negative effectsof others were strongest with size-matched competitors, in linewith our hypothesis.  相似文献   

4.
Size-asymmetric competition among plants is usually defined as resource pre-emption by larger individuals, but it is usually observed and measured as a disproportionate size advantage in the growth of larger individuals in crowded populations (“size-asymmetric growth”). We investigated the relationship between size-asymmetric competition and size-asymmetric growth in a spatially explicit, individual-based plant competition model based on overlapping zones of influence (ZOI). The ZOI of each plant is modeled as a circle, growing in two dimensions. The size asymmetry of competition is reflected in the rules for dividing up the overlapping areas. We grew simulated populations with different degrees of size-asymmetric competition and at different densities and analyzed the size dependency of individual growth by fitting coupled growth functions to individuals. The relationship between size and growth within the populations was summarized with a parameter that measures the size asymmetry of growth. Complete competitive symmetry (equal division of contested resources) at the local level results in a very slight size asymmetry in growth. This slight size asymmetry of growth did not increase with increasing density. Increased density resulted in increased growth asymmetry when resource competition at the local level was size asymmetric to any degree. Size-asymmetric growth can be strong evidence that competitive mechanisms are at least partially size asymmetric, but the degree of size-asymmetric growth is influenced by the intensity as well as the mode of competition. Intuitive concepts of size-asymmetric competition among individuals in spatial and nonspatial contexts are very different.  相似文献   

5.
When plants are competing, larger individuals often obtain a disproportionate share of the contested resources and suppress the growth of their smaller neighbors, a phenomenon called size-asymmetric competition. We review what is known about the mechanisms that give rise to and modify the degree of size asymmetry in competition among plants, and attempt to clarify some of the confusion in the literature on size asymmetry. We broadly distinguish between mechanisms determined primarily by characteristics of contested resource from those that are influenced by the growth and behavior of the plants themselves. To generate size asymmetric resource competition, a resource must be “pre-emptable.” Because of its directionality, light is the primary, but perhaps not the only, example of a pre-emptable resource. The available data suggest that competition for mineral nutrients is often size symmetric (i.e., contested resources are divided in proportion to competitor sizes), but the potential role of patchily and/or episodically supplied nutrients in causing size asymmetry is largely unexplored. Virtually nothing is known about the size symmetry of competition for water. Plasticity in morphology and physiology acts to reduce the degree of size asymmetry in competition. We argue that an allometric perspective on growth, allocation, resource uptake, and resource utilization can help us understand and quantify the mechanisms through which plants compete. Received: 17 February 1997 / Accepted: 8 October 1997  相似文献   

6.
The foraging behavior of a predator species is thought to bethe cause of short-term apparent competition among those preyspecies that share the predator. Short-term apparent competitionis the negative indirect effect that one prey species has onanother prey species via its effects on predator foraging behavior.In theory, the density-dependent foraging behavior of granivorousrodents and their preference for certain seeds are capable of inducing short-term apparent competition among seed species.In this study, I examined the foraging behavior of two heteromyidrodent species (family Heteromyidae), Merriam's kangaroo rats(Dipodomys merriami) and little pocket mice (Perognathus longimembris).In one experiment I tested the preferences of both rodent speciesfor the seeds of eight plant species. Both rodent species exhibiteddistinct but variable preferences for some seeds and avoidanceof others. However, the differences in preference appearedto have only an occasional effect on the strength of the short-term apparent competition detected in a field experiment. In anotherexperiment, I found that captive individuals of both rodentspecies had approximately equal foraging effort (i.e., timespent foraging) in patches that contained a highly preferredseed type (Oryzopsis hymenoides) regardless of seed density and the presence of a less preferred seed type (Astragalus cicer)in the patches. The rodents also harvested a large proportionof O. hymenoides seeds regardless of initial seed density;this precluded a negative indirect effect of A. cicer on O.hymenoides. But there was a negative indirect effect of O.hymenoides on A. cicer caused by rodents having a lower foragingeffort in patches that only contained A. cicer seeds than inpatches that contained A. cicer and O. hymenoides seeds. Theindirect interaction between O. hymenoides and A. cicer thusrepresented a case of short-term apparent competition thatwas non-reciprocal. Most importantly, it was caused by theforaging behavior of the rodents.  相似文献   

7.
Extreme asymmetric morphologies are hypothesized to serve an adaptive function that counteracts sexual selection for symmetry. However, direct tests of function for asymmetries are lacking, particularly in the context of animal weapons. The weapon of the maritime earwig, Anisolabis maritima, exhibits sizeable variation in the extent of directional asymmetry within and across body sizes, making it an ideal candidate for investigating the function of asymmetry. In this study, we characterized the extent of weapon asymmetry, characterized the manner in which asymmetric weapons are used in contests, staged dyadic contests between males of different size classes, and analyzed the correlates of fighting success. In contests between large males, larger individuals won more fights and emerged as the dominant male. In contests between small males, however, weapon asymmetry was more influential in predicting overall fighting success than body size. This result reveals an advantage of asymmetric weaponry among males that are below the mean size in the population. A forceps manipulation experiment suggests that asymmetry may be an indirect correlate of a morphologically independent factor that affects fighting ability.  相似文献   

8.
J. Connolly  P. Wayne 《Oecologia》1996,108(2):311-320
Despite extensive interest in the role of plant size in competition, few formal attempts have been made to quantify the magnitude of asymmetric competition, particularly for interactions between members of different species. This paper introduces the concept of asymmetric interspecific competition at the population livel (i.e. mean plant performance) in mixtures of species. It proposes an index of interspecific competitive asymmetry which allows for a progressively greater asymmetric effect as the average size differences between competing species increase, and allows for such an effect whether individuals of focal species are larger or smaller, on average, than competitors. This index of competitive asymmetry is evaluated in the study of interactions between two widely coexisting annuals of disturbed habitats, Stellaria media and Poa annua. An experiment was conducted in which the density, relative frequency and relative seedling sizes (emergence times) of Poa and Stellaria individuals were varied. The relative growth rate (RGR) for both species was measured over a 22-day period. An inverse linear model was fitted for each species, relating the RGR of the focal species to the initial biomass of each species. Each response model included an asymmetry coefficient () to assess whether the impact of a unit of initial biomass of the associate species changed with the relative sizes of seedlings of the two species. A zero value of implies symmetric competition between the two populations; i.e. the competitive effect of a unit of associate species biomass does not change with its initial seedling size. If is positive the smaller the initial relative size of seedlings of the associate species, the smaller their per unit biomass effect on the response of the focal species. The model fitted our data for Stellaria and Poa well and was validated by an alternative modelling approach. Asymmetry coefficients were estimated as 0.508 (P<0.05) for the effect of Poa in the Stellaria model, and 0.0001 (NS) for the effect of Stellaria in the Poa model; i.e. the effect of Poa on Stellaria was asymmetric while the effect of Stellaria on Poa was symmetric. Differences in interspecific species asymmetric competitive effects are discussed within the context of shoot architecture, and the relative importance of competition for light versus soil resources. Finally, we discuss the relationship of this model to earlier models of competitive asymmetry, and consider the implications of interspecific competitive asymmetry for a number of current theories of plant competition and community organisation.  相似文献   

9.
Studies of sex allocation have provided some of the most successfultests of theory in behavioral and evolutionary ecology. Forinstance, local mate competition (LMC) theory has explainedvariation in sex allocation across numerous species. However,some patterns of sex ratio variation remain unexplained by existingtheory. Most existing models have ignored variation in malecompetitive ability and assumed all males have equal opportunitiesto mate within a patch. However, in some species experiencingLMC, males often fight fiercely for mates, such that male matingsuccess varies with male fighting ability. Here, we examinethe effect of competitive ability on optimal sex allocationschedules using a dynamic programming approach. This model assumesan asymmetric competitive ability derived from different mortalitiesaccording to the timing of male emergence. If the mortalityof newly emerging males is larger than that of already emergedmales, our model predicts a more female-biased sex ratio thanexpected under traditional LMC models. In addition, femalesare predicted to produce new males constantly at a low rateover the offspring emergence period. We show that our modelsuccessfully predicts the sex ratios produced by females ofthe parasitoid wasp Melittobia, a genus renowned for its vigorouslyfighting males and lower than expected sex ratios.  相似文献   

10.
1. The distribution of consumers among resources (trophic interaction network) may be shaped by asymmetric competition. Dominance hierarchy models predict that asymmetric interference competition leads to a domination of high quality resources by hierarchically superior species. 2. In order to determine the competitive dominance hierarchy and its effect on flower partitioning in a local stingless bee community in Borneo, interspecific aggressions were tested among eight species in arena experiments. 3. All species tested were strongly mutually aggressive in the arena, and the observed interactions were often lethal for one or both opponents. Aggression significantly increased with body size differences between fighting pairs and was asymmetric: larger aggressors were superior over smaller species. Additional aggression tests involved dummies with surface extracts, and results suggest that species‐ and colony‐specific surface profiles are important in triggering the aggressive behaviour. 4. Sixteen stingless bee species were observed foraging on 41 species of flowering plants. The resulting bee–flower interaction network showed a high degree of generalisation (network‐level specialisation H2’ = 0.11), corresponding to a random, opportunistic distribution of bee species among available flower species. 5. Aggressions on flowers were rare and only occurred at a low level. The dominance hierarchy obtained in the arena experiments did not correlate significantly with plant quality, estimated as the number of flowers per plant or as total bee visitation rate. 6. Our findings suggest that asymmetries in interference competition do not necessarily translate into actual resource partitioning in the context of complex interacting communities.  相似文献   

11.
On evolution under asymmetric competition   总被引:2,自引:0,他引:2  
The evolutionary consequences of asymmetric competition between species are poorly understood in comparison with symmetric competition. A model for evolution of body size under asymmetric competition within and between species is described. The model links processes operating at the scale of the individual to that of macroscopic evolution through a stochastic mutation–selection process. Phase portraits of evolution in a phenotype space characteristically show character convergence and parallel character shifts, with character divergence being relatively uncommon. The asymptotic states of evolution depend very much on the properties of asymmetric competition. Given relatively weak asymmetries between species, a single equilibrium point exists; this is a local attractor, and its position is determined by the intra- and interspecific asymmetries. When the asymmetries are made stronger, several fixed points may come about, creating further equilibrium points which are local attractors. It is also possible for periodic attractors to occur; such attractors comprise Red Queen dynamics with phenotype values that continue to change without ever settling down to constant values. From certain initial conditions, evolution leading to extinction of one of the species is also a likely outcome.  相似文献   

12.
Sex allocation theory provides excellent opportunities for testinghow behavior and life histories are adjusted in response toenvironmental variation. One of the most successful areas fromthis respect is Hamilton's local mate competition theory. Aspredicted by theory, a large number of animal species have beenshown to adjust their offspring sex ratios (proportion male)conditionally, laying less female-biased sex ratios as the numberof females that lay eggs on a patch increases. However, recentstudies have shown that this predicted pattern is not followedby 2 parasitoid species in the genus Melittobia, which alwaysproduce extremely female-biased sex ratios. A possible explanationfor this is that males fight fatally and that males producedby the first female to lay eggs on a patch have a competitiveadvantage over later emerging males. This scenario would negatethe advantage of later females producing a less female-biasedsex ratio. Here we examine fatal fighting and sex ratio evolutionin another species, Melittobia acasta. We show that femalesof this species also fail to adjust their offspring sex ratioin response to the number of females laying eggs on a patch.We then show that although earlier emerging males do have anadvantage in winning fights, this advantage 1) can be reducedby an interaction with body size, with larger males more likelyto win fights and 2) only holds for a brief period around thetime at which the younger males emerge from their pupae. Thissuggests that lethal male combat cannot fully explain the lackof sex ratio shift observed in Melittobia species. We discussalternative explanations.  相似文献   

13.
A large body of literature suggests that asymmetric competition, where large individuals suppress the growth of smaller individuals by intercepting a disproportionate share of incoming light, is a dominant process in tree population development. This has not been examined extensively for long-lived tree species that accumulate growth over many years under varying growing conditions. Using dendrochronological techniques, we reconstructed annual growth and mortality rates at ten stands of jack pine (Pinus banksiana Lamb.) in Western Canada. We used these data to calculate an annual index of the size asymmetry of growth for each stand for the last 50 years. Jack pine is a shade-intolerant species found in even-aged monoculture stands, so the simple hypothesis is that large trees should consistently perform relatively better than small trees. Inter-annual variation in the index of size-asymmetric growth was positively associated with interannual variation in stand productivity at eight of ten sites. The size asymmetry of growth also showed a positive trend with age at eight of ten sites, even though all sites were in a period of declining leaf area. This should have reduced the intensity of asymmetric competition for light and reduced the size asymmetry of growth over time. Alternate hypotheses for this trend are (1) that physical collisions between crowns result in asymmetric competition for growing space because they are more damaging to small trees, or (2) that a differential build up of diseases in susceptible trees suppresses their growth, even in the absence of competition.  相似文献   

14.
I investigated the relationships among developmental stability(as measured by individual bilateral asymmetry values), twomeasures of locomotory performance and predation success inan insect predator-prey system. In this system yellow dungfliesScathophaga stercoraria preyed upon houseflies Musca domesticainlaboratory-controlled conditions. There was no relationshipbetween locomotion and absolute asymmetry or mean size of twomorphological traits (fourth longitudinal wing vein, forelegtibia) in either species. Analysis of single predation trialsindicated that locomotion performance and trait size are notassociated with the probability of predation. However, Muscathat were captured had tibia that were more asymmetric thanMusca that survived. Similarly, Scathophaga that were successfulpredators had more symmetric forelegs than unsuccessful predators.There was no relationship between predation and wing vein asymmetry,which may indicate the importance of terrestrial-based predatoryavoidance tactics in this system. There were no relationshipsbetween morphology or locomotion with predation latency, preyhandling times, or the number of times a prey "escaped" froma predator. The mechanisms behind the relationship between tibiaasymmetry and predation success are discussed. This is the firstexperiment to reveal direct evidence for selection for symmetric,developmentally stable individuals through differential predation  相似文献   

15.
Carotenoid-based plumage ornaments are typically consideredto be sexually selected traits, functioning as honest condition-dependentsignals of phenotypic quality, but few studies have addressedthe function of carotenoid color variation in male contestcompetition. Using two experiments, we investigated the statussignaling function of the variable (ranging from yellow tored) carotenoid throat patch (collar) in the polygynous, sexually dimorphic red-collared widowbird (Euplectes ardens). First,we tested if the red collar functions as a dominance signalby painting spectrometrically controlled collar patches ontothe brown plumage of nonbreeding males and staging dyadic malecontests over food resources. Red-collared males dominatedorange males, which in turn dominated the control brown andnovel blue collars. Red dominance persisted when the collar manipulations were reversed within dyads and also when testedagainst testosterone implanted males. In the second experimentthe collar size and color of breeding males were manipulatedin the field before and after territories were established.All males with enlarged red and most with enlarged orange orreduced red collars obtained territories, whereas most maleswith reduced orange and all with blackened (removed) collarsfailed to establish or retain territories. In addition, amongthe territorial males, those with reduced signals defendedsmaller territories, received more intrusions, and spent moretime in aggressive interactions. Redness and, to a lesser extent,size of the carotenoid ornament both seem to independently indicate male dominance status or fighting ability in male contest competition.  相似文献   

16.
Competition for food can influence the coexistence of speciesvia habitat selection, and learned behavior can influence foragingdecisions. I investigated whether learned behavior and competitionact together to influence species interactions between threecoexisting hummingbird species: black-chinned (Archilochusalexandri), blue-throated (Lampornis clemenciae), and magnificent(Eugenes fulgens) hummingbirds. I found that color cue useby individuals affects not only their foraging choices butalso population-level responses to competition. I presented hummingbirds two types of habitats (rich and poor feeders).All birds shared a preference for the rich feeders, but shiftedpreference toward poor feeders in response to competition.I used color cues to manipulate the amount of information availableto birds and examined the effects of two information states(complete or incomplete) on their foraging choices. I examined hummingbirds' preferences for the rich feeders when both competitordensities and information varied. To relate foraging choicesto energetic intake, I also analyzed energy gained during asingle foraging bout. Males of all species exhibited strongpreferences for rich feeders when they foraged with complete information and low competitor densities. Without complete information,the two subordinate species (black-chinned and magnificent)shifted preference away from rich feeders in response to highdensities of the dominant species (blue-throated). Each subordinatespecies shifted in a unique way: black-chinned hummingbirdsreduced foraging efficiency, while magnificent hummingbirdsreduced foraging time. Birds foraging with complete information remained selective on rich feeders even at high competitor densities.Thus, learned information affected competitive interactions(for rich feeders) among these species.  相似文献   

17.
【目的】为了探讨入侵火蚁在我国成功定殖及其之间的竞争机制。【方法】运用行为学方法研究红火蚁Solenopsis invicta(Buren)和热带火蚁Solenopsis geminata(Fabricius)在个体水平和群体水平上的攻击性、攻击手段及合作能力。【结果】一对一攻击试验中,红火蚁和热带火蚁之间攻击级别多集中在3级,两种入侵蚂蚁间以相互威胁为主;红火蚁大型工蚁与热带火蚁兵、工蚁间最为好斗,其攻击级别达到4级的比例最高,分别为33.04%、37.92%。热带火蚁兵蚁与各型红火蚁间攻击强度差异不显著;热带火蚁工蚁与红火蚁小型工蚁之间的攻击性最强,其攻击性(3.49)显著高于热带火蚁工蚁与红火蚁大、中型工蚁的攻击性(3.32和2.97)。在攻击手段上,3级打斗时各型红火蚁更倾向以物理攻击主动威胁热带火蚁,而热带火蚁兵、工蚁会采取多种方式主动攻击红火蚁,双方皆以躲避应对为主;4级打斗时两种火蚁主要以混合攻击为主动或应对手段。群体攻击试验显示,红火蚁群体间攻击强度和合作性会随着群体数量的增加而显著增加,热带火蚁合作性较差,其群体对抗红火蚁的优势仅仅是由于个体数量的增加。【结论】红火蚁比热带火蚁具有更强的竞争优势。研究结果为入侵蚂蚁间不对称竞争机制和长期群落替代的内在原因提供理论基础。  相似文献   

18.
Understanding temporal niche separation between C3 and C4 species(e.g. C3 species flourishing in a cool spring and autumn whileC4 species being more active in a hot summer) is essential forexploring the mechanism for their co-existence. Two parallelpot experiments were conducted, with one focusing on water andthe other on nitrogen (N), to examine growth responses to wateror nitrogen (N) seasonality and competition of two co-existingspecies Leymus chinensis (C3 grass) and Chloris virgata (C4grass) in a grassland. The two species were planted in eithermonoculture (two individuals of one species per pot) or a mixture(two individuals including one L. chinensis and one C. virgataper pot) under three different water or N seasonality regimes,i.e. the average model (AM) with water or N evenly distributedover the growing season, the one-peak model (OPM) with morewater or N in the summer than in the spring and autumn, andthe two-peak model (TPM) with more water or N in the springand autumn than in the summer. Seasonal water regimes significantlyaffected biomass in L. chinensis but not in C. virgata, whileN seasonality impacted biomass and relative growth rate of bothspecies over the growing season. L. chinensis accumulated morebiomass under the AM and TPM than OPM water or N treatments.Final biomass of C. virgata was less impacted by water and Nseasonality than that of L. chinensis. Interspecific competitionsignificantly decreased final biomass in L. chinensis but notin C. virgata, suggesting an asymmetric competition betweenthe two species. The magnitude of interspecific competitionvaried with water and N seasonality. Changes in productivityand competition balance of L. chinensis and C. virgata undershifting seasonal water and N availabilities suggest a contributionof seasonal variability in precipitation and N to the temporalniche separation between C3 and C4 species. Key words: Chloris virgata, competition, growth, Leymus chinensis, nitrogen seasonality, water seasonality Received 19 November 2007; Revised 29 January 2008 Accepted 4 February 2008  相似文献   

19.
I compared the role of ornate plumage, behavior, and body sizeduring male—male competition in two species of New Worldquail. Gambel's quail (Callipepla gambelii) is a highly ornateand dichromatic species, whereas scaled quail (C. squamata)is unornamented and monochromatic. During paired contests betweenunfamiliar males, high rates of testosterone-mediated behaviors(tidbitting, calling) and large body size (mass, tarsus, andtail length) corresponded to winners. In the highly ornate Gambel's quail, male head plumes also influenced the outcomeof contests. Plume enhancement made Gambel's quail more likelyto win contests, whereas plume removal made males more likelyto lose. Plume position also reflected male status. Winningmales erected plumes, whereas losers frequently flattened them.Some plumage ornaments, such as belly patches, did not playa primary role during male contests. Unlike static ornaments,head plumes are highly modifiable and likely signal immediateinformation regarding a male's intent, similar to a coverablebadge. Combined, intrasexual selection favored dynamic traits(fast display rates, modifiable ornaments) and static traits(body size) as indicators of male condition or motivation.In scaled quail only, male size was favored both by male—malecompetition and female choice. Accordingly, the degree of sizedimorphism (tarsus length) is greater in scaled than in Gambel'squail. The frequency of overt aggression (chases, pecks, displacement)also differed between species. Gambel's quail were very aggressive,and subordinates often challenged their opponents. In contrast, scaled quail were less aggressive, and subordinates rarely disputedrank. Interspecific comparison indicated differences in themaintenance of male status and possibly in the honesty of signaling.Both appear to be related to differences in social system.  相似文献   

20.
Body size of virtual rivals affects ejaculate size in sticklebacks   总被引:3,自引:0,他引:3  
Sperm competition occurs when sperm of two or more males competeto fertilize a given set of eggs. Theories on sperm competitionexpect males under high risk of sperm competition to increaseejaculate size. Here we confirm this prediction experimentallyin the three-spined stickleback (Gasterosteus aculeatus). Inthis species, sneaking (i.e., stealing of fertilizations byneighboring males) can lead to sperm competition. Sneaking malesinvade foreign nests, and the owners vigorously try to preventthis intrusion. In such fights, male body size is assumed tobe an important predictor of success. Consequently, the riskof sperm competition may depend on the size of a potential competitor.We experimentally confronted males before spawning with eithera large or a small computer-animated rival. We show that malesejaculated significantly more sperm after the presentation ofthe larger virtual rival than after the small stimulus. In addition,the time between the initiation of courting and the spawningwas shorter in the large virtual male treatment. The resultssuggest that stickleback males tailor ejaculate size relativeto the risk of sperm competition perceived by the size of apotential competitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号