首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Smad ubiquitin regulatory factors (Smurfs) are HECT-domain ubiquitin E3 ligases that regulate diverse cellular processes, including normal and tumor cell migration. However, the underlying mechanism of the Smurfs'' role in cell migration is not fully understood. Here we show that Smurf1 induces ubiquitination of tumor necrosis factor receptor-associated factor 4 (TRAF4) at K190. Using the K190R mutant of TRAF4, we demonstrate that Smurf1-induced ubiquitination is required for proper localization of TRAF4 to tight junctions in confluent epithelial cells. We further show that TRAF4 is essential for the migration of both normal mammary epithelial and breast cancer cells. The ability of TRAF4 to promote cell migration is also dependent on Smurf1-mediated ubiquitination, which is associated with Rac1 activation by TRAF4. These results reveal a new regulatory circuit for cell migration, consisting of Smurf1-mediated ubiquitination of TRAF4 and Rac1 activation.  相似文献   

2.
Cell migration requires spatial and temporal processes that detect and transfer extracellular stimuli into intracellular signals. The platelet-derived growth factor (PDGF) receptor is a cell surface receptor on fibroblasts that regulates proliferation and chemotaxis in response to PDGF. How the PDGF signal is transmitted accurately through the receptor into cells is an unresolved question. Here, we report a new intracellular signaling pathway by which DOCK4, a Rac1 guanine exchange factor, and Dynamin regulate cell migration by PDGF receptor endocytosis. We showed by a series of biochemical and microscopy techniques that Grb2 serves as an adaptor protein in the formation of a ternary complex between the PDGF receptor, DOCK4, and Dynamin, which is formed at the leading edge of cells. We found that this ternary complex regulates PDGF-dependent cell migration by promoting PDGF receptor endocytosis and Rac1 activation at the cell membrane. This study revealed a new mechanism by which cell migration is regulated by PDGF receptor endocytosis.Chemoattractants bind to cell surface receptors, resulting in the cytoskeletal reorganization that permits the migration of cells toward a stimulus. In fibroblasts, the platelet-derived growth factor receptor β (PDGFRβ) is a cell surface receptor tyrosine kinase (RTK) that regulates cell proliferation and chemotaxis in response to PDGF. PDGF binding activates PDGF receptor autophosphorylation, which in turn mediates a series of intracellular signaling cascades initiated by the association of SH2 domain-containing adaptor proteins (25). The adaptor protein Grb2 at the plasma membrane binds to Ras exchange factor Sos1, activating mitogen-activated protein kinase (MAPK) and cell proliferation signals (19). Grb2 also plays a critical role in receptor internalization via its interaction with dynamin, an exchange factor that facilitates receptor entry into endocytic vesicles (32). Grb2 regulates ubiquitination and the degradation of the receptor via its interaction with Cbl, an E3 ubiquitin ligase (33). While the role of Grb2 in modulating receptor levels and facilitating growth factor-dependent mitogenic signals is defined, its role in coordinating receptor-dependent chemotaxis has not been elucidated.The small GTPase Rac1 plays a crucial role in PDGF-mediated chemotaxis by regulating cortical actin at the leading edge of cells. PDGF receptor activation promotes GTP loading and the translocation of Rac1 to the cell membrane via guanine exchange factors (GEFs). The DOCK family of Rac1 GEFs, also called CDM proteins (for Caenorhabditis elegans ced-5, vertebrate DOCK180, and Drosophila myoblast city), are regulators of cell migration and have been implicated in various biological processes, such as lymphocyte migration, phagocytosis, and cancer progression (6, 10, 30, 35). In migrating fibroblasts, DOCK proteins localize to the cell''s leading edge via their interaction with the phospholipid PIP3, but a direct molecular link to PDGF has not been established (5). Biochemical studies show that Rac activation requires the DHR2/docker domain of DOCK proteins and the expression of the PH domain-containing protein Ced-12/ELMO. Previously we identified DOCK4 in a screen for novel tumor suppressor genes using representational difference analysis on mouse tumor cell lines (35). DOCK4, like other CDM proteins, binds ELMO and exerts its biochemical effects on the small GTPases Rac and Rap1 (30, 35). An interesting observation is that the amino acid sequence toward the C terminus is not conserved among individual DOCK family members. The alternate splicing of the DOCK4 gene has been reported, but how amino acid sequence variation alters the signaling properties of DOCK4 for the regulation of cell migration is unknown.Members of the Nck family of adaptor proteins, CrkII and Nck, have been reported to bind to the C terminus of DOCK180 (12, 29). Here, we show that the third member of the family of Nck adaptors, namely Grb2, binds to wild-type DOCK4. We found that a ternary complex formed by Grb2-DOCK4-Dynamin2 interacts with PDGF-activated PDGFβ receptor and promotes growth factor-dependent migration without altering cell proliferation. PDGF-dependent migration requires receptor endocytosis and is regulated by the formation of a DOCK4-Grb2-Dynamin2-PDGFRβ complex at the cell''s leading edge. These studies provide novel mechanistic insights into PDGFRβ regulation and cell migration.  相似文献   

3.
LARP4 is a protein with unknown function that independently binds to poly(A) RNA, RACK1, and the poly(A)-binding protein (PABPC1). Here, we report on its regulation. We found a conserved AU-rich element (ARE) in the human LARP4 mRNA 3′ untranslated region (UTR). This ARE, but not its antisense version or a point-mutated version, significantly decreased the stability of β-globin reporter mRNA. We found that overexpression of tristetraprolin (TTP), but not its RNA binding mutant or the other ARE-binding proteins tested, decreased cellular LARP4 levels. RNA coimmunoprecipitation showed that TTP specifically associated with LARP4 mRNA in vivo. Consistent with this, mouse LARP4 accumulated to higher levels in TTP gene knockout (KO) cells than in control cells. Stimulation of WT cells with tumor necrosis factor alpha (TNF-α), which rapidly induces TTP, robustly decreased LARP4 with a coincident time course but had no such effect on LARP4B or La protein or on LARP4 in the TTP KO cells. The TNF-α-induced TTP pulse was followed by a transient decrease in LARP4 mRNA that was quickly followed by a subsequent transient decrease in LARP4 protein. Involvement of LARP4 as a target of TNF-α–TTP regulation provides a clue as to how its functional activity may be used in a physiologic pathway.  相似文献   

4.
Receptor tyrosine kinases (RTK) bind growth factors and are critical for cell proliferation and differentiation. Their dysregulation leads to a loss of growth control, often resulting in cancer. Epidermal growth factor receptor (EGFR) is the prototypic RTK and can bind several ligands exhibiting distinct mitogenic potentials. Whereas the phosphorylation on individual EGFR sites and their roles for downstream signaling have been extensively studied, less is known about ligand-specific ubiquitination events on EGFR, which are crucial for signal attenuation and termination. We used a proteomics-based workflow for absolute quantitation combined with mathematical modeling to unveil potentially decisive ubiquitination events on EGFR from the first 30 seconds to 15 minutes of stimulation. Four ligands were used for stimulation: epidermal growth factor (EGF), heparin-binding-EGF like growth factor, transforming growth factor-α and epiregulin. Whereas only little differences in the order of individual ubiquitination sites were observed, the overall amount of modified receptor differed depending on the used ligand, indicating that absolute magnitude of EGFR ubiquitination, and not distinctly regulated ubiquitination sites, is a major determinant for signal attenuation and the subsequent cellular outcomes.  相似文献   

5.
6.
We investigated whether HIV-1 can regulate tumor necrosis factor receptor (TNFR) expression in SupT-1, a CD4 + T-cell line. The cells were infected with HIV-1 containing 1,000 cpm RT activity, as early as day 3 after infection and all along the culture the supernatant level of core protein p24 was >250 pg/ml, and on days 6 and 9 after infection, p24 was found in 10 % of the cells as determined by indirect immunofluorescence assay. The cells were growing without loss of viability. The study of TNFR expression was based on a microassay for measurement of binding of 125I-TNFα to cells, in which free and cell-bound ligand separation was performed by centrifugation through oil. Scatchard analysis of TNFα binding on days 6 and 9 after infection revealed a 90 % increase in the expression of high-affinity membrane receptors in HIV + SupT-1 culture compared with uninfected cells (mean +/-S.D. = 501 +/-148.5 vs. 263 +/-77.8 receptors/cell, n = 9, P< 0.001) with no change in dissociation constants (mean +/? S.D. = 4.36 +/?1.06 vs. 4.00 +/?1.12 × 10?10 m ).  相似文献   

7.
肿瘤坏死因子受体(TNFR)是细胞因子受体家族中的一员,在大DNA病毒的免疫逃避中起着重要的作用。 淋巴囊肿病毒中国株(LCDV-C)是一种大DNA病毒,属于虹彩病毒科。参照已知虹彩病毒TNFR基因设计引物: P1,5′GGATCCAAAACTATGATTAAAATAAAGA 3′;P2:5′ATTACTCGAGAATGTTAAAAATTAAGCTT 3′。以LCDV-C基因组DNA为模板,PCR扩增得到一个834bp的DNA片段,并对该片段进行测序。构建原核表 达重组质粒后,在大肠杆菌DE3中诱导表达,其产物经SDS-PAGE电泳后,显示为45kDa的融合蛋白带。对测序 结果进行计算机辅助分析的结果显示,LCDV-C TNFR类似物是一个含278个氨基酸的多肽,具有典型的半胱氨 酸富集区功能结构域,与宿主牙鲆TNFRII氨基酸同源性为34%。  相似文献   

8.
淋巴囊肿病毒中国株TNFR类似物的原核表达与结构分析   总被引:2,自引:0,他引:2  
肿瘤坏死因子受体(TNFR)是细胞因子受体家族中的一员,在大DNA病毒的免疫逃避中起着重要的作用.淋巴囊肿病毒中国株(LCDV-C)是一种大DNA病毒,属于虹彩病毒科.参照已知虹彩病毒TNFR基因设计引物P1,5'GGATCCAAAACTATGATTAAAATAAAGA 3';P25'ATTACTCGAGAATGTTAAAAATTAAGCTT3'.以LCDV-C基因组DNA为模板,PCR扩增得到一个834bp的DNA片段,并对该片段进行测序.构建原核表达重组质粒后,在大肠杆菌DE3中诱导表达,其产物经SDS-PAGE电泳后,显示为45kDa的融合蛋白带.对测序结果进行计算机辅助分析的结果显示,LCDV-C TNFR类似物是一个含278个氨基酸的多肽,具有典型的半胱氨酸富集区功能结构域,与宿主牙鲆TNERII氨基酸同源性为34%.  相似文献   

9.
The cytokine TNF is a well known drug target for several inflammatory diseases such as Crohn disease. Despite the great success of TNF blockers, therapy could be improved because of high costs and side effects. Selective inhibition of TNF receptor (TNFR) 1 signaling holds the potential to greatly reduce the pro-inflammatory activity of TNF, thereby preserving the advantageous immunomodulatory signals mediated by TNFR2. We generated a selective human TNFR1 inhibitor based on Nanobody (Nb) technology. Two anti-human TNFR1 Nbs were linked with an anti-albumin Nb to generate Nb Alb-70-96 named “TNF Receptor-One Silencer” (TROS). TROS selectively binds and inhibits TNF/TNFR1 and lymphotoxin-α/TNFR1 signaling with good affinity and IC50 values, both of which are in the nanomolar range. Surface plasmon resonance analysis reveals that TROS competes with TNF for binding to human TNFR1. In HEK293T cells, TROS strongly reduces TNF-induced gene expression, like IL8 and TNF, in a dose-dependent manner; and in ex vivo cultured colon biopsies of CD patients, TROS inhibits inflammation. Finally, in liver chimeric humanized mice, TROS antagonizes inflammation in a model of acute TNF-induced liver inflammation, reflected in reduced human IL8 expression in liver and reduced IL6 levels in serum. These results demonstrate the considerable potential of TROS and justify the evaluation of TROS in relevant disease animal models of both acute and chronic inflammation and eventually in patients.  相似文献   

10.
The eleven members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family are relatively unexplored. Upon exogenous (over)expression, a number of these ligases can affect the trafficking of membrane molecules. However, only for MARCH-1 endogenous functions have been demonstrated. For the other endogenous MARCH proteins, no functions or substrates are known. We report here that TRAIL-R1 is a physiological substrate of the endogenous MARCH-8 ligase. Human TRAIL-R1 and R2 play a role in immunosurveillance and are targets for cancer therapy, because they selectively induce apoptosis in tumor cells. We demonstrate that TRAIL-R1 is down-regulated from the cell surface, with great preference over TRAIL-R2, by exogenous expression of MARCH ligases that are implicated in endosomal trafficking, such as MARCH-1 and -8. MARCH-8 attenuated TRAIL-R1 cell surface expression and apoptosis signaling by virtue of its ligase activity. This suggested that ubiquitination of TRAIL-R1 was instrumental in its down-regulation by MARCH-8. Indeed, in cells with endogenous MARCH expression, TRAIL-R1 was ubiquitinated at steady-state, with the conserved membrane-proximal lysine 273 as one of the potential acceptor sites. This residue was also essential for the interaction of TRAIL-R1 with MARCH-1 and MARCH-8 and its down-regulation by these ligases. Gene silencing identified MARCH-8 as the endogenous ligase that ubiquitinates TRAIL-R1 and attenuates its cell surface expression. These findings reveal that endogenous MARCH-8 regulates the steady-state cell surface expression of TRAIL-R1.  相似文献   

11.
Tumor necrosis factor alpha (TNF-alpha)-mediated death signaling causes the recruitment of monomeric pro- apoptotic Bax into a 500-kDa protein complex. The adenovirus Bcl-2 homologue, E1B 19K, inhibits TNF-alpha-mediated apoptosis, interacts with Bax, and blocked the formation of the 500-kDa Bax complex. TNF-alpha and truncated Bid induced Bax-Bax cross-linking, indicative of oligomerization, and E1B 19K expression during infection inhibited this TNF-alpha-mediated Bax oligomerization. TNF-alpha signaled conformation changes at the Bax amino and carboxy termini. Exposure of the Bax amino terminus facilitates E1B 19K-Bax binding, which prevented exposure of the carboxy-terminal Bax Bcl-2 homology region 2 epitope. Inhibition of Bax oligomerization by E1B 19K is an activity that bears striking similarity to the means by which bacterial immunity proteins block pore formation by bacterial toxins which have structural homology to Bax.  相似文献   

12.
肿瘤坏死因子受体和配体超家族的新成员   总被引:4,自引:0,他引:4  
骨原蛋白(OPG)/核因子κB受体激活剂的配体(RANKL)/核因子κB的受体激活剂(RANK)是肿瘤坏死因子受体和配体超家族成员。RANKL由成骨细胞前体/骨髓基质细胞和激活的T淋巴细胞合成,通过结合破骨细胞或树突状细胞表面的RANK受体,促进破骨细胞的形成、融合、激活和存活,并有助于树突状细胞对抗原的提呈作用,OPG作为RANKL的假受体,对此过程具有抑制作用。此外,OPG/RANKL/RANK系统在调节淋巴系统发育、哺乳期动物乳腺腺泡的形成以及大动脉钙化中也起着重要的作用,是一组多功能的细胞因子系统。  相似文献   

13.
14.
15.
TNFR1 (tumor necrosis factor receptor 1) localizes to caveolae of human endothelial-derived EA.hy926 cells. Transduced TNFR1 molecules lacking amino acid residues 229–244 (spanning the transmembrane/intercellular boundary) are expressed on the cell surface equivalently to full-length TNFR1 molecules but incompletely localize to caveolae. A peptide containing this sequence pulls down CAV-1 (caveolin-1) and TNFR1 from cell lysates but fails to do so following disruption of caveolae with methyl-β-cyclodextrin. We previously reported that methyl-β-cyclodextrin eliminates caveolae and blocks tumor necrosis factor (TNF)-induced internalization of TNFR1 but not TNF-induced activation of NF-κB in EA.hy926 cells. Both CAV-1 and FLOT-2 (flotillin-2), organizing proteins of caveolae and lipid rafts, respectively, associate with caveolae in EA.hy926 cells. Small interfering RNA-mediated knockdown of CAV-1 but not FLOT-2 strikingly reduces caveolae number. Both knockdowns reduce total TNFR1 protein expression, but neither prevents TNFR1 localization to low density membrane domains, TNF-induced internalization of TNFR1, or NF-κB activation by TNF. Both CAV-1 and FLOT-2 knockdowns reduce TNF-mediated activation of stress-activated protein kinase (SAPK). However, both knockdowns reduce expression of TRAF2 (TNF receptor-associated factor-2) protein, and small interfering RNA targeting of TRAF2 also selectively inhibits SAPK activation. We conclude that TNFR1 contains a membrane-proximal sequence that targets the receptor to caveolae/lipid rafts. Neither TNFR1 targeting to nor internalization from these low density membrane domains depends upon CAV-1 or FLOT-2. Furthermore, both NF-κB and SAPK activation appear independent of both TNFR1 localization to low density membrane domains and to TNF-induced receptor internalization.  相似文献   

16.
17.
肿瘤坏死因子受体超家族成员在免疫系统和疾病中的研究   总被引:1,自引:0,他引:1  
肿瘤坏死因子受体超家族 (tumor necrosis factor receptor superfamily, TNFRSF) 是细胞因子受体的一个蛋白质超家族,其显著特征是通过细胞外富含半胱氨酸结构域结合肿瘤坏死因子(tumor necrosis factor,TNF)。肿瘤坏死因子受体(tumor necrosis factor receptors,TNFRs)是古老的细胞因子,TNFRs同源基因最早可追溯到节肢动物果蝇中。TNFRs在炎症反应、细胞凋亡、淋巴细胞稳态和组织发育中发挥重要的作用,TNFRs最主要的功能是与免疫系统相关。鉴于其在免疫系统中发挥重要的作用,肿瘤坏死因子受体家族成员已成为治疗糖尿病、动脉粥样硬化、骨质疏松、自身免疫性疾病、移植排斥反应和癌症等人类疾病的靶点。随着科学技术发展,关于TNFRs的功能有了新的进展,在无脊椎动物和低等脊椎动物中已经有大量报道。在本篇综述中,主要总结了在高等哺乳动物中发现的29种TNFR成员的相关报道,包括8种死亡受体和21种非死亡受体,主要涉及在免疫系统以及与疾病相关领域的研究。大多数研究处于基础实验阶段,少数走向临床研究的案例取得的临床效果并不理想,靶向设计针对自身免疫性疾病、炎症和肿瘤疾病的治疗方案需要更深入的理解TNFRs功能。本文旨在对TNFRs成员发挥的功能有进一步的认识。  相似文献   

18.
离心力和剪应力应答基因1(responsive to centrifugal force and shear stress gene 1,RECS1)被剔除的小鼠易患囊性内侧坏死和动脉扩张症,伴随着血管组织基质金属蛋白酶9表达水平的增强.本室前期研究发现,稳定表达RECS1的小鼠成纤维细胞对肿瘤坏死因子受体2激动性抗体的敏感性被明显弱化,显示RECS1参与肿瘤坏死因子信号的调控.本文研究了RECS1对肿瘤坏死因子受体1(tumor necrosis factor receptor-1, TNFR1)的调控作用.结果显示,RECS1结合TNFR1,并抑制过量表达TNFR1诱导的核转录因子-κB (NF-κB)活化.缺失突变研究发现,RECS1分子上有NPLY和SPEDY两个模体是其抑制TNFR1信号所必需的.免疫共沉淀实验发现,NPLY是RECS1与TNFR1结合所必需的.而SPEDY的缺失不影响RECS1与TNFR1的结合.另外,免疫共染色实验显示,RECS1与TNFR1共定位于细胞内核体.这些实验结果进一步揭示了RECS1负调控肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)信号进而参与调控血管发育与重塑的生物功能及可能机理.  相似文献   

19.
肿瘤坏死因子受体超家族 (tumor necrosis factor receptor superfamily, TNFRSF) 是细胞因子受体的一个蛋白质超家族,其显著特征是通过细胞外富含半胱氨酸结构域结合肿瘤坏死因子(tumor necrosis factor,TNF)。肿瘤坏死因子受体(tumor necrosis factor receptors,TNFRs)是古老的细胞因子,TNFRs同源基因最早可追溯到节肢动物果蝇中。TNFRs在炎症反应、细胞凋亡、淋巴细胞稳态和组织发育中发挥重要的作用,TNFRs最主要的功能是与免疫系统相关。鉴于其在免疫系统中发挥重要的作用,肿瘤坏死因子受体家族成员已成为治疗糖尿病、动脉粥样硬化、骨质疏松、自身免疫性疾病、移植排斥反应和癌症等人类疾病的靶点。随着科学技术发展,关于TNFRs的功能有了新的进展,在无脊椎动物和低等脊椎动物中已经有大量报道。在本篇综述中,主要总结了在高等哺乳动物中发现的29种TNFR成员的相关报道,包括8种死亡受体和21种非死亡受体,主要涉及在免疫系统以及与疾病相关领域的研究。大多数研究处于基础实验阶段,少数走向临床研究的案例取得的临床效果并不理想,靶向设计针对自身免疫性疾病、炎症和肿瘤疾病的治疗方案需要更深入的理解TNFRs功能。本文旨在对TNFRs成员发挥的功能有进一步的认识。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号