共查询到20条相似文献,搜索用时 15 毫秒
1.
Amstutz P Binz HK Parizek P Stumpp MT Kohl A Grütter MG Forrer P Plückthun A 《The Journal of biological chemistry》2005,280(26):24715-24722
The specific intracellular inhibition of protein activity at the protein level allows the determination of protein function in the cellular context. We demonstrate here the use of designed ankyrin repeat proteins as tailor-made intracellular kinase inhibitors. The target was aminoglycoside phosphotransferase (3')-IIIa (APH), which mediates resistance to aminoglycoside antibiotics in pathogenic bacteria and shares structural homology with eukaryotic protein kinases. Combining a selection and screening approach, we isolated 198 potential APH inhibitors from highly diverse combinatorial libraries of designed ankyrin repeat proteins. A detailed analysis of several inhibitors revealed that they bind APH with high specificity and with affinities down to the subnanomolar range. In vitro, the most potent inhibitors showed complete enzyme inhibition, and in vivo, a phenotype comparable with the gene knockout was observed, fully restoring antibiotic sensitivity in resistant bacteria. These results underline the great potential of designed ankyrin repeat proteins for modulation of intracellular protein function. 相似文献
2.
Binz HK Amstutz P Kohl A Stumpp MT Briand C Forrer P Grütter MG Plückthun A 《Nature biotechnology》2004,22(5):575-582
We report here the evolution of ankyrin repeat (AR) proteins in vitro for specific, high-affinity target binding. Using a consensus design strategy, we generated combinatorial libraries of AR proteins of varying repeat numbers with diversified binding surfaces. Libraries of two and three repeats, flanked by 'capping repeats,' were used in ribosome-display selections against maltose binding protein (MBP) and two eukaryotic kinases. We rapidly enriched target-specific binders with affinities in the low nanomolar range and determined the crystal structure of one of the selected AR proteins in complex with MBP at 2.3 A resolution. The interaction relies on the randomized positions of the designed AR protein and is comparable to natural, heterodimeric protein-protein interactions. Thus, our AR protein libraries are valuable sources for binding molecules and, because of the very favorable biophysical properties of the designed AR proteins, an attractive alternative to antibody libraries. 相似文献
3.
Schweizer A Rusert P Berlinger L Ruprecht CR Mann A Corthésy S Turville SG Aravantinou M Fischer M Robbiani M Amstutz P Trkola A 《PLoS pathogens》2008,4(7):e1000109
Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat Protein (DARPin) technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent (subtype B and C) HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique characteristics of DARPins-high physical stability, specificity and low production costs-with the capacity to potently block HIV entry, rendering them promising candidates for microbicide development. 相似文献
4.
Click chemistry is a powerful technology for the functionalization of therapeutic proteins with effector moieties, because of its potential for bio-orthogonal, regio-selective, and high-yielding conjugation under mild conditions. Designed Ankyrin Repeat Proteins (DARPins), a novel class of highly stable binding proteins, are particularly well suited for the introduction of clickable methionine surrogates such as azidohomoalanine (Aha) or homopropargylglycine (Hpg), since the DARPin scaffold can be made methionine-free by an M34L mutation in the N-cap which fully maintains the biophysical properties of the protein. A single N-terminal azidohomoalanine, replacing the initiator Met, is incorporated in high yield, and allows preparation of "clickable" DARPins at about 30 mg per liter E. coli culture, fully retaining stability, specificity, and affinity. For a second modification, we introduced a cysteine at the C-terminus. Such DARPins could be conveniently site-specifically linked to two moieties, polyethylene glycol (PEG) to the N-terminus and the fluorophore Alexa488 to the C-terminus. We present a DARPin selected against the epithelial cell adhesion molecule (EpCAM) with excellent properties for tumor targeting as an example. We used these doubly modified molecules to measure binding kinetics on tumor cells and found that PEGylation has no effect on dissociation rate, but slightly decreases the association rate and the maximal number of cell-bound DARPins, fully consistent with our previous model of PEG action obtained in vitro. Our data demonstrate the benefit of click chemistry for site-specific modification of binding proteins like DARPins to conveniently add several functional moieties simultaneously for various biomedical applications. 相似文献
5.
6.
Interlandi G Wetzel SK Settanni G Plückthun A Caflisch A 《Journal of molecular biology》2008,375(3):837-854
Multiple molecular dynamics simulations with explicit solvent at room temperature and at 400 K were carried out to characterize designed ankyrin repeat (AR) proteins with full-consensus repeats. Using proteins with one to five repeats, the stability of the native structure was found to increase with the number of repeats. The C-terminal capping repeat, originating from the natural guanine-adenine-binding protein, was observed to denature first in almost all high-temperature simulations. Notably, a stable intermediate is found in experimental equilibrium unfolding studies of one of the simulated consensus proteins. On the basis of simulation results, this intermediate is interpreted to represent a conformation with a denatured C-terminal repeat. To validate this interpretation, constructs without C-terminal capping repeat were prepared and did not show this intermediate in equilibrium unfolding experiments. Conversely, the capping repeats were found to be essential for efficient folding in the cell and for avoiding aggregation, presumably because of their highly charged surface. To design a capping repeat conferring similar solubility properties yet even higher stability, eight point mutations adapting the C-cap to the consensus AR and adding a three-residue extension at the C-terminus were predicted in silico and validated experimentally. The in vitro full-consensus proteins were also compared with a previously published designed AR protein, E3_5, whose internal repeats show 80% identity in primary sequence. A detailed analysis of the simulations suggests that networks of salt bridges between β-hairpins, as well as additional interrepeat hydrogen bonds, contribute to the extraordinary stability of the full consensus. 相似文献
7.
Kohl A Amstutz P Parizek P Binz HK Briand C Capitani G Forrer P Plückthun A Grütter MG 《Structure (London, England : 1993)》2005,13(8):1131-1141
Aminoglycoside phosphotransferase (3')-IIIa (APH) is a bacterial kinase that confers antibiotic resistance to many pathogenic bacteria and shares structural homology with eukaryotic protein kinases. We report here the crystal structure of APH, trapped in an inactive conformation by a tailor-made inhibitory ankyrin repeat (AR) protein, at 2.15 A resolution. The inhibitor was selected from a combinatorial library of designed AR proteins. The AR protein binds the C-terminal lobe of APH and thereby stabilizes three alpha helices, which are necessary for substrate binding, in a significantly displaced conformation. BIAcore analysis and kinetic enzyme inhibition experiments are consistent with the proposed allosteric inhibition mechanism. In contrast to most small-molecule kinase inhibitors, the AR proteins are not restricted to active site binding, allowing for higher specificity. Inactive conformations of pharmaceutically relevant enzymes, as can be elucidated with the approach presented here, represent powerful starting points for rational drug design. 相似文献
8.
Xiaowei Yuan Shizhong Zhang Xiaohe Qing Meihong Sun Shiyang Liu Hongyan Su Huairui Shu Xinzheng Li 《Gene》2013
The ankyrin repeat (ANK) protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, no detailed information concerning this family is available for tomato (Solanum lycopersicum) due to the limited information on whole genome sequences. In this study, we identified a total of 130 ANK genes in tomato genome (SlANK), and these genes were distributed across all 12 chromosomes at various densities. And chromosomal localizations of SlANK genes indicated 25 SlANK genes were involved in tandem duplications. Based on their domain composition, all of the SlANK proteins were grouped into 13 subgroups. A combined phylogenetic tree was constructed with the aligned SlANK protein sequences. This tree revealed that the SlANK proteins comprise five major groups. An analysis of the expression profiles of SlANK genes in tomato in different tissues and in response to stresses showed that the SlANK proteins play roles in plant growth, development and stress responses. To our knowledge, this is the first report of a genome-wide analysis of the tomato ANK gene family. This study provides valuable information regarding the classification and putative functions of SlANK genes in tomato. 相似文献
9.
Repeat proteins contain tandem arrays of small structural motifs. As a consequence of this architecture, they adopt non-globular, extended structures that present large, highly specific surfaces for ligand binding. Here we discuss recent advances toward understanding the functional role of this unique modular architecture. We showcase specific examples of natural repeat proteins interacting with diverse ligands and also present examples of designed repeat protein-ligand interactions. 相似文献
10.
Ankyrin repeat (AR) proteins are composed of tandem repeats of a basic structural motif of ca. 33 amino acid residues that form a β-turn followed by two antiparallel α-helices. Multiple repeats stack together in a modular fashion to form a scaffold that is ideally suited for the presentation of multiple functional groups and/or recognition elements. Here we describe a biosynthetic strategy that takes advantage of the modular nature of these proteins to generate multivalent ligands that are both chemically homogeneous and structurally well-defined. Glycosylated AR proteins cluster the tetrameric lectin concanavalin A (Con A) at a rate that is comparable to the rate of Con A aggregation mediated by globular protein conjugates and variable density linear polymers. Thus, AR proteins define a new class of multivalent ligand scaffolds that have significant potential application in the study and control of a variety of multivalent interactions. 相似文献
11.
Zahnd C Wyler E Schwenk JM Steiner D Lawrence MC McKern NM Pecorari F Ward CW Joos TO Plückthun A 《Journal of molecular biology》2007,369(4):1015-1028
Designed ankyrin repeat proteins (DARPins) are a novel class of binding molecules, which can be selected to recognize specifically a wide variety of target proteins. DARPins were previously selected against human epidermal growth factor receptor 2 (Her2) with low nanomolar affinities. We describe here their affinity maturation by error-prone PCR and ribosome display yielding clones with zero to seven (average 2.5) amino acid substitutions in framework positions. The DARPin with highest affinity (90 pM) carried four mutations at framework positions, leading to a 3000-fold affinity increase compared to the consensus framework variant, mainly coming from a 500-fold increase of the on-rate. This DARPin was found to be highly sensitive in detecting Her2 in human carcinoma extracts. We have determined the crystal structure of this DARPin at 1.7 A, and found that a His to Tyr mutation at the framework position 52 alters the inter-repeat H-bonding pattern and causes a significant conformational change in the relative disposition of the repeat subdomains. These changes are thought to be the reason for the enhanced on-rate of the mutated DARPin. The DARPin not bearing the residue 52 mutation has an unusually slow on-rate, suggesting that binding occurred via conformational selection of a relatively rare state, which was stabilized by this His52Tyr mutation, increasing the on-rate again to typical values. An analysis of the structural location of the framework mutations suggests that randomization of some framework residues either by error-prone PCR or by design in a future library could increase affinities and the target binding spectrum. 相似文献
12.
Zahnd C Pecorari F Straumann N Wyler E Plückthun A 《The Journal of biological chemistry》2006,281(46):35167-35175
Designed ankyrin repeat proteins (DARPins) are a novel class of binding proteins that bind their target protein with high affinity and specificity and have very favorable expression and stability properties. We describe here the in vitro selection of DARPins against human epidermal growth factor receptor 2 (Her2), an important target for cancer therapy and diagnosis. Several DARPins bind to the same epitope as trastuzumab (Herceptin), but none were selected that bind to the epitope of pertuzumab (Omnitarg). Some of the selected DARPins bind with low nanomolar affinity (Kd=7.3 nm) to the target. Further analysis revealed that all DARPins are highly specific and do not cross-react with epidermal growth factor receptor I (EGFR1) or any other investigated protein. The selected DARPins specifically bind to strongly Her2-overexpressing cell lines such as SKBR-3 but also recognize small amounts of Her2 on weakly expressing cell lines such as MCF-7. Furthermore, the DARPins also lead to a highly specific and strong staining of plasma membranes of paraffinated sections of human mamma-carcinoma tissue. Thus, the selected DARPins might be used for the development of diagnostic tests for the status of Her2 overexpression in different adenocarcinomas, and they may be further evaluated for their potential in targeted therapy since their favorable expression properties make the construction of fusion proteins very convenient. 相似文献
13.
Full-consensus designed ankyrin repeat proteins were designed with one to six identical repeats flanked by capping repeats. These proteins express well in Escherichia coli as soluble monomers. Compared to our previously described designed ankyrin repeat protein library, randomized positions have now been fixed according to sequence statistics and structural considerations. Their stability increases with length and is even higher than that of library members, and those with more than three internal repeats are resistant to denaturation by boiling or guanidine hydrochloride. Full denaturation requires their heating in 5 M guanidine hydrochloride. The folding and unfolding kinetics of the proteins with up to three internal repeats were analyzed, as the other proteins could not be denatured. Folding is monophasic, with a rate that is nearly identical for all proteins (∼ 400-800 s− 1), indicating that essentially the same transition state must be crossed, possibly the folding of a single repeat. In contrast, the unfolding rate decreases by a factor of about 104 with increasing repeat number, directly reflecting thermodynamic stability in these extraordinarily slow denaturation rates. The number of unfolding phases also increases with repeat number. We analyzed the folding thermodynamics and kinetics both by classical two-state and three-state cooperative models and by an Ising-like model, where repeats are considered as two-state folding units that can be stabilized by interacting with their folded nearest neighbors. This Ising model globally describes both equilibrium and kinetic data very well and allows for a detailed explanation of the ankyrin repeat protein folding mechanism. 相似文献
14.
Nearly 6% of eukaryotic protein sequences contain ankyrin repeat (AR) domains, which consist of several repeats and often function in binding. AR proteins show highly cooperative folding despite a lack of long-range contacts. Both theory and experiment converge to explain that formation of the interface between elements is more favorable than formation of any individual repeat unit. IkappaBalpha and Notch both undergo partial folding upon binding perhaps influencing the binding free energy. The simple architecture, combined with identification of consensus residues that are important for stability, has enabled systematic perturbation of the energy landscape by single point mutations that affect stability or by addition of consensus repeats. The folding energy landscapes appear highly plastic, with small perturbations re-routing folding pathways. 相似文献
15.
Garcion C Guilleminot J Kroj T Parcy F Giraudat J Devic M 《The Plant journal : for cell and molecular biology》2006,48(6):895-906
EMB506 is a chloroplast protein essential for embryo development, the function of which is unknown. A two-hybrid interaction screen was performed to provide insight into the role of EMB506. A single interacting partner, AKRP, was identified among a cDNA library from immature siliques. The AKR gene (Zhang et al., 1992, Plant Cell 4, 1575-1588) encodes a protein containing five ankyrin repeats, very similar to EMB506. Protein truncation series demonstrated that both proteins interact through their ankyrin domains. Using reverse genetics, we showed that loss of akr function resulted in an embryo-defective (emb) phenotype indistinguishable from the emb506 phenotype. Transient expression of the signal peptide of AKRP fused to green fluorescent protein demonstrated the chloroplast localization of AKRP. The ABI3 promoter was used to express AKR in a seed-specific manner in order to analyse the post-embryonic effect of AKR loss of function in akr/akr seedlings. Homozygous fertile and viable akr/akr plants were obtained. These plants exhibited mild to severe defects in chloroplast and leaf cellular organization. We conclude that EMB506 and AKRP are involved in crucial and tightly controlled events in plastid differentiation linked to cell differentiation, morphogenesis and organogenesis during the plant life cycle. 相似文献
16.
Boersma YL Chao G Steiner D Wittrup KD Plückthun A 《The Journal of biological chemistry》2011,286(48):41273-41285
The EGF receptor (EGFR) has been implicated in the development and progression of many tumors. Although monoclonal antibodies directed against EGFR have been approved for the treatment of cancer in combination with chemotherapy, there are limitations in their clinical efficacy, necessitating the search for robust targeting molecules that can be equipped with new effector functions or show a new mechanism of action. Designed ankyrin repeat proteins (DARPins) may provide the targeting component for such novel reagents. Previously, four DARPins were selected against EGFR with (sub)nanomolar affinity. As any targeting module should preferably be able to inhibit EGFR-mediated signaling, their effect on A431 cells overexpressing EGFR was examined: three of them were shown to inhibit proliferation by inducing G(1) arrest, as seen for the Food and Drug Administration-approved antibody cetuximab. To understand this inhibitory mechanism, we mapped the epitopes of the DARPins using yeast surface display. The epitopes for the biologically active DARPins overlapped with the EGF-binding site, whereas the fourth DARPin bound to a different domain, explaining the lack of a biological effect. To optimize the biological activity of the DARPins, we combined two DARPins binding to different epitopes with a flexible linker or with a leucine zipper, leading to a homodimer. The latter DARPin was able to reduce surface EGFR by inhibiting receptor recycling, leading to a dramatic decrease in cell viability. These results indicate that multispecific EGFR-specific DARPins are superior to cetuximab and may form the basis of new opportunities in tumor targeting and tumor therapy. 相似文献
17.
Inhibition of caspase-2 by a designed ankyrin repeat protein: specificity, structure, and inhibition mechanism 总被引:6,自引:0,他引:6
Schweizer A Roschitzki-Voser H Amstutz P Briand C Gulotti-Georgieva M Prenosil E Binz HK Capitani G Baici A Plückthun A Grütter MG 《Structure (London, England : 1993)》2007,15(5):625-636
Specific and potent caspase inhibitors are indispensable for the dissection of the intricate pathways leading to apoptosis. We selected a designed ankyrin repeat protein (DARPin) from a combinatorial library that inhibits caspase-2 in vitro with a subnanomolar inhibition constant and, in contrast to the peptidic caspase inhibitors, with very high specificity for this particular caspase. The crystal structure of this inhibitor (AR_F8) in complex with caspase-2 reveals the molecular basis for the specificity and, together with kinetic analyses, the allosteric mechanism of inhibition. The structure also shows a conformation of the active site that can be exploited for the design of inhibitory compounds. AR_F8 is a specific inhibitor of an initiator caspase and has the potential to help identify the function of caspase-2 in the complex biological apoptotic signaling network. 相似文献
18.
ADP-ribosyl proteins formed by pertussis toxin are specifically cleaved by mercury ions 总被引:5,自引:0,他引:5
Various types of ADP-ribosyl protein conjugates were synthesized and their chemical stability was compared with that of cysteine-linked ADP-ribosyl groups as formed by incubation of transducin or Gi/Go proteins with NAD and pertussis toxin. Treatment with 0.1 mM HgCl2 specifically cleaved the cysteine-linked conjugates. This may provide a tool for the quantitation of modified Gi/Go proteins as well as of other acceptors modified by ADP-ribose at cysteine residues in the presence of other ADP-ribosyl proteins. 相似文献
19.
Instrumental for studies investigating the development of germ cells, and especially the separation of the germline in the early embryo, are molecular markers which reliably label germ cells and with which regulative factors of germ cell development may be analyzed. Here, we describe the monoclonal antibody PG-2, which is highly specific for the germ cells of the rabbit embryo and labels the perimitochondrial cytoplasm, as demonstrated by immunogold-silver staining. Identical expression patterns are found in germ cells of either sex from early organogenesis at 10 days post-conception (d.p.c.), when the germ cells leave the hindgut epithelium and settle in the gonadal anlage as primordial germ cells (PGCs), until the time immediately prior to birth (30 d.p.c.), when germ cells are either in their oogonial or prospermatogonial state. The antibody is the first to recognize specifically a cytoplasmic epitope in germ cells of a higher vertebrate and may well recognize the mammalian equivalent of the germ plasm found in inverteb-rates and lower vertebrates. The antibody can be used for early identification of PGCs and may be of help in the elucidation of mammalian germ cell development towards the gonial stages of spermatogenesis and oogenesis. Accepted: 30 May 1997 相似文献
20.
Mosqueda J Falcon A Antonio Alvarez J Alberto Ramos J Oropeza-Hernandez LF Figueroa JV 《International journal for parasitology》2004,34(11):1229-1236
Babesia bigemina, a causative agent of bovine babesiosis, is transmitted from one bovine to another only by infected ticks. The life cycle of B. bigemina includes a sexual phase in the tick host; however, molecules from sexual stages of any Babesia species have not been characterized. This is the first report of the induction of sexual stages of any Babesia species in vitro, free of tick antigens. Intraerythrocytic parasites were cultured in vitro for 20h using an induction medium. Extraerythrocytic parasites were first seen 3h post induction; elongated stages with long projections appeared at 6h post induction and by 9h they paired and fused to form larger stages. Round zygotes appeared 20h post induction. Moreover, by using Percoll gradients, sexual stages were purified free of contaminating intraerythrocytic stages. Purified parasites were used to generate polyclonal antibodies, which specifically bound to antigens expressed in sexual stages induced in vitro, but not to antigens expressed in intraerythrocytic stages. Importantly, these antibodies specifically identified sexual stages from midguts of female Boophilus microplus ticks fed on infected cattle. 相似文献