首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The morphogenesis and ultrastructure of the epidermis of snake embryos were studied at progressive stages of development through hatching to determine the time and modality of differentiation of the shedding complex. Scales form as symmetric epidermal bumps that become slanted and eventually very overlapped. During the asymmetrization of the bumps, the basal cells of the forming outer surface of the scale become columnar, as in an epidermal placode, and accumulate glycogen. Small dermal condensations are sometimes seen and probably represent primordia of the axial dense dermis of the growing tip of scales. Deep, dense, and superficial loose dermal regions are formed when the epidermis is bilayered (periderm and basal epidermis) and undifferentiated. Glycogen and lipids decrease from basal cells to differentiating suprabasal cells. On the outer scale surface, beneath the peridermis, a layer containing dense granules and sparse 25-30-nm thick coarse filaments is formed. The underlying clear layer does not contain keratohyalin-like granules but has a rich cytoskeleton of intermediate filaments. Small denticles are formed and they interdigitate with the oberhautchen spinulae formed underneath. On the inner scale surface the clear layer contains dense granules, coarse filaments, and does not form denticles with the aspinulated oberhautchen. On the inner side surface the oberhautchen only forms occasional spinulae. The sloughing of the periderm and embryonic epidermis takes place in ovo 5-6 days before hatching. There follow beta-, mesos-, and alpha-layers, not yet mature before hatching. No resting period is present but a new generation is immediately produced so that at 6-10 h posthatching an inner generation and a new shedding complex are forming beneath the outer generation. The first shedding complex differentiates 10-11 days before hatching. In hatchlings 6-10 h old, tritiated histidine is taken up in the epidermis 4 h after injection and is found mainly in the shedding complex, especially in the apposed membranes of the clear layer and oberhautchen cells. This indicates that a histidine-rich protein is produced in preparation for shedding, as previously seen in lizard epidermis. The second shedding (first posthatching) takes place at 7-9 days posthatching. It is suggested that the shedding complex in lepidosaurian reptiles has evolved after the production of a histidine-rich protein and of a beta-keratin layer beneath the former alpha-layer.  相似文献   

2.
Differentiation and localization of keratin in the epidermis during embryonic development and up to 3 months posthatching in the Australian water python, Liasis fuscus, was studied by ultrastructural and immunocytochemical methods. Scales arise from dome-like folds in the skin that produce tightly imbricating scales. The dermis of these scales is completely differentiated before any epidermal differentiation begins, with a loose dermis made of mesenchymal cells beneath the differentiating outer scale surface. At this stage (33) the embryo is still unpigmented and two layers of suprabasal cells contain abundant glycogen. At Stage 34 (beginning of pigmentation) the first layers of cells beneath the bilayered periderm (presumptive clear and oberhautchen layers) have not yet formed a shedding complex, within which prehatching shedding takes place. At Stage 35 the shedding complex, consisting of the clear and oberhautchen layers, is discernible. The clear layer contains a fine fibrous network that faces the underlying oberhautchen, where the spinulae initially contain a core of fibrous material and small beta-keratin packets. Differentiation continues at Stage 36 when the beta-layer forms and beta-keratin packets are deposited both on the fibrous core of the oberhautchen and within beta-cells. Mesos cells are produced from the germinal layer but remain undifferentiated. At Stage 37, before hatching, the beta-layer is compact, the mesos layer contains mesos granules, and cells of the alpha-layer are present but are not yet keratinized. They are still only partially differentiated a few hours after hatching, when a new shedding complex is forming underneath. Using antibodies against chick scale beta-keratin resolved at high magnification with immunofluorescent or immunogold conjugates, we offer the first molecular confirmation that in snakes only the oberhautchen component of the shedding complex and the underlying beta cells contain beta-keratin. Initially, there is little immunoreactivity in the small beta-packets of the oberhautchen, but it increases after fusion with the underlying cells to produce the syncytial beta layer. The beta-keratin packets coalesce with the tonofilaments, including those attached to desmosomes, which rapidly disappear in both oberhautchen and beta-cells as differentiation progresses. The labeling is low to absent in forming mesos-cells beneath the beta-layer. This study further supports the hypothesis that the shedding complex in lepidosaurian reptiles evolved after there was a segregation between alpha-keratogenic cells from beta-keratogenic cells during epidermal renewal.  相似文献   

3.
The differentiation of the epidermis during scale morphogenesis in the lizard Anolis lineatopus has been studied by autoradiographic and immunocytochemical techniques and by electron microscopy, in relation to mitotic activity and to the distribution of glycogen. The flat embryonic epidermis of the early embryo is transformed into symmetric epidermal papillae which progressively become asymmetric and eventually form scales with stratified epidermal and peridermal layers. Papilla asymmetrization and epidermal stratification derive from cell hypertrophy and multiplication in the “basal hypertrophic layer of the forming outer side of scales” (BLOS). Glycogen is scarce or absent during early stages of epidermis development. In the dermis no glycogen is found at any stage of scale morphogenesis. Glycogen particles 25–40 nm in size accumulate in hypertrophic basal cells and peridermal cells during scale development. Conversely cells in the forming inner side of scales do not accumulate glycogen, divide less frequently than in the outer side and do not form a β–keratinized layer. It is suggested that an osmotic effect related to glycogen deposition causes increased hydration of the BLOS, whose cells become swollen and contribute to the asymmetrization of the epidermal papillae. Glycogen decreases in suprabasal differentiating cells and disappears from the BLOS at the stage of complete keratinization of the scale, around the period of hatching. Terminal differentiation in the peridermis and suprabasal epidermal layers takes place by cell flattening and condensation of the nucleus and cytoplasm as typical for apoptotic cells.  相似文献   

4.
Formation of the first epidermal layers in the embryonic scales of the lizard Lampropholis guichenoti was studied by optical and electron microscopy. Morphogenesis of embryonic scales is similar to the general process in lizards, with well‐developed overlapping scales being differentiated before hatching. The narrow outer peridermis is torn and partially lost during scale morphogenesis. A second layer, probably homologous to the inner peridermis of other lizard species, but specialized to produce lipid‐like material, develops beneath the outer peridermis. Two or three lipogenic layers of this type develop in the forming outer surface of scales near to the hinge region. These layers form a structure here termed “sebaceous‐like secretory cells.” These cells secrete lipid‐like material into the interscale space so that the whole epidermis is eventually coated with it. This lipid‐like material may help to reduce friction and to reduce accumulation of dirt between adjacent extremely overlapping scales. At the end of their differentiation, the modified inner periderm turns into extremely thin cornified cells. The layer beneath the inner peridermis is granulated due to the accumulation of keratohyalin‐like granules, and forms a shedding complex with the oberhautchen, which develops beneath. Typically tilted spinulae of the oberhautchen are formed by the aggregation of tonofilaments into characteristically pointed cytoplasmic outgrowths. Initially, there is little accumulation of β‐keratin packets in these cells. During differentiation, the oberhautchen layer merges with cells of the β‐keratin layer produced underneath, so that a typical syncytial β‐keratin layer is eventually formed before hatching. Between one‐fourth distal and the scale tip, the dermis under epidermal cells is scarce or absent so that the mature scale tip is made of a solid rod of β‐keratinized cells. At the time of hatching, differentiation of a mesos layer is well advanced, and the epidermal histology of scales corresponds to Stage 5 of an adult shedding cycle. The present study confirms that the embryonic sequence of epidermal stratification observed in other species is basically maintained in L. guichenoti. J. Morphol. 241:139–152, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
Cell proliferation in forming shield scutes has been studied by immunofluorescence in embryos of turtle, alligator and snake after injection of 5‐bromo‐deoxy‐uridine. Hinge regions of scutes in alligator and turtle carapace derive from an initial waving and invagination of the epidermis that contains 5‐bromo‐deoxy‐uridine‐labelled cells. This suggests that down growth of the epidermis into the dermis is driven by local proliferation in addition to dermal anchorage and stabilization of hinge regions. Few keratinocytes migrate into suprabasal layers 1 day after injection of 5‐bromo‐deoxy‐uridine and keratinocytes reach the precorneous layer in about 5 days. Proliferating keratinocytes are randomly distributed in the outer scale surface of symmetric scutes but are more numerous in the outer scale surface of asymmetric or overlapped scutes indicating epidermal expansion. Higher localization of proliferating cells along hinge regions of embryonic turtle and alligator scutes is maintained in adult scutes where most growth occurs. In snake, skin proliferation becomes prevalent on the elongating outer side of the asymmetric scale. Comparison between proliferation sites in turtle–alligator–chick scales with lepidosaurian scales indicates that placodes are present only in turtle–alligator–chick scales. Conversely, scale primordia detected only using gene markers are found in most crocodilian and lepidosaurians embryonic skin.  相似文献   

6.
The changes and biochemical features of the epidermis that accompany the differentiation and embryonic shedding complex formation in grass snake Natrix natrix L. embryos were studied ultrastructurally and immunocytochemically with two panels of antibodies (AE1, AE3, AE1/AE3; anti-cytokeratin, pan mixture, Lu-5 and PCK-26). All observed changes in the ultrastructure of the cells forming the epidermal layers were associated with the physiological changes that occurred in the embryonic epidermis, such as changing of the manner of nutrition and keratinization leading to the embryonic shedding complex formation. The layers that originated first (basal, outer and inner periderm and clear layer) differentiated very early and rapidly. Rapid differentiation was also observed in the layers that are very important for the functioning of the epidermis in Natrix embryos (oberhäutchen and beta-layers). They started to differentiate at developmental stage IX, and then fused and formed the embryonic shedding complex at developmental stage XI. During the embryonic development of the grass snake the smallest changes appeared in the ultrastructure of the cells in the mesos and alpha-layers because they perform supplementary functions in the process of embryonic molting. They were undifferentiated until the end of embryonic development and started to differentiate just before the first adult molting. AE1/AE3, anti-cytokeratin, pan mixture, Lu-5 and PCK-26 antibodies immunolabeled clear layer, oberhäutchen and beta-layers at the latest phase of developmental stage XI. It should be noted that these antibodies did not immunolabel the alpha-layer until hatching. The presence of alpha-keratin immunolabeling in layers that were keratinized, particularly in the oberhäutchen and beta-layers in embryos, indicated that they were not as hard as in fully mature individuals.  相似文献   

7.
Mammalian epidermis utilizes histidine-rich proteins (filaggrins) to aggregate keratin filaments and form the stratum corneum. Little is known about the involvement of histidine-rich proteins during reptilian keratinization. The formation of the shedding complex in the epidermis of snakes and lizards, made of the clear and the oberhautchen layers, determines the cyclical epidermal sloughing. Differently from snakes, keratohyalin-like granules are present in the clear layer of lizards. The uptake of tritiated histidine into the epidermis of two lizards and one snake has been studied by autoradiography in sections at progressive post-injection periods. At 40 min and 1 hr post-injection keratohyalin-like granules were not or poorly labeled. At 3-22 hr post-injection most of the labeling was present over suprabasal cells destined to form the shedding complex, in keratohyalin-like granules of the clear layer, and in the forming a-layer but was low in the forming b-layer, and in superficial keratinized layers. The analysis of the shedding complex in the pad lamellae (a specialized scale used for climbing) of a gecko showed that the setae and the cytoplasm of clear cells among them are main sites of histidine uptake at 4 hr post-injection. In the snake most of the labeling at 4 hr post-injection was localized in the shedding complex along the boundary between the clear and oberhautchen layers. The present study suggests that, in the epidermis of lepidosaurian reptiles, the synthesis of a histidine-rich protein is involved in the formation of the shedding layer and, as in mammals, in a-keratinization.  相似文献   

8.
The present study in the embryo of the lizard Anolis lineatopus describes the modality of cell proliferation responsible for the morphogenesis of the digital pad lamellae and of the epidermal stratification. After tritiated thymidine and 5-bromodeoxy-uridine administration, autoradiographic and immunocytochemical methods have been used. The lamellae originate as long, slightly slanted, undulations of the epidermis of fingers and toes. At an early stage, the epidermis consists of an outer periderm and a basal layer. Cell hypertrophy, and the prevalent cell proliferation in the longer side of the undulation with respect to the shorter side, generate the surface of the outer lamella. Under the peridermis, a shedding complex, composed by clear and oberhautchen layers, is formed and later determines the first intraepidermal shed. The first subperidermal layer derived from the basal layer is a clear layer and the first shed epidermis in the embryo is represented by periderm and clear layer. The heavily granulated clear layer in Anolis lineatopus represents the first epidermal layer produced in the embryonic epidermis, and is connected with the process of shedding. The spinulae of the underlying oberhautchen in the outer scale surface become long setae which grow toward the upper clear layer. Under the shedding complex a β-layer is produced. Autoradiographical study shows that the radioactivity stays in the basal layer for about 4 days before cells move to upper layers. At 6–8 days post-injection labelled cells are visible in the differentiated clear, oberhautchen and β-layers. Under the β-layer differentiating mesos cells are visible before the embryo hatches.  相似文献   

9.
The morphology of human embryonic and fetal skin growth in organ culture at the air-medium interface was examined, and the labeling indices of the epidermal cells in such cultures were determined. The two-layered epidermis of embryonic specimens increased to five or six cell layers after 21 days in culture, and the periderm in such cultures changed from a flat cell type to one with many blebs. The organelles in the epidermal cells remained unchanged. Fetal epidermis, however, differentiated when grown in this organ culture system from three layers (basal, intermediate, and periderm) to an adult-type epidermis with basal, spinous, granular, and cornified cell layers. Keratohyalin granules, lamellar granules, and bundles of keratin filaments, organelles associated with epidermal cell differentiation, were observed in the suprabasal cells of such cultures. The periderm in these fetal cultures formed blebs early but was sloughed with the stratum corneum in older cultures. The rate of differentiation of the fetal epidermis in organ culture was related to the initial age of the specimen cultured, with the older specimens differentiating at a faster rate than the younger specimens. Labeling indices (LIs) of embryonic and fetal epidermis and periderm were determined. The LI for embryonic basal cells was 8.5% and for periderm was 8%. The fetal LIs were 7% for basal cells, 1% for intermediate cells, and 3% for periderm. The ability to maintain viable pieces of skin in organ culture affords a model for studying normal and abnormal human epidermal differentiation from fetal biopsies and for investigating proliferative diseases.  相似文献   

10.
Lorenzo Alibardi 《Protoplasma》2014,251(6):1511-1520
The complex differentiation of snake epidermis largely depends on the variation in the production of glycine-cysteine-rich versus glycine-rich beta-proteins (beta-keratins) that are deposited on a framework of alpha-keratins. The knowledge of the amino acid sequences of beta-proteins in the snake Pantherophis guttatus has allowed the localization of a glycine-cysteine-rich beta-protein in the spinulated oberhautchen layer of the differentiating shedding complex before molting takes place. This protein decreases in the beta-layer and disappears in mesos and alpha-layers. Conversely, while the mRNA for a glycine-rich beta-protein is highly expressed in differentiating beta-cells, the immunolocalization for this protein is low in these cells. This discrepancy between expression and localization suggests that the epitope in glycine-rich beta-proteins is cleaved or modified by posttranslational processes that take place during the differentiation and maturation of the beta-layer. The present study suggests that among the numerous beta-proteins coded in the snake genome to produce epidermal layers with different textures, the glycine-cysteine-rich beta-protein marks the shedding complex formed between alpha- and beta-layers that allows for molting while its disappearance between the beta- and alpha-layers (mesos region for scale growth) is connected to the formation of the alpha-layers.  相似文献   

11.
Shedding in snakes is cyclical and derives from the differentiation of an intraepidermal shedding complex made of two different layers, termed clear and Oberhäutchen that determine the separation between the outer from the inner epidermal generation that produces a molt. The present comparative immunocytochemical study on the epidermis and molts of different species of snakes shows that a glycine‐cysteine‐rich corneous beta‐protein in a snake is prevalently accumulated in cells of the Oberhäutchen layer and decreases in those of the beta‐layer. The protein is variably distributed in the mature beta‐layer of species representing some snake families when the beta‐layer merges with the Oberhäutchen but disappears in alpha‐layers. Therefore, this protein represents an early marker of the transition between the outer and the inner epidermal generations in the epidermis of snakes in general. It is hypothesized that specific gene activation for glycine‐cysteine‐rich corneous beta‐proteins occurs during the passage from the clear layer of the outer epidermal generation to the Oberhäutchen layer of the replacing inner epidermal generation. It is suggested that in the epidermis of most species glycine‐cysteine‐rich corneous beta‐proteins form part of the dense corneous material that rapidly accumulates in the differentiating Oberhäutchen cells but decreases in the following beta‐layer of the inner epidermal generation destined to be separated from the previous outer generation in the process of shedding. The regulation of the synthesis of these and other proteins is, therefore, crucial in timing the different stages of the shedding cycle in lepidosaurian reptiles. J. Morphol. 276:144–151, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
To examine the involvement of cell adhesion molecules in the inductive epithelial-mesenchymal interactions during avian scale development, a study of the spatiotemporal distribution of L-CAM and N-CAM was undertaken. During scutate scale development, L-CAM and N-CAM are expressed together in cells of the transient embryonic layers destined to be lost at hatching. The ongoing linkage of the cells of these layers by both CAMs sets them apart, early in development, as unique cell populations. L-CAM and N-CAM were also expressed simultaneously at the basal surface of the early germinative cells where signal transduction is presumed to occur. In spite of the differences in cell shape, adhesion, density and proliferative state between populations of epidermal placode and interplacode cells, the expression of L-CAM and N-CAM appeared to be uniform and nondiscriminating for these discrete cell lineages. The same pattern of L-CAM and N-CAM expression was observed during morphogenesis of reticulate scales that develop without placode formation. While L-CAM and N-CAM are present during the early stages of scale development and most likely function in cell adhesion, the data do not support a role for these adhesion molecules in the formation of the morphogenetically critical placode and interplacode cell populations. In both scale types, L-CAM became predominantly epithelial, and N-CAM became predominantly dermal as histogenesis occurred. Initially, N-CAM was concentrated near the basal lamina where it may be involved in the reciprocal epidermal-dermal interactions required for morphogenesis. However, as development of the scales progressed, N-CAM disappeared from the tissues. L-CAM expression continued in the epidermis and was intense on all suprabasal cells undergoing differentiation into either an alpha-stratum or beta-stratum. However, L-CAM was more prevalent on the basal cells of alpha-keratinizing regions than on the basal cells of beta-keratinizing regions.  相似文献   

13.
During tail regeneration in lizards, the epidermis forms new scales comprising a hard beta‐layer and a softer alpha‐layer. Regenerated scales derive from a controlled folding process of the wound epidermis that gives rise to epidermal pegs where keratinocytes do not invade the dermis. Basal keratinocytes of pegs give rise to suprabasal cells that initially differentiate into a corneous wound epidermis and later in corneous layers of the regenerated scales. The immunodetection of a putative p53/63 protein in the regenerating tail of lizards shows that immunoreactivity is present in the nuclei of basal cells of the epidermis but becomes mainly cytoplasmic in suprabasal and in differentiating keratinocytes. Sparse labelled cells are present in the regenerating blastema, muscles, cartilage, ependyma and nerves of the growing tail. Ultrastructural observations on basal and suprabasal keratinocytes show that the labelling is mainly present in the euchromatin and nucleolus while labelling is more diffuse in the cytoplasm. These observations indicate that the nuclear protein in basal keratinocytes might control their proliferation avoiding an uncontrolled spreading into other tissues of the regenerating tail but that in suprabasal keratinocytes the protein moves from the nucleus to the cytoplasm, a process that might be associated to keratinocyte differentiation.  相似文献   

14.
The embryonic scales of two Australian agamine lizards (Hypsilurus spinipes and Physignatus lesueuerii) derive from the undulation of the epidermis to form dome‐shaped scale anlage that later become asymmetric and produce keratinized layers. Glycogen is contained in basal and suprabasal cells of the forming outer scale surface that are destined to differentiate into β‐keratin cells. The outer peridermis is very flat, but the second epidermal layer, provisionally identified as an inner peridermis, is composed of large cells that accumulate vesicular bodies and a network of coarse filaments. The sequence of epidermal layers produced beneath the inner peridermis in these agamine lizards corresponds to that of previously studied lizards, but the first subperidermal layer has characteristics of both clear (keratohyalin‐like granules) and oberhautchen (dark β‐keratin packets) cells. This layer is here identified as an oberhautchen since it fuses with the underlying β‐keratinizing cells forming large spinulae as the entire tissue becomes syncytial so that the units appear to increase in size. These spinulae very likely represent sections of honeycomb‐shaped micro‐ornamentations. A mesos layer appears underneath the β‐layer before hatching. J. Morphol. 240:251–266, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
Little is known of the lipid content of beta-keratin-producing cells such as those of feathers, scutate scales, and beak. The sequence of epidermal layers in some apteria and in interfollicular epidermis in the zebrafinch embryo (Taeniopygia guttata castanotis) was studied. Also, the production of beta-keratin in natal down feathers and beak was ultrastructurally analyzed in embryos from 3-4 to 17-18 days postdeposition, before hatching. Two layers of periderm initially cover the embryo, but there are eventually 6-8 over the epidermis of the beak. In the beak and sheath cells of feathers, peridermal granules are numerous at 12-14 days postdeposition but they are less frequent in apteria. These granules swell and disappear during sheath or peridermal degeneration at 15-17 days postdeposition. A thin beta-keratin layer forms under the periderm among feather germs of pterylous areas but is discontinuous or disappears in apteria. In differentiating cells of barbs, barbules, and calamus cells of natal down, electron-dense beta-keratin filaments form bundles oriented along the main axis of these cells. Cells of the pulp epidermis and collar, at the base of the follicle, contain lipids and bundles of alpha-keratin filaments. Degenerating pulp cells show vacuolization and nuclear pycnosis. During beta-keratin packing, keratin bundles turn electron-pale, perhaps due to the addition of lipids to produce the final, homogenous beta-keratin matrix. In contrast to the situation in feathers, in the cells of beak beta-keratin packets are irregularly oriented. In both feather and beak epidermal cells the Golgi apparatus and smooth endoplasmic reticulum produce vesicles containing lipid-like material which is also found among forming beta-keratin. The contribution of lipids or lipoprotein to the initial aggregation of beta-keratin molecules is discussed.  相似文献   

16.
Summary The expression of two previously uncharacterized polypeptides produced in epidermal cells of chick reticulate and scutate scales during late embryonic scale histogenesis and in hatchling birds has been studied biochemically and immunologically. These polypeptides have been identified by two-dimensional pH gradient gel electrophoresis as basic in charge, with apparent molecular weights of 20 and 23 kD, and they have been characterized immunologically and by amino acid analysis as non-keratin in nature. Monoclonal antibodies which react with both polypeptides have been used for immunohistochemical and immunogold electron-microscopic localization. Immunoreactivity was observed in suprabasal cells of reticulate scale epidermis, where it codistributed with bundles of -type cytokeratins in the -keratin-rich layers of epidermis known as the alpha stratum and in suprabasal cells of the outer epidermal surface of scutate scales, where it codistributed with -and -type keratin filament bundles in the -keratin-rich layers of epidermis known as the beta stratum.  相似文献   

17.
The feathers of birds develop from embryonic epidermal lineages that differentiate during outgrowth of the feather germ. Independent cell populations also form an embryonic epidermis on scutate scales, which consists of peridermal layers, a subperiderm, and an alpha stratum. Using an antiserum (anti-FbetaK) developed to react specifically with the beta (beta) keratins of feathers, we find that the feather-type beta keratins are expressed in the subperiderm cells of embryonic scutate scales, as well as the barb ridge lineages of the feather. However, unlike the subperiderm of scales, which is lost at hatching, the cells of barb ridges, in conjunction with adjacent cell populations, give rise to the structural elements of the feather. The observation that an embryonic epidermis, consisting of peridermal and subperidermal layers, also characterizes alligator scales (Thompson, 2001. J Anat 198:265-282) suggests that the epidermal populations of the scales and feathers of avian embryos are homologous with those forming the embryonic epidermis of alligators. While the embryonic epidermal populations of archosaurian scales are discarded at hatching, those of the feather germ differentiate into the periderm, sheath, barb ridges, axial plates, barbules, and marginal plates of the embryonic feather filament. We propose that the development of the embryonic feather filament provides a model for the evolution of the first protofeather. Furthermore, we hypothesize that invagination of the epidermal lineages of the feather filament, namely the barb ridges, initiated the formation of the follicle, which then allowed continuous renewal of the feather epidermal lineages, and the evolution of diverse feather forms.  相似文献   

18.
The formation of the stratum corneum in the epidermis of the reptile Sphenodon punctatus has been studied by histochemical, immunohistochemical, and ultrastructural methods. Sulfhydryl groups are present in the mesos and pre-alpha-layer but disappear in the keratinized beta-layer and in most of the mature alpha-layer. This suggests a complete cross-linking of keratin filaments. Tyrosine increases in keratinized layers, especially in the beta-layer. Arginine is present in living epidermal layers, in the presumptive alpha-layer, but decreases in keratinized layers. Histidine is present in corneous layers, especially in the intermediate region between the alpha- and a new beta-layer, but disappears in living layers. It is unknown whether histidine-rich proteins are produced in the intermediate region. Small keratohyalin-like granules are incorporated in the intermediate region. The plane of shedding, as confirmed from the study on molts, is located along the basalmost part of the alpha-layer and may involve the degradation of whole cells or cell junctions of the intermediate region. A specific shedding complex, like that of lizards and snakes, is not formed in tuatara epidermis. AE1-, AE2-, or AE3-positive alpha-keratins are present in different epidermal layers with a pattern similar to that previously described in reptiles. The AE1 antibody stains the basal and, less intensely, the first suprabasal layers. Pre-keratinized, alpha- and beta-layers, and the intermediate region remain unlabeled. The AE2 antibody stains suprabasal and forming alpha- and beta-layers, but does not stain the basal and suprabasal layers. In the mature beta-layer the immunostaining disappears. The AE3 antibody stains all epidermal layers but disappears in alpha- and beta-layers. Immunolocalization for chick scale beta-keratins labels the forming and mature beta-layer, but disappears in the mesos and alpha-layer. This suggests the presence of common epitopes in avian and reptilian beta-keratins. Low molecular weight alpha-keratins present in the basal layer are probably replaced by keratins of higher molecular weight in keratinizing layers (AE2-positive). This keratin pattern was probably established since the beginning of land adaptation in amniotes.  相似文献   

19.
The sequence of differentiation of the epidermis of scutes during embryogenesis in the tortoise Testudo hermanni was studied using autoradiography, electron microscopy and immunocytochemistry. The study was mainly conducted on the epidermis of the carapace, plastron and nail. Epidermal differentiation resembles that described for other reptiles, and the embryonic epidermis is composed of numerous cell layers. In the early stages of differentiation of the carapacial ridge, cytoplasmic blebs of epidermal cells are in direct contact with the extracellular matrix and mesenchymal cells. The influence of the dermis on the formation of the beta‐layer is discussed. The dermis becomes rich in collagen bundles at later stages of development. The embryonic epidermis is formed by a flat periderm and four to six layers of subperidermal cells, storing 40–70‐nm‐thick coarse filaments that may represent interkeratin or matrix material. Beta‐keratin is associated with the coarse filaments, suggesting that the protein may be polymerized on their surface. The presence of beta‐keratin in embryonic epidermis suggests that this keratin might have been produced at the beginning of chelonian evolution. The embryonic epidermis of the scutes is lost around hatching and leaves underneath the definitive corneous beta‐layer. Beneath the embryonic epidermis, cells that accumulate typical large bundles of beta‐keratin appear at stage 23 and at hatching a compact beta‐layer is present. The differentiation of these cells shows the progressive replacement of alpha‐keratin bundles with bundles immunolabelled for beta‐keratin. The nucleus is degraded and electron‐dense nuclear material mixes with beta‐keratin. In general, changes in tortoise skin when approaching terrestrial life resemble those of other reptiles. Lepidosaurian reptiles form an embryonic shedding layer and crocodilians have a thin embryonic epidermis that is rapidly lost near hacthing. Chelonians have a thicker embryonic epidermis that accumulates beta‐keratin, a protein later used to make a thick corneous layer.  相似文献   

20.

Background and Objective

Calmodulin-like protein CALML3 is an epithelial-specific protein regulated during keratinocyte differentiation in vitro. CALML3 expression is downregulated in breast cancers and transformed cell lines making it an attractive marker for tumor formation. The objective of this study was to survey CALML3 localization in normal epidermis and in hyperproliferative skin diseases including actinic keratosis, squamous and basal cell carcinoma as well as verruca and psoriasis and to compare CALML3 immunoreactivity with the proliferation marker Ki-67.

Methods

Paraffin-embedded tissue sections from normal human skin and hyperproliferative skin disorders were examined by immunohistochemistry and analyzed for localization and expression of CALML3 and Ki-67.

Results

CALML3 was strongly expressed in differentiating layers of normal skin, staining the periphery in suprabasal cells and exhibiting nuclear localization in the stratum granulosum. CALML3 nuclear localization was inversely correlated to Ki-67 staining in each disease, indicating that CALML3 nuclear presence is related to terminal cell differentiation and postmitotic state.

Conclusions

Increased CALML3 expression in suprabasal layers is characteristic for differentiating keratinocytes in normal epidermis, and nuclear expression of CALML3 inversely correlates with expression of the proliferation marker Ki-67. This suggests that CALML3 is a useful marker for normal and benign hyperplastic epidermal development, whereas the loss of nuclear CALML3 indicates progression to a proliferative and potentially malignant phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号