首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Highlights? UNC-6 (Netrin), its receptor UNC-40 (DCC), and the TRIM protein MADD-2 promote axon branching ? MADD-2 and UNC-40 proteins are localized to the affected axon branch ? MADD-2 stimulates axon attraction to Netrin by acting as an UNC-40 cofactor ? MADD-2 enables UNC-40 to recruit MIG-10, an actin-binding effector protein  相似文献   

3.
The dauer larva is a specialized dispersal stage in the nematode Caenorhabditis elegans that allows the animal to survive starvation for an extended period of time. The dauer does not feed, but uses chemosensation to identify new food sources and to determine whether to resume reproductive growth. Bacteria produce food signals that promote recovery of the dauer larva, but the chemical identities of these signals remain poorly defined. We find that bacterial fatty acids in the environment augment recovery from the dauer stage under permissive conditions. The effect of increased fatty acids on different dauer constitutive mutants indicates a role for insulin peptide secretion in coordinating recovery from the dauer stage in response to fatty acids. These data suggest that worms can sense the presence of fatty acids in the environment and that elevated levels can promote recovery from dauer arrest. This may be important in the natural environment where the dauer larva needs to determine whether the environment is appropriate to support reproductive growth following dauer exit.  相似文献   

4.
The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle’s plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue.  相似文献   

5.
Extracellular guidance cues steer axons towards their targets by eliciting morphological changes in the growth cone. A key part of this process is the asymmetric recruitment of the cytoplasmic scaffolding protein MIG-10 (lamellipodin). MIG-10 is thought to asymmetrically promote outgrowth by inducing actin polymerization. However, the mechanism that links MIG-10 to actin polymerization is not known. We have identified the actin regulatory protein ABI-1 as a partner for MIG-10 that can mediate its outgrowth-promoting activity. The SH3 domain of ABI-1 binds to MIG-10, and loss of function of either of these proteins causes similar axon guidance defects. Like MIG-10, ABI-1 functions in both the attractive UNC-6 (netrin) pathway and the repulsive SLT-1 (slit) pathway. Dosage sensitive genetic interactions indicate that MIG-10 functions with ABI-1 and WVE-1 to mediate axon guidance. Epistasis analysis reveals that ABI-1 and WVE-1 function downstream of MIG-10 to mediate its outgrowth-promoting activity. Moreover, experiments with cultured mammalian cells suggest that the interaction between MIG-10 and ABI-1 mediates a conserved mechanism that promotes formation of lamellipodia. Together, these observations suggest that MIG-10 interacts with ABI-1 and WVE-1 to mediate the UNC-6 and SLT-1 guidance pathways.  相似文献   

6.
7.
8.
9.

Background

Alzheimer''s disease (AD) is a neurodegenerative disorder primarily characterized by the deposition of β-amyloid plaques in the brain. Plaques are composed of the amyloid-β peptide derived from cleavage of the amyloid precursor protein (APP). Mutations in APP lead to the development of Familial Alzheimer''s Disease (FAD), however, the normal function of this protein has proven elusive. The organism Caenorhabditis elegans is an attractive model as the amyloid precursor-like protein (APL-1) is the single ortholog of APP, and loss of apl-1 leads to a severe molting defect and early larval lethality.

Methodology/Principal Findings

We report here that lethality and molting can be rescued by full length APL-1, C-terminal mutations as well as a C-terminal truncation, suggesting that the extracellular region of the protein is essential for viability. RNAi knock-down of apl-1 followed by drug testing on the acetylcholinesterase inhibitor aldicarb showed that loss of apl-1 leads to aldicarb hypersensitivity, indicating a defect in synaptic function. The aldicarb hypersensitivity can be rescued by full length APL-1 in a dose dependent fashion. At the cellular level, kinesins UNC-104/KIF-1A and UNC-116/kinesin-1 are positive regulators of APL-1 expression in the neurons. Knock-down of the small GTPase rab-5 also leads to a dramatic decrease in the amount of apl-1 expression in neurons, suggesting that trafficking from the plasma membrane to the early endosome is important for apl-1 function. Loss of function of a different small GTPase, UNC-108, on the contrary, leads to the retention of APL-1 in the cell body.

Conclusions/Significance

Our results reveal novel insights into the intracellular trafficking of APL-1 and we report a functional role for APL-1 in synaptic transmission.  相似文献   

10.
Neurodegeneration has been correlated with mitochondrial DNA (mtDNA) damage and exposure to environmental toxins, but causation is unclear. We investigated the ability of several known environmental genotoxins and neurotoxins to cause mtDNA damage, mtDNA depletion, and neurodegeneration in Caenorhabditis elegans. We found that paraquat, cadmium chloride and aflatoxin B1 caused more mitochondrial than nuclear DNA damage, and paraquat and aflatoxin B1 also caused dopaminergic neurodegeneration. 6-hydroxydopamine (6-OHDA) caused similar levels of mitochondrial and nuclear DNA damage. To further test whether the neurodegeneration could be attributed to the observed mtDNA damage, C. elegans were exposed to repeated low-dose ultraviolet C radiation (UVC) that resulted in persistent mtDNA damage; this exposure also resulted in dopaminergic neurodegeneration. Damage to GABAergic neurons and pharyngeal muscle cells was not detected. We also found that fasting at the first larval stage was protective in dopaminergic neurons against 6-OHDA-induced neurodegeneration. Finally, we found that dopaminergic neurons in C. elegans are capable of regeneration after laser surgery. Our findings are consistent with a causal role for mitochondrial DNA damage in neurodegeneration, but also support non mtDNA-mediated mechanisms.  相似文献   

11.
12.
A difference in movement has been hypothesized to exist between Caenorhabditis elegans strains lacking one of two main genes for acetylcholinesterase (AChE), ace-1(+) and ace-2(+). We explored the precision of movement as an endpoint by measuring and comparing the movements of these strains (VC505 and GG202, respectively) and of N2 (wild-type). The order of movement of the strains is: N2 > VC505 > GG202; therefore, loss of the ace-2(+) gene is more detrimental to movement. We then compared the sensitivities of the three strains to an AChE inhibitor (propoxur) by generating movement-concentration curves, identifying effective concentrations that decreased movement by 50% (EC50), and comparing them. EC50 show an order of: N2 ≈ GG202 < VC505. Therefore, the enzymes encoded by ace-1(+) were more susceptible to propoxur than those of ace-2(+), suggesting that the innate difference in the AChE classes'' contributions to movement will not always determine the strain sensitivity. Measuring movement was sufficiently precise to record differences following genetic manipulation and further chemical exposure.  相似文献   

13.
Disruption of dopamine homeostasis may lead to dopaminergic neuron degeneration, a proposed explanation for the specific vulnerability of dopaminergic neurons in Parkinson''s disease. While expression of human α-synuclein in C. elegans results in dopaminergic neuron degeneration, the effects of α-synuclein on dopamine homeostasis and its contribution to dopaminergic neuron degeneration in C. elegans have not been reported. Here, we examined the effects of α-synuclein overexpression on worm dopamine homeostasis. We found that α-synuclein expression results in upregulation of dopamine synthesis and content, and redistribution of dopaminergic synaptic vesicles, which significantly contribute to dopaminergic neuron degeneration. These results provide in vivo evidence supporting a critical role for dopamine homeostasis in supporting dopaminergic neuron integrity.  相似文献   

14.
Glutathione (GSH) and GSH-dependent enzymes play a key role in cellular detoxification processes that enable organism to cope with various internal and environmental stressors. However, it is often not clear, which components of the complex GSH-metabolism are required for tolerance towards a certain stressor. To address this question, a small scale RNAi-screen was carried out in Caenorhabditis elegans where GSH-related genes were systematically knocked down and worms were subsequently analysed for their survival rate under sub-lethal concentrations of arsenite and the redox cycler juglone. While the knockdown of γ-glutamylcysteine synthetase led to a diminished survival rate under arsenite stress conditions, GSR-1 (glutathione reductase) was shown to be essential for survival under juglone stress conditions. gsr-1 is the sole GSR encoding gene found in C. elegans. Knockdown of GSR-1 hardly affected total glutathione levels nor reduced glutathione/glutathione disulphide (GSH/GSSG) ratio under normal laboratory conditions. Nevertheless, when GSSG recycling was impaired by gsr-1(RNAi), GSH synthesis was induced, but not vice versa. Moreover, the impact of GSSG recycling was potentiated under oxidative stress conditions, explaining the enormous effect gsr-1(RNAi) knockdown had on juglone tolerance. Accordingly, overexpression of GSR-1 was capable of increasing stress tolerance. Furthermore, expression levels of SKN-1-regulated GSR-1 also affected life span of C. elegans, emphasising the crucial role the GSH redox state plays in both processes.  相似文献   

15.
Caenorhabditis elegans, especially the N2 isolate, is an invaluable biological model system. Numerous additional natural C. elegans isolates have been shown to have unexpected genotypic and phenotypic variations which has encouraged researchers to use next generation sequencing methodology to develop a more complete picture of genotypic variations among the isolates. To understand the phenotypic effects of a genomic variation (GV) on a single gene, in a variation-rich genetic background, one should analyze that particular GV in a well understood genetic background. In C. elegans, the analysis is usually done in N2, which requires extensive crossing to bring in the GV. This can be a very time consuming procedure thus it is important to establish a fast and efficient approach to test the effect of GVs from different isolates in N2. Here we use a Mos1-mediated single-copy insertion (MosSCI) method for phenotypic assessments of GVs from the variation-rich Hawaiian strain CB4856 in N2. Specifically, we investigate effects of variations identified in the CB4856 strain on tac-1 which is an essential gene that is necessary for mitotic spindle elongation and pronuclear migration. We show the usefulness of the MosSCI method by using EU1004 tac-1(or402) as a control. or402 is a temperature sensitive lethal allele within a well-conserved TACC domain (transforming acidic coiled-coil) that results in a leucine to phenylalanine change at amino acid 229. CB4856 contains a variation that affects the second exon of tac-1 causing a cysteine to tryptophan change at amino acid 94 also within the TACC domain. Using the MosSCI method, we analyze tac-1 from CB4856 in the N2 background and demonstrate that the C94W change, albeit significant, does not cause any obvious decrease in viability. This MosSCI method has proven to be a rapid and efficient way to analyze GVs.  相似文献   

16.
N-acylethanolamines are an important class of lipid signaling molecules found in many species, including the nematode Caenorhabditis elegans (C. elegans) where they are involved in development and adult lifespan. In mammals, the relative activity of the biosynthetic enzyme N-acyl phosphatidylethanolamine-specific phospholipase-D and the hydrolytic enzyme fatty acid amide hydrolase determine N-acylethanolamine levels. C. elegans has two N-acyl phosphatidylethanolamine-specific phospholipase-D orthologs, nape-1 and nape-2, that are likely to have arisen from a gene duplication event. Here, we find that recombinant C. elegans NAPE-1 and NAPE-2 are capable of generating N-acylethanolamines in vitro, confirming their functional conservation. In vivo, they exhibit overlapping expression in the pharynx and the nervous system, but are also expressed discretely in these and other tissues, suggesting divergent roles. Indeed, nape-1 over-expression results in delayed growth and shortened lifespan only at 25°C, while nape-2 over-expression results in significant larval arrest and increased adult lifespan at 15°C. Interestingly, deletion of the N-acylethanolamine degradation enzyme faah-1 exacerbates nape-1 over-expression phenotypes, but suppresses the larval arrest phenotype of nape-2 over-expression, suggesting that faah-1 is coupled to nape-2, but not nape-1, in a negative feedback loop. We also find that over-expression of either nape-1 or nape-2 significantly enhances recovery from the dauer larval stage in the insulin signaling mutant daf-2(e1368), but only nape-1 over-expression reduces daf-2 adult lifespan, consistent with increased levels of the N-acylethanolamine eicosapentaenoyl ethanolamine. These results provide evidence that N-acylethanolamine biosynthetic enzymes in C. elegans have conserved function and suggest a temperature-dependent, functional divergence between the two isoforms.  相似文献   

17.
18.
When Caenorhabditis elegans encounters an unfavourable stimulus at its anterior, it responds by initiating an avoidance response, namely reversal of locomotion. The amphid neurons, ASHL and ASHR, are polymodal in function, with roles in the avoidance responses to high osmolarity, nose touch, and both volatile and non-volatile repellents. The mechanisms that underlie the ability of the ASH neurons to respond to such a wide range of stimuli are still unclear. We demonstrate that the inositol 1,4,5-trisphosphate receptor (IP3R), encoded by itr-1, functions in the reversal responses to nose touch and benzaldehyde, but not in other known ASH-mediated responses. We show that phospholipase Cβ (EGL-8) and phospholipase Cγ (PLC-3), which catalyse the production of IP3, both function upstream of ITR-1 in the response to nose touch. We use neuron-specific gene rescue and neuron-specific disruption of protein function to show that the site of ITR-1 function is the ASH neurons. By rescuing plc-3 and egl-8 in a neuron-specific manner, we show that both are acting in ASH. Imaging of nose touch–induced Ca2+ transients in ASH confirms these conclusions. In contrast, the response to benzaldehyde is independent of PLC function. Thus, we have identified distinct roles for the IP3R in two specific responses mediated by ASH.  相似文献   

19.
The let-7 microRNA (miRNA) regulates cellular differentiation across many animal species. Loss of let-7 activity causes abnormal development in Caenorhabditis elegans and unchecked cellular proliferation in human cells, which contributes to tumorigenesis. These defects are due to improper expression of protein-coding genes normally under let-7 regulation. While some direct targets of let-7 have been identified, the genome-wide effect of let-7 insufficiency in a developing animal has not been fully investigated. Here we report the results of molecular and genetic assays aimed at determining the global network of genes regulated by let-7 in C. elegans. By screening for mis-regulated genes that also contribute to let-7 mutant phenotypes, we derived a list of physiologically relevant potential targets of let-7 regulation. Twenty new suppressors of the rupturing vulva or extra seam cell division phenotypes characteristic of let-7 mutants emerged. Three of these genes, opt-2, prmt-1, and T27D12.1, were found to associate with Argonaute in a let-7–dependent manner and are likely novel direct targets of this miRNA. Overall, a complex network of genes with various activities is subject to let-7 regulation to coordinate developmental timing across tissues during worm development.  相似文献   

20.
Cell shape changes are crucial for metazoan development. During Caenorhabditis elegans embryogenesis, epidermal cell shape changes transform ovoid embryos into vermiform larvae. This process is divided into two phases: early and late elongation. Early elongation involves the contraction of filamentous actin bundles by phosphorylated non-muscle myosin in a subset of epidermal (hypodermal) cells. The genes controlling early elongation are associated with two parallel pathways. The first one involves the rho-1/RHOA-specific effector let-502/Rho-kinase and mel-11/myosin phosphatase regulatory subunit. The second pathway involves the CDC42/RAC-specific effector pak-1. Late elongation is driven by mechanotransduction in ventral and dorsal hypodermal cells in response to body-wall muscle contractions, and involves the CDC42/RAC-specific Guanine-nucleotide Exchange Factor (GEF) pix-1, the GTPase ced-10/RAC and pak-1.In this study, pix-1 is shown to control early elongation in parallel with let-502/mel-11, as previously shown for pak-1. We show that pix-1, pak-1 and let-502 control the rate of elongation, and the antero-posterior morphology of the embryos. In particular, pix-1 and pak-1 are shown to control head, but not tail width, while let-502 controls both head and tail width. This suggests that let-502 function is required throughout the antero-posterior axis of the embryo during early elongation, while pix-1/pak-1 function may be mostly required in the anterior part of the embryo. Supporting this hypothesis we show that low pix-1 expression level in the dorsal-posterior hypodermal cells is required to ensure high elongation rate during early elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号