首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of red (RL) and blue (BL) light on acclimation of the unicellular green alga Chlamydomonas reinhardtii to the low level of ambient CO2 were studied. C. reinhardtii cells grown at 5% CO2 and under white light (170 μmol/(m2s)) had a relatively low activity of extracellular carbonic anhydrase (CA), a low affinity for dissolved inorganic carbon, and a low rate of photosynthesis under CO2-limiting conditions. These cells readily started acclimation to the low CO2 concentration when they were exposed to atmospheric air (~ 0.03% CO2) under RL or BL (150 μmol/(m2 s) each). The acclimation was manifested in a significant increase in the CO2-limited rate of photosynthesis, the affinity for dissolved inorganic carbon, and the extracellular CA activity with no difference between RL-and BL-cells. Independently of light quality, the acclimation was completed for 5–7 h after cell exposure to air. As is evident from RL-and BL-dependent changes in the sum of chlorophylls and chlorophyll a/b ratio, transfer of C. reinhardtii cells to air and RL or BL triggered also the process of algal photosynthetic adaptation to light quality. However, this process did not interfere with acclimation to low CO2 because started 4 h later. On the basis of similarity in the low CO2-induced changes under RL and BL, it is concluded that acclimation of C. reinhardtii to CO2-limiting conditions does not depend on light quality.  相似文献   

2.
3.
Rising seawater temperatures pose a significant threat to the persistence of coral reefs. Despite the importance of these systems, major gaps remain in our understanding of how thermal stress and bleaching affect the metabolic networks that underpin holobiont function. We applied gas chromatography–mass spectrometry (GC–MS) metabolomics to detect changes in the intracellular free metabolite pools (polar and semi-polar compounds) of in hospite dinoflagellate symbionts and their coral hosts (and any associated microorganisms) during early- and late-stage thermal bleaching (a reduction of approximately 50 and 70% in symbiont density, respectively). We detected characteristic changes to the metabolite profiles of each symbiotic partner associated with individual cellular responses to thermal, oxidative and osmotic stress, which progressed with the severity of bleaching. Alterations were also indicative of changes to energy-generating and biosynthesis pathways in both partners, with a shift to the increased catabolism of lipid stores. Specifically, in symbiont intracellular metabolite pools, we observed accumulations of multiple free fatty acids, plus the chloroplast-associated antioxidant alpha-tocopherol. In the host, we detected a decline in the abundance of pools of multiple carbohydrates, amino acids and intermediates, in addition to the antioxidant ascorbate. These findings further our understanding of the metabolic changes that occur to symbiont and host (and its associated microorganisms) during thermal bleaching. These findings also provide further insight into the largely undescribed roles of free metabolite pools in cellular homeostasis, signalling and acclimation to thermal stress in the cnidarian–dinoflagellate symbiosis.  相似文献   

4.
Fremyella diplosiphon alters the phycobiliprotein composition of its light-harvesting complexes, i.e., phycobilisomes, and its cellular morphology in response to changes in the prevalent wavelengths of light in the external environment in a phenomenon known as complementary chromatic acclimation (CCA). The organism primarily responds to red light (RL) and green light (GL) during CCA to maximize light absorption for supporting optimal photosynthetic efficiency. Recently, we found that RL-characteristic spherical cell morphology is associated with higher levels of reactive oxygen species (ROS) compared to growth under GL where lower ROS levels and rectangular cell shape are observed. The RL-dependent association of increased ROS levels with cellular morphology was demonstrated by treating cells with a ROS-scavenging antioxidant which resulted in the observation of GL-characteristic rectangular morphology under RL. To gain additional insights into the involvement of ROS in impacting cellular morphology changes during CCA, we conducted experiments to study the temporal dynamics of changes in ROS levels and cellular morphology during transition to growth under RL or GL. Alterations in ROS levels and cell morphology were found to be correlated with each other at early stages of acclimation of low white light-grown cells to growth under high RL or cells transitioned between growth in RL and GL. These results provide further general evidence that significant RL-dependent increases in ROS levels are temporally correlated with changes in morphology toward spherical. Future studies will explore the light-dependent mechanisms by which ROS levels may be regulated and the direct impacts of ROS on the observed morphology changes.  相似文献   

5.
Blomaee accumulation, leaf longevity and growth rate of two spring forest geophytes, Scllla blfolla L. and Arum maculatum L. were estimated separately for three size groups within each population of these species. Despite the differences in leaf longevity, both species showed a similar pattern of blomass accumulation In relation to their phenologles and reproductive demands. Eco-physlological acclimation to changing light environment was assumed through photosynthetic parameters and dynamics of leaf area Index In the predominant size group of each species. A light response curve was measured under natural light for each species through the continuum of Its phenology to quantify the photosynthetic photon flux density at light saturation, light-saturated photosynthetic rate, light compensation point, and dark respiration. Light-saturated assimilation per leaf area basis, dark respiration rate and light compensation points were significantly higher in S. blfolla relative to A. maculatum. However, the acclimation of photosynthesis that would respond to light changes in environment was not found in S. bifolla. In contrast, In A. maculatum a marked shift In the light dependence of photosynthesis through the season was noticed, which resulted In a strong photosynthetic acclimation to the low-light conditions. Accompanied by significant leaf area Index, this efficient low-light photosynthesis enabled greater leaf longevity, and consequently longer accumulative period to A. maculatum. From the different parameters that we determined (both photosynthetic acclimation and growth strategy) it would appear that these species belong to two distinct subgroups: S. blfolla to the early and A. maculatum to the late vernals.  相似文献   

6.

According to the action spectrum of photosynthesis, photosynthetic efficiency is highest for red light. However, long-term growth with only red light leads to unfavorable changes in plant morphology, decrease in photosynthetic capacity and plant productivity. Detailed mechanisms behind these changes are still poorly understood. We studied the effects of narrow-band red (RL) and blue (BL) LED lighting on the morphology and photosynthesis of barley (Hordeum vulgare L.) seedlings at 9 days old, when energy for plant growth comes mostly from the endosperm, and light has a mainly morphogenic effect on plant growth. Plants grown with white fluorescent lamps (WL) were used as a control. At this developmental stage, light spectrum had small but significant effects on most morphometric parameters, which may become more prominent as the plant grows. These effects were more pronounced in RL-grown plants and were similar to the ‘shade-avoidance response’, which is unusual as in nature it occurs when the fraction of red light in the spectrum is low. RL-grown plants also had impaired photosynthetic photochemical efficiency (as assessed by PAM-fluorometry and leaf absorption). BL-grown plants had a stronger similarity to control plants in their morphology and photosynthetic characteristics than RL-grown plants; however, they had higher NPQ and different NPQ induction kinetics than WL- and RL-grown plants. Our results suggest that photoregulation of plant morphology and photosynthesis evolutionarily adapted to natural light is miscoordinated in narrow-band LED light. We discuss possible reasons for this miscoordination and for the formation of observed phenotypes on the level of photoreceptors.

  相似文献   

7.
8.
The accumulation of dry matter and the content of major phytohormones in the aboveground and underground plant parts, as well as light curves and the diurnal course of photosynthesis in the leaves were studied in radish (Raphanus sativusL.) plants of different ages that were grown under red (RL) or blue (BL) light. As seen from the rapid increase in plant biomass, the development of storage organs (hypocotyl or tap root) started on the 14th day after the emergence of seedling of the BL plants and on the 21st day for the RL plants. Conversely, RL stimulated biomass accumulation in the aboveground parts (petioles and stems) already in the early stages of plant development. Light spectral quality only slightly affected the activity and the diurnal course of photosynthesis. The GA content was ten times higher in the aboveground parts of the RL plants than those of the BL plants. The hypocotyl of the BL plants contained much higher amounts of cytokinins and IAA than that of the RL plants. The specific responses of the source–sink relations to the light quality were related to the distribution of various phytohormones between the aboveground and underground parts of the plants: RL increased the content of gibberellins (GA) in the aboveground parts of plants, thus increasing their sink activity, whereas BL stimulated the synthesis of cytokinins and IAA in the hypocotyl and enhanced its development. Light quality-specific morphogenetic responses were reversed when plants were treated with exogenous GA or paclobutrazol, an inhibitor of GA synthesis. The treatment of the BL plants with exogenous GA stimulated petiole and hypocotyl elongation and induced stem formation. The treatment of the BL plants with paclobutrazol led to shortened petioles, the flattening of the storage organ, and the disappearance of the stem.  相似文献   

9.
There are several well‐described acclimation responses to excess light in green algae but the effect on metabolism has not been thoroughly investigated. This study examines the metabolic changes during photoacclimation to high‐light (HL) stress in Chlamydomonas reinhardtii using nuclear magnetic resonance and mass spectrometry. Using principal component analysis, a clear metabolic response to HL intensity was observed on global metabolite pools, with major changes in the levels of amino acids and related nitrogen metabolites. Amino acid pools increased during short‐term photoacclimation, but were especially prominent in HL‐acclimated cultures. Unexpectedly, we observed an increase in mitochondrial metabolism through downstream photorespiratory pathways. The expression of two genes encoding key enzymes in the photorespiratory pathway, glycolate dehydrogenase and malate synthase, were highly responsive to the HL stress. We propose that this pathway contributes to metabolite pools involved in nitrogen assimilation and may play a direct role in photoacclimation. Our results suggest that primary and secondary metabolism is highly pliable and plays a critical role in coping with the energetic imbalance during HL exposure and a necessary adjustment to support an increased growth rate that is an effective energy sink for the excess reducing power generated during HL stress.  相似文献   

10.
The underlying mechanism of photoinhibition of stem elongation by blue (BL) and red light (RL) was studied in etiolated seedlings of pea (Pisum sativum L. cv Alaska). Brief BL irradiations resulted in fast transient inhibition of elongation, while a delayed (lag approximately 60 minutes) but prolonged inhibition was observed after brief RL. Possible changes in the hydraulic and wall properties of the growing cells during photoinhibition were examined. Cell sap osmotic pressure was unaffected by BL and RL, but both irradiations increased turgor pressure by approximately 0.05 megapascal (pressure-probe technique). Cell wall yielding was analyzed by in vivo stress relaxation (pressure-block technique). BL and RL reduced the initial rate of relaxation by 38 and 54%, while the final amount of relaxation was decreased by 48 and 10%, respectively. These results indicate that RL inhibits elongation mainly by lowering the wall yield coefficient, while most of the inhibitory effect of BL was due to an increase of the yield threshold. Mechanical extensibility of cell walls (Instron technique) was decreased by BL and RL, mainly due to a reduction in the plastic component of extensibility. Thus, photoinhibitions of elongation by both BL and RL are achieved through changes in cell wall properties, and are not due to effects on the hydraulic properties of the cell.  相似文献   

11.
We have analyzed the dynamics of the rice etioplast membrane proteome during the early phase of de-etiolation using iTRAQ-based relative protein quantification. Several hundred plastid proteins were identified from enriched membranes, including 36 putative transporters. Hierarchical clustering revealed the coordinated light induction of thylakoid membrane proteins with proteins involved in translation and fatty acid metabolism. No other functional category of identified proteins showed a similarly consistent light induction, and no consistent changes were observed for the identified transporters. This suggests that the etioplast metabolism is already primed to accommodate the metabolic changes that occur during the onset of photosynthesis. This hypothesis was further tested in metabolite profiling experiments. Here, the changes upon illumination are mostly restricted to a decrease in the concentration of some amino acids and an increase in the concentrations of aspartic acid, malic acid, fumaric acid, and succinic acid. These changes are consistent with a rapid activation of photosynthesis and subsequent rapid production of storage carbohydrates and proteins. The information at the proteome level and the parallel measurements of metabolite accumulation both support the view that only minor metabolic network reconstruction and modification of enzyme levels occurs during the first 4?h of etioplast to chloroplast differentiation.  相似文献   

12.
The fermentation carried out by the biofuel producer Clostridium acetobutylicum is characterized by two distinct phases. Acidogenesis occurs during exponential growth and involves the rapid production of acids (acetate and butyrate). Solventogenesis initiates as cell growth slows down and involves the production of solvents (butanol, acetone, and ethanol). Using metabolomics, isotope tracers, and quantitative flux modeling, we have mapped the metabolic changes associated with the acidogenic-solventogenic transition. We observed a remarkably ordered series of metabolite concentration changes, involving almost all of the 114 measured metabolites, as the fermentation progresses from acidogenesis to solventogenesis. The intracellular levels of highly abundant amino acids and upper glycolytic intermediates decrease sharply during this transition. NAD(P)H and nucleotide triphosphates levels also decrease during solventogenesis, while low-energy nucleotides accumulate. These changes in metabolite concentrations are accompanied by large changes in intracellular metabolic fluxes. During solventogenesis, carbon flux into amino acids, as well as flux from pyruvate (the last metabolite in glycolysis) into oxaloacetate, decreases by more than 10-fold. This redirects carbon into acetyl coenzyme A, which cascades into solventogenesis. In addition, the electron-consuming reductive tricarboxylic acid (TCA) cycle is shutdown, while the electron-producing oxidative (clockwise) right side of the TCA cycle remains active. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources (carbon and reducing power) from biomass production into solvent production.  相似文献   

13.
The long-term action of blue or red light on nitrogen metabolism was studied in radish (Raphanus sativus L.) plants. The potential activity of nitrate reductase (NR) in vivo and its maximum activity in vitro, the content of soluble protein and free amino acids were determined in the course of the growth of a third leaf of radish plants. The effect of light quality on NR activity was found to depend significantly on the stage of leaf development. Blue light (BL) stimulated NR activity in leaves, when their areas were about 11–13% of the fully developed leaves. The efficiency of red light (RL) was significantly lower, because the maximum NR activity was observed in the leaves developed to the stage, when their areas were 38–40% of the final one. The comparative analysis of the pool of free amino acids in expanding leaves of BL- or RL-grown plants revealed significant changes in the contents of individual amino acids. Despite a higher accumulation of two amino acids in the leaves of BL-grown plants, namely, Asp (27% as compared to 13–16% in the RL-grown leaves) and Gly (5% against 2.5% in RL-grown leaves), the BL-grown leaves also demonstrated a significant decrease in Ala (10% as compared to 23% in the RL-grown leaves) and some decrease in the amounts of Ser and Gly. The content of soluble protein in a juvenile BL-grown leaf was observed to decrease gradually during leaf development. However, the protein content in the BL-grown leaf was always higher than in the RL-grown leaf of the same age. We concluded that the photoregulatory action of BL on NR activity determined the different rates of nitrogen assimilation in BL- and RL-grown plants.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 3, 2005, pp. 349–356.Original Russian Text Copyright © 2005 by Maevskaya, Bukhov.  相似文献   

14.
15.
Mapping the carbon reduction cycle: a personal retrospective   总被引:2,自引:0,他引:2  
The photosynthetic carbon reduction cycle was elucidated through the use of 14CO2 during photosynthesis to label metabolic intermediates. Mapping and proof of the cycle required identification of labeled metabolites, observation of changes in levels of labeled metabolites during transitions from light to dark and from high to low CO2 levels, determination of intramolecular distribution of 14C within the metabolites after a few seconds of photosynthesis with 14CO2, and estimation of metabolite concentrations, used to calculate true free energy changes at each step in the cycle. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Morphology and polysaccharide characterization of Gelidium sesquipedale (Clem.) Bornet et Thuret were studied in cultures grown under various light qualities. White light (WL), blue light (BL) and red light (RL) (all at photon fluence rate of 40 μmol m-2 s-1) were used for the study of morphological characteristics, and in addition yellow light (YL) for polysaccharide characterization. RL and BL induced a proliferating growth, which resulted in bushy plants under RL. Cortical cells of BL-grown plants were smaller and presented a higher density per unit area, whereas those of WL- and RL-grown alga were larger. Medullary cells followed the inverse pattern. Light quality also affected polysaccharide yield and composition, with the yield being higher under BL, RL or YL than WL. Most of the polysaccharide was extracted in distilled water at 100 °C, while a low amount was solubilized at 22 °C and 120 °C. Extracts from BL-grown alga presented the highest galactan content. The starch concentration was lower in extracts from RL-, BL- and YL-cultivated alga than in those from the initial plants. The degree of substitution with methoxyl groups and precursor was very low in all the agar fractions, but fractions extracted from BL- and WL-grown alga were more substituted by precursor. The highest sulfate content was reached under BL (about 9% w/w) and the highest 2-O-methyl-3,6-anhydro-L-galactose and 6-O-methyl-D-galactose content were found in extracts from alga grown under YL. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
18.
Reprogramming metabolism, in addition to modifying the structure and function of the photosynthetic machinery, is crucial for plant acclimation to changing light conditions. One of the key acclimatory responses involves reorganization of the photosynthetic membrane system including changes in thylakoid stacking. Glycerolipids are the main structural component of thylakoids and their synthesis involves two main pathways localized in the plastid and the endoplasmic reticulum (ER); however, the role of lipid metabolism in light acclimation remains poorly understood. We found that fatty acid synthesis, membrane lipid content, the plastid lipid biosynthetic pathway activity, and the degree of thylakoid stacking were significantly higher in plants grown under low light compared with plants grown under normal light. Plants grown under high light, on the other hand, showed a lower rate of fatty acid synthesis, a higher fatty acid flux through the ER pathway, higher triacylglycerol content, and thylakoid membrane unstacking. We additionally demonstrated that changes in rates of fatty acid synthesis under different growth light conditions are due to post-translational regulation of the plastidic acetyl-CoA carboxylase activity. Furthermore, Arabidopsis mutants defective in one of the two glycerolipid biosynthetic pathways displayed altered growth patterns and a severely reduced ability to remodel thylakoid architecture, particularly under high light. Overall, this study reveals how plants fine-tune fatty acid and glycerolipid biosynthesis to cellular metabolic needs in response to long-term changes in light conditions, highlighting the importance of lipid metabolism in light acclimation.

Lipid metabolism is fine-tuned to cellular metabolic demands during thylakoid membrane remodeling in response to long-term changes in light intensity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号