首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An inverted repeat has been created in a plasmid by ligation of two 13 nucleotide synthetic oligonucleotides into the cloning vector pAT153. The resulting recombinant plasmid, pIRbke8, is hypersensitive to cleavage by the single-strand-specific nuclease S1, and to modification by the single-strand-selective reagent bromoacetaldehyde, when the plasmid is negatively supercoiled. The new inverted repeat is a stronger S1 site than those derived from pBR322, but, in contrast to the ColE1 and phi X174 RF inverted repeats, these repeats share a similar temperature dependence. The kinetics of EcoRI cleavage at the centre of the synthetic inverted repeat have been studied in supercoiled and linear molecules. It is found that in the supercoiled molecule this target is not refractory to EcoRI cleavage to an extent which is greater than the resolution of the experiment. We conclude that in this molecule the cruciform is in a dynamic equilibrium with the regular duplex, in which the cruciform constitutes a relatively small subpopulation of conformational species.  相似文献   

2.
We have analyzed the effect of base composition at the center of symmetry of inverted repeated DNA sequences on cruciform transitions in supercoiled DNA. For this we have constructed two series of palindromic DNA sequences: one set with differing center and one set with differing center and arm sequences. The F series consists of two 96-base pair perfect inverted repeats which are identical except for the central 10 base pairs which consist of pure AT or GC base pairs. The S series was constructed such that the overall base composition of the inverted repeats was identical but in which the positioning of blocks of AT- and GC-rich sequences varied. The rate of cruciform formation for the inverted repeats in plasmid pUC8 was dramatically influenced by the 8-10 base pairs at the center of the inverted repeat. Inverted repeats with 8-10 AT base pairs in the center were kinetically much more active in cruciform formation than inverted repeats with 8-10 GC base pairs in the center. These experiments show a dominant influence of the center sequences of inverted repeats on the rate of cruciform formation.  相似文献   

3.
S1 sensitive sites in adenovirus DNA.   总被引:19,自引:7,他引:12       下载免费PDF全文
S1 nuclease has been used as a probe for regions of DNA secondary structure in supercoiled recombinant plasmids containing adenovirus (Ad) DNA sequences. In the sequences examined two S1 sensitive sites were identified in the left-terminal 16.5% of Ad 12 DNA, one of which aligned approximately with an inverted repeat region in the DNA sequence. In addition an S1 sensitive site was dictated by a potential cruciform structure in the region of the Ad 2 major late promoter. In contrast to the expected cleavage site at the loop of the cruciform, cleavage occurred at the base of the stem in the region of the TATA box. All three S1 sensitive sites identified were more sensitive to S1 than the endogenous sites in the parent plasmids.  相似文献   

4.
Bromoacetaldehyde, a reagent which modifies unpaired adenine residues, selectively modifies supercoiled DNA in the region of inverted repeats which are known targets for single-strand-specific nucleases. The reaction is dependent upon the topological state of the molecule, and the absolute importance of the inverted repeat has been demonstrated. Finer mapping of the distribution of the modification pattern reveals significant and interesting differences from the S1 nuclease target positions. Bromoacetaldehyde modification is distributed over a wider region covering the whole inverted repeat, with greatest extent of reaction in the regions which flank the inverted repeat. It is suggested that an altered conformation may be propagated into these sequences. These results further support the contention that inverted repeats adopt an altered conformation when negatively supercoiled, for which the principal suggestion remains the cruciform structure.  相似文献   

5.
Short inverted repeat sequences adopt hairpin stem-loop type structures in supercoiled closed circular DNA molecules, demonstrated by S1 nuclease cleavage. Fine mapping of cleavage frequencies is in good agreement with expected cleavage patterns based upon the interaction between an unpaired loop and a sterically bulky enzyme molecule. Whilst the topological properties of underwound DNA circles depend ultimately upon reduced linkage, necessarily a global molecular property, hairpin loop formation is an essentially local property. Thus molecular size is unimportant for the S1 hypersensitivity of the Co1E1 inverted repeat. Furthermore, a 440 bp Sau3AI, EcoRI fragment of Co1E1 which contains the inverted repeat has been cloned into pBR322 whereupon it exhibits S1 cleavage similar to Co1E1 in the supercoiled recombinant molecule. The effect is therefore both local and transmissible. Direct competition, between inverted repeats in the recombinant, coupled with close examination of flanking sequences, enables some simple 'rules' for base pairing in hairpin loops to be formulated. Whilst limited G-T and A-C base pairing appears not to be destabilising, A-G, T-C or loop outs are highly destabilising.  相似文献   

6.
H Hamada  M Bustin 《Biochemistry》1985,24(6):1428-1433
The interaction of chromosomal proteins HMG 1 and 2 with various DNA structures has been examined with plasmid pPst-0.9, which contains DNA sequences that can form the Z-DNA conformation and palindromic sequences that can form cruciform structures. Direct binding and competition experiments with 32P-labeled plasmid indicated that proteins HMG 1 and 2 preferentially bind to supercoiled form I DNA as compared to double-stranded linear DNA. The preferential binding to form I is due to the presence of single-stranded regions in this DNA. The binding of HMG 1 and 2 to the form I plasmid results in inhibition of S1 nuclease digestion in a selective manner. The B-Z junction is preferentially protected as compared to the cruciform, which in turn is more protected than other minor S1-sensitive structures present in pPst-0.9. Our results indicate that the binding of HMG 1 and 2 proteins to DNA is not random in that HMG 1 and 2 can distinguish between various S1 nuclease sensitive sites in the plasmid. The existence of a hierarchy of DNA binding sites for these proteins suggests that they can selectively affect the structure of distinct regions in the genome.  相似文献   

7.
Local DNA bending is a critical factor for numerous DNA functions including recognition of DNA by sequence-specific regulatory binding proteins. Negative DNA supercoiling increases both local and global DNA dynamics, and this dynamic flexibility can facilitate the formation of DNA-protein complexes. We have recently shown that apexes of supercoiled DNA molecules are sites that can promote the formation of an alternative DNA structure, a cruciform, suggesting that these positions in supercoiled DNA are under additional stress and perhaps have a distorted DNA geometry. To test this hypothesis, we used atomic force microscopy to directly measure the curvature of apical positions in supercoiled DNA. The measurements were performed for an inherently curved sequence formed by phased A tracts and a region of mixed sequence DNA. For this, we used plasmids in which an inverted repeat and A tract were placed at precise locations relative to each other. Under specific conditions, the inverted repeat formed a cruciform that was used as a marker for the unambiguous identification of the A tract location. When the A tract and cruciform were placed diametrically opposite, this yielded predominantly nonbranched plectonemic molecules with an extruded cruciform and A tract localized in the terminal loops. For both the curved A tract and mixed sequence nonbent DNA, their localization to an apex increased the angle of bending compared to that expected for DNA unconstrained in solution. This is consistent with increased helical distortion at an apical bend.  相似文献   

8.
The Epstein-Barr virus (EBV) origin of plasmid replication (oriP) includes two known cis-acting components, the dyad symmetry region and the family of repeats. We used P1 nuclease, a single-strand-specific endonuclease, to probe EBV oriP for DNA sequences that are intrinsically easy to unwind on a negatively supercoiled plasmid. Selective nuclease hypersensitivity was detected in the family of repeats on an oriP-containing plasmid and in the dyad symmetry region on a plasmid that lacks the family of repeats, indicating that the DNA in both cis-acting components is intrinsically easy to unwind. The hierarchy of nuclease hypersensitivity indicates that the family of repeats is more easily unwound than the dyad symmetry region, consistent with the hierarchy of helical stability predicted by computer analysis of the DNA sequence. A specific subset of the family of repeats is nuclease hypersensitive, and the DNA structure deduced from nucleotide-level analysis of the P1 nuclease nicks is a cruciform near a single-stranded bubble. The dyad symmetry region unwinds to form a broad single-stranded bubble containing hairpins in the 65-bp dyad sequence. We propose that the intrinsic ease of unwinding the dyad symmetry region, the actual origin of DNA replication, is an important component in the mechanism of initiation.  相似文献   

9.
10.
11.
12.
In negatively supercoiled DNA molecules some inverted repeat sequences adopt a perturbed conformation which is characterised by the following properties. They are centrally hypersensitive to single-strand-specific nucleases such as S1, and to a much lower extent the flanking regions may also be sensitive. They are also hypersensitive to modification by bromoacetaldehyde, particularly in their flanking region. They may be resistant to endonucleolysis by restriction enzymes and are cleaved (resolved) by a T4 resolving enzyme. All these properties can only be consistently explained by a model in which the inverted repeat adopts a cruciform structure. This property has been shown to depend sharply on a superhelix density, and the transition to nuclease sensitivity is accompanied by a marked alteration in the overall molecular geometry as judged by frictional properties. The probable dynamics of these structures are discussed.  相似文献   

13.
The transition from lineform DNA to cruciform DNA (cruciformation) within the cloned telomere sequences of the Leporipoxvirus Shope fibroma virus (SFV) has been studied. The viral telomere sequences have been cloned in recombination-deficient Escherichia coli as a 322 base-pair, imperfect palindromic insert in pUC13. The inverted repeat configuration is equivalent to the arrangement of the telomere structures observed within viral DNA replicative intermediates. A major cruciform structure in the purified recombinant plasmid has been identified and mapped using, as probes, the enzymes AflII, nuclease S1 and bacteriophage T7 endonuclease I. It was extruded from the central axis of the cloned viral inverted repeat and, by unrestricted branch migration, attained a size commensurate with the superhelical density of the plasmid molecule at native superhelical densities. This major cruciform extrusion event was the only detectable duplex DNA perturbation, induced by negative superhelical torsion, in the insert viral sequences. No significant steady-state pool of extruded cruciform was identified in E. coli. However, the identification of a major deletion variant generated even in the recombination-deficient E. coli strain DB1256 (recA recBC sbcB) suggested that the cruciform may be extruded transiently in vivo. The lineform to cruciform transition has been further characterized in vitro using two-dimensional agarose gel electrophoresis. The transition was marked by a high energy of formation (delta Gf = 44 kcal/mol), and an apparently low activation energy that enabled facile transitions at physiological temperatures provided there was sufficient torsional energy. By comparing cruciformation in a series of related bidirectional central axis deletions of the telomeric insert, it has been concluded that the presence of extrahelical bases in the terminal hairpin structures contributes substantially to the high delta Gf value. Also, viral sequences flanking the extruded cruciform were shown to influence the measured delta Gf value. Several general features of poxvirus telomere structure that would be expected to influence the facility of cruciform extrusion are discussed along with the implications of the observed cruciform transition event on the replicative process of poxviruses in vivo.  相似文献   

14.
Large-scale cooperative helix opening has been previously observed in A + T rich sequences contained in supercoiled DNA molecules at elevated temperatures. Since it is well known that helix melting of linear DNA is suppressed by addition of salt, we have investigated the effects of added salts on opening transitions in negatively supercoiled DNA circles. We have found that localised large-scale stable melting in supercoiled DNA is strongly suppressed by modest elevation of salt concentration, in the range 10 to 30 mM sodium. This has been shown in a number of independent ways: 1. The temperature required to promote cruciform extrusion by the pathway that proceeds via the coordinate large-scale opening of an A + T rich region surrounding the inverted repeat (the C-type pathway, first observed in the extrusion of the ColE1 inverted repeat) is elevated by addition of salt. The temperature required for extrusion was increased by about 4 deg for an addition of 10 mM NaCl. 2. A + T rich regions in supercoiled DNA exhibit hyperreactivity towards osmium tetroxide as the temperature is raised; this reactivity is strongly suppressed by the addition of salt. At low salt concentrations of added NaCl (10 mM) we observe that there is an approximate equivalence between reducing the salt concentration, and the elevation of temperature. Above 30 mM NaCl the reactivity of the ColE1 sequences is completely supressed at normal temperatures. 3. Stable helix opening transitions in A + T rich sequences may be observed with elevated temperature, using two-dimensional gel electrophoresis; these transitions become progressively harder to demonstrate with the addition of salt. With the addition of low concentrations of salt, the onset of opening transitions shifts to higher superhelix density, and by 30 mM NaCl or more, no transitions are visible up to a temperature of 50 degrees C. Statistical mechanical simulation of the data indicate that the cooperativity free energy for the transition is unaltered by addition of salt, but that the free energy cost for opening each basepair is increased. These results demonstrate that addition of even relatively low concentrations of salt strongly suppress the large-scale helix opening of A + T rich regions, even at high levels of negative supercoiling. While the opening at low salt concentrations may reveal a propensity for such transitions, spontaneous opening is very unlikely under physiological conditions of salt, temperature and superhelicity, and we conclude that proteins will therefore be required to facilitate opening transitions in cellular DNA.  相似文献   

15.
Supercoiled pColIR215 contains a site of pronounced hyper-reactivity towards modification by osmium tetroxide, a reagent known to be single-strand-selective. The site of hypersensitivity has been mapped to the ColE1 inverted repeat, believed to extrude a cruciform in supercoiled DNA. Linear or relaxed plasmids are not modified by the reagent. We conclude that cruciform formation is responsible for the site-selective modification. Fine mapping of the modification site as a function of time has revealed that the initial reaction occurs at the centre of the inverted repeat, i.e., the unpaired loop of the cruciform, but that the modification region rapidly expands outwards from this point.  相似文献   

16.
Stress-induced cruciform formation in a cloned d(CATG)10 sequence.   总被引:2,自引:0,他引:2       下载免费PDF全文
The synthetic alternating purine-pyrimidine sequence, d(CATG)10.d(CATG)10, has been cloned into a 2.079-kb pBR322-derived plasmid (pLN1) and its conformation studied under torsional stress. The resultant plasmid, pLNc40, is hypersensitive to cleavage by the single strand-specific nucleases, S1 nuclease and Bal31 nuclease, and to modification by the single strand-selective reagent, osmium tetroxide. The S1-hypersensitive site of this plasmid predominates over those previously mapped in pBR322. Site-specific cleavage of pLNc40 with the resolvase T4 endonuclease VII demonstrates that this alternating purine-pyrimidine tract selectively forms a cruciform structure when stably integrated into a negatively supercoiled plasmid. Quantitative measurements of the twist change (-4.3 +/- 0.2) and free energy of formation (16.2 +/- 0.5 kcal/mol) of this cruciform have been made from two-dimensional gel electrophoresis experiments, and correspond well with the predicted values of cruciform formation for this sequence. We conclude that cruciform extrusion versus the B-Z transition is the favoured conformation of this insert under torsional stress.  相似文献   

17.
Topoisomerases are essential cellular enzymes that maintain the appropriate topological status of DNA and are the targets of several antibiotic and chemotherapeutic agents. High-throughput (HT) analysis is desirable to identify new topoisomerase inhibitors, but standard in vitro assays for DNA topology, such as gel electrophoresis, are time-consuming and are not amenable to HT analysis. We have exploited the observation that closed-circular DNA containing an inverted repeat can release the free energy stored in negatively supercoiled DNA by extruding the repeat as a cruciform. We inserted an inverted repeat containing a fluorophore-quencher pair into a plasmid to enable real-time monitoring of plasmid supercoiling by a bacterial topoisomerase, Escherichia coli gyrase. This substrate produces a fluorescent signal caused by the extrusion of the cruciform and separation of the labels as gyrase progressively underwinds the DNA. Subsequent relaxation by a eukaryotic topoisomerase, human topo IIα, causes reintegration of the cruciform and quenching of fluorescence. We used this approach to develop a HT screen for inhibitors of gyrase supercoiling. This work demonstrates that fluorescently labeled cruciforms are useful as general real-time indicators of changes in DNA topology that can be used to monitor the activity of DNA-dependent motor proteins.  相似文献   

18.
19.
The extrusion kinetics of two cruciforms derived from unrelated DNA sequences differ markedly. Kinetic barriers exist for both reactions, necessitating elevated temperatures before extrusion proceeds at measureable speeds, but the dependence upon temperature and ionic strength is quite different for the two sequences. One, the ColE1 inverted repeat, exhibits a remarkably great temperature dependence of reaction rate and is suppressed by moderate amounts of NaCl or MgCl2. In contrast, the other, a synthetic inverted repeat present in pIRbke8, shows more modest temperature dependence and has a requirement for the presence of salt, with optimal concentrations being 50 mM NaCl or 100 microM MgCl2. Under optimal conditions, cruciform extrusion rates are fast (t1/2 less than 60m) at 37 degrees C for both sequences at native superhelix densities. In 50 mM NaCl the pIRbke8 inverted repeat is characterised by an Arrhenius activation energy of 42.4 +/- 3.2 kcal mole -1. The differences in kinetic properties between the two sequences indicate that DNA base sequence is itself an important factor in determining cruciform kinetics, and possibly even in the selection of the mechanistic pathway.  相似文献   

20.
We have used computer-assisted methods to search large amounts of the human, yeast and Escherichia coli genomes for inverted repeat (IR) and mirror repeat (MR) DNA sequence patterns. In highly supercoiled DNA some IRs can form cruciforms, while some MRs can form intramolecular triplexes, or H-DNA. We find that total IR and MR sequences are highly enriched in both eukaryotic genomes. In E. coli, however, only total IRs are enriched, while total MRs only occur as frequently as in random sequence DNA. We then used a set of experimentally derived criteria to predict which of the total IRs and MRs are most likely to form cruciforms or H-DNA in supercoiled DNA. We show that strong cruciform forming sequences occur at a relatively high frequency in yeast (1/19 700 bp) and humans (1/41 800 bp), but that H-DNA forming sequences are abundant only in humans (1/49 400 bp). Strong cruciform and H-DNA forming sequences are not abundant in the E.coli genome. These results suggest that cruciforms and H-DNA may have a functional role in eukaryotes, but probably not prokaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号