首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Pseudoplusia includens single nucleopolyhedrovirus (PsinSNPV-IE) is a baculovirus recently identified in our laboratory, with high pathogenicity to the soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae) (Walker, 1858). In Brazil, the C. includens caterpillar is an emerging pest and has caused significant losses in soybean and cotton crops. The PsinSNPV genome was determined and the phylogeny of the p26 gene within the family Baculoviridae was investigated.

Results

The complete genome of PsinSNPV was sequenced (Roche 454 GS FLX – Titanium platform), annotated and compared with other Alphabaculoviruses, displaying a genome apparently different from other baculoviruses so far sequenced. The circular double-stranded DNA genome is 139,132 bp in length, with a GC content of 39.3 % and contains 141 open reading frames (ORFs). PsinSNPV possesses the 37 conserved baculovirus core genes, 102 genes found in other baculoviruses and 2 unique ORFs. Two baculovirus repeat ORFs (bro) homologs, bro-a (Psin33) and bro-b (Psin69), were identified and compared with Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) and Trichoplusia ni single nucleopolyhedrovirus (TnSNPV) bro genes and showed high similarity, suggesting that these genes may be derived from an ancestor common to these viruses. The homologous repeats (hrs) are absent from the PsinSNPV genome, which is also the case in ChchNPV and TnSNPV. Two p26 gene homologs (p26a and p26b) were found in the PsinSNPV genome. P26 is thought to be required for optimal virion occlusion in the occlusion bodies (OBs), but its function is not well characterized. The P26 phylogenetic tree suggests that this gene was obtained from three independent acquisition events within the Baculoviridae family. The presence of a signal peptide only in the PsinSNPV p26a/ORF-20 homolog indicates distinct function between the two P26 proteins.

Conclusions

PsinSNPV has a genomic sequence apparently different from other baculoviruses sequenced so far. The complete genome sequence of PsinSNPV will provide a valuable resource, contributing to studies on its molecular biology and functional genomics, and will promote the development of this virus as an effective bioinsecticide.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1323-9) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.

Background

Although Mycobacterium tuberculosis isolates are consisted of several different lineages and the epidemiology analyses are usually assessed relative to a particular reference genome, M. tuberculosis H37Rv, which might introduce some biased results. Those analyses are essentially based genome sequence information of M. tuberculosis and could be performed in sillico in theory, with whole genome sequence (WGS) data available in the databases and obtained by next generation sequencers (NGSs). As an approach to establish higher resolution methods for such analyses, whole genome sequences of the M. tuberculosis complexes (MTBCs) strains available on databases were aligned to construct virtual reference genome sequences called the consensus sequence (CS), and evaluated its feasibility in in sillico epidemiological analyses.

Results

The consensus sequence (CS) was successfully constructed and utilized to perform phylogenetic analysis, evaluation of read mapping efficacy, which is crucial for detecting single nucleotide polymorphisms (SNPs), and various MTBC typing methods virtually including spoligotyping, VNTR, Long sequence polymorphism and Beijing typing. SNPs detected based on CS, in comparison with H37Rv, were utilized in concatemer-based phylogenetic analysis to determine their reliability relative to a phylogenetic tree based on whole genome alignment as the gold standard. Statistical comparison of phylogenic trees based on CS with that of H37Rv indicated the former showed always better results that that of later. SNP detection and concatenation with CS was advantageous because the frequency of crucial SNPs distinguishing among strain lineages was higher than those of H37Rv. The number of SNPs detected was lower with the consensus than with the H37Rv sequence, resulting in a significant reduction in computational time. Performance of each virtual typing was satisfactory and accorded with those published when those are available.

Conclusions

These results indicated that virtual CS constructed from genome sequence data is an ideal approach as a reference for MTBC studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1368-9) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Next-generation sequencing technologies are rapidly generating whole-genome datasets for an increasing number of organisms. However, phylogenetic reconstruction of genomic data remains difficult because de novo assembly for non-model genomes and multi-genome alignment are challenging.

Results

To greatly simplify the analysis, we present an Assembly and Alignment-Free (AAF) method (https://sourceforge.net/projects/aaf-phylogeny) that constructs phylogenies directly from unassembled genome sequence data, bypassing both genome assembly and alignment. Using mathematical calculations, models of sequence evolution, and simulated sequencing of published genomes, we address both evolutionary and sampling issues caused by direct reconstruction, including homoplasy, sequencing errors, and incomplete sequencing coverage. From these results, we calculate the statistical properties of the pairwise distances between genomes, allowing us to optimize parameter selection and perform bootstrapping. As a test case with real data, we successfully reconstructed the phylogeny of 12 mammals using raw sequencing reads. We also applied AAF to 21 tropical tree genome datasets with low coverage to demonstrate its effectiveness on non-model organisms.

Conclusion

Our AAF method opens up phylogenomics for species without an appropriate reference genome or high sequence coverage, and rapidly creates a phylogenetic framework for further analysis of genome structure and diversity among non-model organisms.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1647-5) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background

Plant resistance genes (R genes) exist in large families and usually contain both a nucleotide-binding site domain and a leucine-rich repeat domain, denoted NBS-LRR. The genome sequence of cassava (Manihot esculenta) is a valuable resource for analysing the genomic organization of resistance genes in this crop.

Results

With searches for Pfam domains and manual curation of the cassava gene annotations, we identified 228 NBS-LRR type genes and 99 partial NBS genes. These represent almost 1% of the total predicted genes and show high sequence similarity to proteins from other plant species. Furthermore, 34 contained an N-terminal toll/interleukin (TIR)-like domain, and 128 contained an N-terminal coiled-coil (CC) domain. 63% of the 327 R genes occurred in 39 clusters on the chromosomes. These clusters are mostly homogeneous, containing NBS-LRRs derived from a recent common ancestor.

Conclusions

This study provides insight into the evolution of NBS-LRR genes in the cassava genome; the phylogenetic and mapping information may aid efforts to further characterize the function of these predicted R genes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1554-9) contains supplementary material, which is available to authorized users.  相似文献   

6.

Introduction

Monosodium urate (MSU) microcrystals present in bone tissues of chronic gout can be ingested by nonprofessional phagocytes like osteoblasts (OBs) that express NLRP3 (nucleotide-binding domain and leucine-rich repeat region containing family of receptor protein 3). MSU is known to activate NLRP3 inflammasomes in professional phagocytes. We have identified a new role for NLRP3 coupled to autophagy in MSU-stimulated human OBs.

Methods

Normal human OBs cultured in vitro were investigated for their capacity for phagocytosis of MSU microcrystals by using confocal microscopy. Subsequent mineralization and matrix metalloproteinase activity were evaluated, whereas regulatory events of phagocytosis were deciphered by using signaling inhibitors, phosphokinase arrays, and small interfering RNAs. Statistics were carried out by using paired or unpaired t tests, and the one-way ANOVA, followed by multiple comparison test.

Results

Most of the OBs internalized MSU in vacuoles. This process depends on signaling via PI3K, protein kinase C (PKC), and spleen tyrosine kinase (Syk), but is independent of Src kinases. Simultaneously, MSU decreases phosphorylation of the protein kinases TOR (target of rapamycin) and p70S6K. MSU activates the cleavage of microtubule-associated protein light chain 3 (LC3)-I into LC3-II, and MSU microcrystals are coated with GFP-tagged LC3. However, MSU-stimulated autophagy in OBs absolutely requires the phagocytosis process. We find that MSU upregulates NLRP3, which positively controls the formation of MSU-autophagosomes in OBs. MSU does not increase death and late apoptosis of OBs, but reduces their proliferation in parallel to decreasing their competence for mineralization and to increasing their matrix metalloproteinase activity.

Conclusions

MSU microcrystals, found locally encrusted in the bone matrix of chronic gout, activate phagocytosis and NLRP3-dependent autophagy in OBs, but remain intact in permanent autophagosomes while deregulating OB functions.  相似文献   

7.

Background

Cassava (Manihot esculenta) is the basic source for dietary energy of 500 million people in the world. In Brazil, Erinnyis ello ello (Lepidoptera: Sphingidae) is a major pest of cassava crops and a bottleneck for its production. In the 1980s, a naturally occurring baculovirus was isolated from E. ello larva and successfully applied as a bio-pesticide in the field. Here, we described the structure, the complete genome sequence, and the phylogenetic relationships of the first sphingid-infecting betabaculovirus.

Results

The baculovirus isolated from the cassava hornworm cadavers is a betabaculovirus designated Erinnyis ello granulovirus (ErelGV). The 102,759 bp long genome has a G + C content of 38.7%. We found 130 putative ORFs coding for polypeptides of at least 50 amino acid residues. Only eight genes were found to be unique. ErelGV is closely related to ChocGV and PiraGV isolates. We did not find typical homologous regions and cathepsin and chitinase homologous genes are lacked. The presence of he65 and p43 homologous genes suggests horizontal gene transfer from Alphabaculovirus. Moreover, we found a nucleotide metabolism-related gene and two genes that could be acquired probably from Densovirus.

Conclusions

The ErelGV represents a new virus species from the genus Betabaculovirus and is the closest relative of ChocGV. It contains a dUTPase-like, a he65-like, p43-like genes, which are also found in several other alpha- and betabaculovirus genomes, and two Densovirus-related genes. Importantly, recombination events between insect viruses from unrelated families and genera might drive baculovirus genomic evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-856) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background

A recent work has provided strong arguments in favor of a fourth domain of Life composed of nucleo-cytoplasmic large DNA viruses (NCLDVs). This hypothesis was supported by phylogenetic and phyletic analyses based on a common set of proteins conserved in Eukarya, Archaea, Bacteria, and viruses, and implicated in the functions of information storage and processing. Recently, the genome of a new NCLDV, Cafeteria roenbergensis virus (CroV), was released. The present work aimed to determine if CroV supports the fourth domain of Life hypothesis.

Methods

A consensus phylogenetic tree of NCLDVs including CroV was generated from a concatenated alignment of four universal proteins of NCLDVs. Some features of the gene complement of CroV and its distribution along the genome were further analyzed. Phylogenetic and phyletic analyses were performed using the previously identified common set of informational genes present in Eukarya, Archaea, Bacteria, and NCLDVs, including CroV.

Findings

Phylogenetic reconstructions indicated that CroV is clearly related to the Mimiviridae family. The comparison between the gene repertoires of CroV and Mimivirus showed similarities regarding the gene contents and genome organization. In addition, the phyletic clustering based on the comparison of informational gene repertoire between Eukarya, Archaea, Bacteria, and NCLDVs unambiguously classified CroV with other NCLDVs and clearly included it in a fourth domain of Life. Taken together, these data suggest that Mimiviridae, including CroV, may have inherited a common gene content probably acquired from a common Mimiviridae ancestor.

Conclusions

This further analysis of the gene repertoire of CroV consolidated the fourth domain of Life hypothesis and contributed to outline a functional pan-genome for giant viruses infecting phagocytic protistan grazers.  相似文献   

9.

Background

There is a need to characterize genomes of the foodborne pathogen, Salmonella enterica serovar Enteritidis (SE) and identify genetic information that could be ultimately deployed for differentiating strains of the organism, a need that is yet to be addressed mainly because of the high degree of clonality of the organism. In an effort to achieve the first characterization of the genomes of SE of Canadian origin, we carried out massively parallel sequencing of the nucleotide sequence of 11 SE isolates obtained from poultry production environments (n = 9), a clam and a chicken, assembled finished genomes and investigated diversity of the SE genome.

Results

The median genome size was 4,678,683 bp. A total of 4,833 chromosomal genes defined the pan genome of our field SE isolates consisting of 4,600 genes present in all the genomes, i.e., core genome, and 233 genes absent in at least one genome (accessory genome). Genome diversity was demonstrable by the presence of 1,360 loci showing single nucleotide polymorphism (SNP) in the core genome which was used to portray the genetic distances by means of a phylogenetic tree for the SE isolates. The accessory genome consisted mostly of previously identified SE prophage sequences as well as two, apparently full- sized, novel prophages namely a 28 kb sequence provisionally designated as SE-OLF-10058 (3) prophage and a 43 kb sequence provisionally designated as SE-OLF-10012 prophage.

Conclusions

The number of SNPs identified in the relatively large core genome of SE is a reflection of substantial diversity that could be exploited for strain differentiation as shown by the development of an informative phylogenetic tree. Prophage sequences can also be exploited for SE strain differentiation and lineage tracking. This work has laid the ground work for further studies to develop a readily adoptable laboratory test for the subtyping of SE.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-713) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background and Aims

Most molecular phylogenetic studies of Orchidaceae have relied heavily on DNA sequences from the plastid genome. Nuclear and mitochondrial loci have only been superficially examined for their systematic value. Since 40% of the genera within Vanilloideae are achlorophyllous mycoheterotrophs, this is an ideal group of orchids in which to evaluate non-plastid gene sequences.

Methods

Phylogenetic reconstructions for Vanilloideae were produced using independent and combined data from the nuclear 18S, 5·8S and 26S rDNA genes and the mitochondrial atpA gene and nad1b-c intron.

Key Results

These new data indicate placements for genera such as Lecanorchis and Galeola, for which plastid gene sequences have been mostly unavailable. Nuclear and mitochondrial parsimony jackknife trees are congruent with each other and previously published trees based solely on plastid data. Because of high rates of sequence divergence among vanilloid orchids, even the short 5·8S rDNA gene provides impressive levels of resolution and support.

Conclusions

Orchid systematists are encouraged to sequence nuclear and mitochondrial gene regions along with the growing number of plastid loci available.Key words: 26S rDNA, 18S rDNA, 5·8S rDNA, atpA, nad1, orchids, plastid, Vanilla, vanilloid orchids, Vanilloideae  相似文献   

11.
12.
Wang Y  Choi JY  Roh JY  Liu Q  Tao XY  Park JB  Kim JS  Je YH 《PloS one》2011,6(11):e28163

Background

Spodoptera litura is a noctuid moth that is considered an agricultural pest. The larvae feed on a wide range of plants and have been recorded on plants from 40 plant families (mostly dicotyledons). It is a major pest of many crops. To better understand Spodoptera litura granulovirus (SpliGV), the nucleotide sequence of the SpliGV DNA genome was determined and analyzed.

Methodology/Principal Findings

The genome of the SpliGV was completely sequenced. The nucleotide sequence of the SpliGV genome was 124,121 bp long with 61.2% A+T content and contained 133 putative open reading frames (ORFs) of 150 or more nucleotides. The 133 putative ORFs covered 86.3% of the genome. Among these, 31 ORFs were conserved in most completely sequenced baculovirus genomes, 38 were granulovirus (GV)-specific, and 64 were present in some nucleopolyhedroviruses (NPVs) and/or GVs. We proved that 9 of the ORFs were SpliGV specific.

Conclusions/Significance

The genome of SpliGV is 124,121 bp in size. One hundred thirty-three ORFs that putatively encode proteins of 50 or more amino acid residues with minimal overlap were determined. No chitinase or cathepsin genes, which are involved in the liquefaction of the infected host, were found in the SpliGV genome, explaining why SpliGV-infected insects do not degrade in a typical manner. The DNA photolyase gene was first found in the genus Granulovirus. When phylogenic relationships were analyzed, the SpliGV was most closely related to Trichoplusia ni granulovirus (TnGV) and Xestia c-nigrum granulovirus (XecnGV), which belong to the Type I-granuloviruses (Type I-GV).  相似文献   

13.

Background

Problems associated with using draft genome assemblies are well documented and have become more pronounced with the use of short read data for de novo genome assembly. We set out to improve the draft genome assembly of the African cichlid fish, Metriaclima zebra, using a set of Pacific Biosciences SMRT sequencing reads corresponding to 16.5× coverage of the genome. Here we characterize the improvements that these long reads allowed us to make to the state-of-the-art draft genome previously assembled from short read data.

Results

Our new assembly closed 68 % of the existing gaps and added 90.6Mbp of new non-gap sequence to the existing draft assembly of M. zebra. Comparison of the new assembly to the sequence of several bacterial artificial chromosome clones confirmed the accuracy of the new assembly. The closure of sequence gaps revealed thousands of new exons, allowing significant improvement in gene models. We corrected one known misassembly, and identified and fixed other likely misassemblies. 63.5 Mbp (70 %) of the new sequence was classified as repetitive and the new sequence allowed for the assembly of many more transposable elements.

Conclusions

Our improvements to the M. zebra draft genome suggest that a reasonable investment in long reads could greatly improve many comparable vertebrate draft genome assemblies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1930-5) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background

Brassica rapa is one of the most economically important vegetable crops worldwide. Owing to its agronomic importance and phylogenetic position, B. rapa provides a crucial reference to understand polyploidy-related crop genome evolution. The high degree of sequence identity and remarkably conserved genome structure between Arabidopsis and Brassica genomes enables comparative tiling sequencing using Arabidopsis sequences as references to select the counterpart regions in B. rapa, which is a strong challenge of structural and comparative crop genomics.

Results

We assembled 65.8 megabase-pairs of non-redundant euchromatic sequence of B. rapa and compared this sequence to the Arabidopsis genome to investigate chromosomal relationships, macrosynteny blocks, and microsynteny within blocks. The triplicated B. rapa genome contains only approximately twice the number of genes as in Arabidopsis because of genome shrinkage. Genome comparisons suggest that B. rapa has a distinct organization of ancestral genome blocks as a result of recent whole genome triplication followed by a unique diploidization process. A lack of the most recent whole genome duplication (3R) event in the B. rapa genome, atypical of other Brassica genomes, may account for the emergence of B. rapa from the Brassica progenitor around 8 million years ago.

Conclusions

This work demonstrates the potential of using comparative tiling sequencing for genome analysis of crop species. Based on a comparative analysis of the B. rapa sequences and the Arabidopsis genome, it appears that polyploidy and chromosomal diploidization are ongoing processes that collectively stabilize the B. rapa genome and facilitate its evolution.  相似文献   

15.
16.

Background

A recent report has shown that the phylogenetic origin of Helicobacter pylori based on multi-locus sequence typing (MLST) was significantly associated with the severity of gastritis in Colombia. However, the potential relationship between phylogenetic origin and clinical outcomes was not examined in that study. If the phylogenetic origin rather than virulence factors were truly associated with clinical outcomes, identifying a population at high risk for gastric cancer in Colombia would be relatively straightforward. In this study, we examined the phylogenetic origins of strains from gastric cancer and duodenal ulcer patients living in Bogota, Colombia.

Methods

We included 35 gastric cancer patients and 31 duodenal ulcer patients, which are considered the variant outcomes. The genotypes of cagA and vacA were determined by polymerase chain reaction. The genealogy of these Colombian strains was analyzed by MLST. Bacterial population structure was analyzed using STRUCTURE software.

Results

H. pylori strains from gastric cancer and duodenal ulcer patients were scattered in the phylogenetic tree; thus, we did not detect any difference in phylogenetic distribution between gastric cancer and duodenal ulcer strains in the hpEurope group in Colombia. Sixty-six strains, with one exception, were classified as hpEurope irrespective of the cagA and vacA genotypes, and type of disease. STRUCTURE analysis revealed that Colombian hpEurope strains have a phylogenetic connection to Spanish strains.

Conclusions

Our study showed that a phylogeographic origin determined by MLST was insufficient for distinguishing between gastric cancer and duodenal ulcer risk among hpEurope strains in the Andean region in Colombia. Our analysis also suggests that hpEurope strains in Colombia were primarily introduced by Spanish immigrants.  相似文献   

17.
18.

Background

Artemisia frigida Willd. is an important Mongolian traditional medicinal plant with pharmacological functions of stanch and detumescence. However, there is little sequence and genomic information available for Artemisia frigida, which makes phylogenetic identification, evolutionary studies, and genetic improvement of its value very difficult. We report the complete chloroplast genome sequence of Artemisia frigida based on 454 pyrosequencing.

Methodology/Principal Findings

The complete chloroplast genome of Artemisia frigida is 151,076 bp including a large single copy (LSC) region of 82,740 bp, a small single copy (SSC) region of 18,394 bp and a pair of inverted repeats (IRs) of 24,971 bp. The genome contains 114 unique genes and 18 duplicated genes. The chloroplast genome of Artemisia frigida contains a small 3.4 kb inversion within a large 23 kb inversion in the LSC region, a unique feature in Asteraceae. The gene order in the SSC region of Artemisia frigida is inverted compared with the other 6 Asteraceae species with the chloroplast genomes sequenced. This inversion is likely caused by an intramolecular recombination event only occurred in Artemisia frigida. The existence of rich SSR loci in the Artemisia frigida chloroplast genome provides a rare opportunity to study population genetics of this Mongolian medicinal plant. Phylogenetic analysis demonstrates a sister relationship between Artemisia frigida and four other species in Asteraceae, including Ageratina adenophora, Helianthus annuus, Guizotia abyssinica and Lactuca sativa, based on 61 protein-coding sequences. Furthermore, Artemisia frigida was placed in the tribe Anthemideae in the subfamily Asteroideae (Asteraceae) based on ndhF and trnL-F sequence comparisons.

Conclusion

The chloroplast genome sequence of Artemisia frigida was assembled and analyzed in this study, representing the first plastid genome sequenced in the Anthemideae tribe. This complete chloroplast genome sequence will be useful for molecular ecology and molecular phylogeny studies within Artemisia species and also within the Asteraceae family.  相似文献   

19.

Background

Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions.

Methodology/Principal Findings

We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes).

Conclusions

The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1) the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2) the high conservation of non-coding sequence around the genes wingless and Ecdysone receptor, both involved in multiple developmental processes including wing pattern formation.  相似文献   

20.

Background

Microsatellite loci have high mutation rates and thus are indicative of mutational processes within the genome. By concentrating on the symbiotic and aposymbiotic cnidarians, we investigated if microsatellite abundances follow a phylogenetic or ecological pattern. Individuals from eight species were shotgun sequenced using 454 GS-FLX Titanium technology. Sequences from the three available cnidarian genomes (Nematostella vectensis, Hydra magnipapillata and Acropora digitifera) were added to the analysis for a total of eleven species representing two classes, three subclasses and eight orders within the phylum Cnidaria.

Results

Trinucleotide and tetranucleotide repeats were the most abundant motifs, followed by hexa- and dinucleotides. Pentanucleotides were the least abundant motif in the data set. Hierarchical clustering and log likelihood ratio tests revealed a weak relationship between phylogeny and microsatellite content. Further, comparisons between cnidaria harboring intracellular dinoflagellates and those that do not, show microsatellite coverage is higher in the latter group.

Conclusions

Our results support previous studies that found tri- and tetranucleotides to be the most abundant motifs in invertebrates. Differences in microsatellite coverage and composition between symbiotic and non-symbiotic cnidaria suggest the presence/absence of dinoflagellates might place restrictions on the host genome.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-939) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号