首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Knowing how epithelial cells regulate cell-matrix and cell-cell adhesions is essential to understand key events in morphogenesis as well as pathological events such as metastasis. During epithelial cell scattering, epithelial cell islands rupture their cell-cell contacts and migrate away as single cells on the extracellular matrix (ECM) within hours of growth factor stimulation, even as adhesion molecules such as E-cadherin are present at the cell-cell contact. How the stability of cell-cell contacts is modulated to effect such morphological transitions is still unclear. Here, we report that in the absence of ECM, E-cadherin adhesions continue to sustain substantial cell-generated forces upon hepatocyte growth factor (HGF) stimulation, consistent with undiminished adhesion strength. In the presence of focal adhesions, constraints that preclude the spreading and movement of cells at free island edges also prevent HGF-mediated contact rupture. To explore the role of cell motion and cell-cell contact rupture, we examine the biophysical changes that occur during the scattering of cell pairs. We show that the direction of cell movement with respect to the cell-cell contact is correlated with changes in the average intercellular force as well as the initial direction of cell-cell contact rupture. Our results suggest an important role for protrusive activity resulting in cell displacement and force redistribution in guiding cell-cell contact rupture during scattering.  相似文献   

2.
3.
To achieve systemic infection, bacterial pathogens must overcome the critical and challenging step of transmigration across epithelial barriers. This is particularly true for opportunistic pathogens such as Pseudomonas aeruginosa, an agent which causes nosocomial infections. Despite extensive study, details on the mechanisms used by this bacterium to transmigrate across epithelial tissues, as well as the entry sites it uses, remain speculative. Here, using real-time microscopy and a model epithelial barrier, we show that P. aeruginosa employs a paracellular transmigration route, taking advantage of altered cell-cell junctions at sites of cell division or when senescent cells are expelled from the cell layer. Once a bacterium transmigrates, it is followed by a cohort of bacteria using the same entry point. The basal compartment is then invaded radially from the initial penetration site. Effective transmigration and propagation require type 4 pili, the type 3 secretion system (T3SS) and a flagellum, although flagellum-deficient bacteria can occasionally invade the basal compartment from wounded areas. In the basal compartment, the bacteria inject the T3SS toxins into host cells, disrupting the cytoskeleton and focal contacts to allow their progression under the cells. Thus, P. aeruginosa exploits intrinsic host cell processes to breach the epithelium and invade the subcellular compartment.  相似文献   

4.
Recently we have demonstrated that a 40kD human epithelium-specific glycoprotein exhibits the features of a homophilic cell-cell adhesion molecule, when expressed in transfected murine cells. We suggested the name Ep-CAM for this molecule (Litvinov et al., J. Cell Biol., 125: 437–446). Here we investigate the possible biological function of Ep-CAM in its natural environment—cells of epithelial origin. Immunolocalization of Ep-CAM in tissues and in cultures of epithelial/carcinoma cells showed that the majority of the Ep-CAM molecules are localized at cell-cell boundaries, predominantly along the whole lateral domain of polarized cells. In vitro, on single cells in suspension, the Ep-CAM molecules are present on the entire cell surface, and when the single cells grow attached, Ep-CAM is present at their pseudo-apical domain. During formation of intercellular contacts by such single cells, the majority of the Ep-CAM molecules are redistributed from the pseudoapical to the lateral domain of the cell membrane. Attachment of cells to the substrate does not cause redistribution of the molecules to the site of substrate attachment irrespective of the adhesive substrate (fibronectin, collagens, laminin, EHS-matrigel were tested). The monoclonal antibody 323/A3, reactive with the extracellular domain of the Ep-CAM molecule, has a strong negative effect on the aggregating behaviour of COV362 ovarian carcinoma cells and RC-6 immortalized mammary epithelial cells. The mAb affected cell aggregation in both cell lines in the presence of Ca++, but with RC-6 cells the effect was more pronounced in low-calcium medium. The effects of the 323/A3 mAb on the already established intercellular contacts was not significant. The data presented demonstrate that the Ep-CAM molecules are functionally active in the epithelial and carcinoma cells tested, are capable of mediating Ca1+-independent intercellular adhesions, and are not likely to be involved in cell-substrate adhesion.  相似文献   

5.
Recently we have demonstrated that a 40kD human epithelium-specific glycoprotein exhibits the features of a homophilic cell-cell adhesion molecule, when expressed in transfected murine cells. We suggested the name Ep-CAM for this molecule (Litvinov et al., J. Cell Biol., 125: 437-446). Here we investigate the possible biological function of Ep-CAM in its natural environment—cells of epithelial origin. Immunolocalization of Ep-CAM in tissues and in cultures of epithelial/carcinoma cells showed that the majority of the Ep-CAM molecules are localized at cell-cell boundaries, predominantly along the whole lateral domain of polarized cells. In vitro, on single cells in suspension, the Ep-CAM molecules are present on the entire cell surface, and when the single cells grow attached, Ep-CAM is present at their pseudo-apical domain. During formation of intercellular contacts by such single cells, the majority of the Ep-CAM molecules are redistributed from the pseudoapical to the lateral domain of the cell membrane. Attachment of cells to the substrate does not cause redistribution of the molecules to the site of substrate attachment irrespective of the adhesive substrate (fibronectin, collagens, laminin, EHS-matrigel were tested). The monoclonal antibody 323/A3, reactive with the extracellular domain of the Ep-CAM molecule, has a strong negative effect on the aggregating behaviour of COV362 ovarian carcinoma cells and RC-6 immortalized mammary epithelial cells. The mAb affected cell aggregation in both cell lines in the presence of Ca++, but with RC-6 cells the effect was more pronounced in low-calcium medium. The effects of the 323/A3 mAb on the already established intercellular contacts was not significant. The data presented demonstrate that the Ep-CAM molecules are functionally active in the epithelial and carcinoma cells tested, are capable of mediating Ca1+-independent intercellular adhesions, and are not likely to be involved in cell-substrate adhesion.  相似文献   

6.
7.
8.
Nuclear or cell number, and the mitotic index, were recordedin endosperms of Triticum aestivum cv. Mardler to test if aparticular stage of endosperm development was critical in determiningthe final grain weight. The basal four florets of emasculatedspikelets (controls), and the third and fourth florets of spikeletswhere the two basal ovaries were removed (ovary-removed), weresampled at various times up to 360 h after hand-pollination.The coenocytic phase in endosperms ended about 84 h after pollinationregardless of both grain position and the treatment. The onsetof the cellular stage was characterized by the final large fluctuationsin the mitotic index reflecting the culmination of the synchronousnuclear division of the coenocytic stage. Thereafter, the mitoticindex fluctuated with smaller amplitudes and, by 216 h afterpollination, was < 1%. Neither floret position in the spikeletnor the treatment affected the pattern of alteration to themitotic index. However, ovary removal from first and secondflorets resulted in significantly heavier grains and higherendosperm cell number in the 3rd and 4th florets compared withthe controls. In all florets, mean endosperm cell number peakedat 280 h but decreased by 360 h after pollination. At this time,the mean cell numbers in endosperms of the 3rd and 4th floretsof ovary-removed spikelets were significantly higher than inthe corresponding endosperms in the controls. Thus, a key contributoryfactor in determining the final endosperm cell number may bethe number of cells which are lost during the late period ofthe cellular stage of endosperm development. Key words: Endosperm cell number, florets, grain weight, mitotic index, Triticum aestivum  相似文献   

9.
Mammalian Cas proteins regulate cell migration, division and survival, and are often deregulated in cancer. However, the presence of four paralogous Cas family members in mammals (BCAR1/p130Cas, EFS/Sin1, NEDD9/HEF1/Cas-L, and CASS4/HEPL) has limited their analysis in development. We deleted the single Drosophila Cas gene, Dcas, to probe the developmental function of Dcas. Loss of Dcas had limited effect on embryonal development. However, we found that Dcas is an important modulator of the severity of the developmental phenotypes of mutations affecting integrins (If and mew) and their downstream effectors Fak56D or Src42A. Strikingly, embryonic lethal Fak56D-Dcas double mutant embryos had extensive cell polarity defects, including mislocalization and reduced expression of E-cadherin. Further genetic analysis established that loss of Dcas modified the embryonal lethal phenotypes of embryos with mutations in E-cadherin (Shg) or its signaling partners p120- and β-catenin (Arm). These results support an important role for Cas proteins in cell-cell adhesion signaling in development.  相似文献   

10.
Although there are several computational models that explain the trajectory that cells take during migration, till now little attention has been paid to the integration of the cell migration in a multi-signaling system. With that aim, a generalized model of cell migration and cell-cell interaction under multisignal environments is presented herein. In this work we investigate the spatio-temporal cell-cell interaction problem induced by mechano-chemo-thermotactic cues. It is assumed that formation of a new focal adhesion generates traction forces proportional to the stresses transmitted by the cell to the extracellular matrix. The cell velocity and polarization direction are calculated based on the equilibrium of the effective forces associated to cell motility. It is also assumed that, in addition to mechanotaxis signals, chemotactic and thermotactic cues control the direction of the resultant traction force. This model enables predicting the trajectory of migrating cells as well as the spatial and temporal distributions of the net traction force and cell velocity. Results indicate that the tendency of the cells is firstly to reach each other and then migrate towards an imaginary equilibrium plane located near the source of the signal. The position of this plane is sensitive to the gradient slope and the corresponding efficient factors. The cells come into contact and separate several times during migration. Adding other cues to the substrate (such as chemotaxis and/or thermotaxis) delays that primary contact. Moreover, in all states, the average local velocity and the net traction force of the cells decrease while the cells approach the cues source. Our findings are qualitatively consistent with experimental observations reported in the related literature.  相似文献   

11.
Many normal adult tissues contain rare stem cells with extensive self-maintaining regenerative potential. During development, the stem cells of the hematopoietic and neural systems undergo intrinsically specified changes in their self-renewal potential. In the mouse, mammary stem cells with transplantable regenerative activity are first detectable a few days before birth. They share some phenotypic properties with their adult counterparts but are enriched in a subpopulation that displays a distinct gene expression profile. Here we show that fetal mammary epithelial cells have a greater direct and inducible growth potential than their adult counterparts. The latter feature is revealed in a novel culture system that enables large numbers of in vitro clonogenic progenitors as well as mammary stem cells with serially transplantable activity to be produced within 7 days from single fetal or adult input cells. We further show that these responses are highly dependent on novel factors produced by fibroblasts. These findings provide new avenues for elucidating mechanisms that regulate normal mammary epithelial stem cell properties at the single-cell level, how these change during development, and how their perturbation may contribute to transformation.  相似文献   

12.
13.
14.
Tight regulation of receptor tyrosine kinases (RTKs) is crucial for normal development and homeostasis. Dysregulation of RTKs signaling is associated with diverse pathological conditions including cancer. The Met RTK is the receptor for hepatocyte growth factor (HGF) and is dysregulated in numerous human tumors. Here we show that Abl family of non-receptor tyrosine kinases, comprised of Abl (ABL1) and Arg (ABL2), are activated downstream of the Met receptor, and that inhibition of Abl kinases dramatically suppresses HGF-induced cell scattering and tubulogenesis. We uncover a critical role for Abl kinases in the regulation of HGF/Met-dependent RhoA activation and RhoA-mediated actomyosin contractility and actin cytoskeleton remodeling in epithelial cells. Moreover, treatment of breast cancer cells with Abl inhibitors markedly decreases Met-driven cell migration and invasion. Notably, expression of a transforming mutant of the Met receptor in the mouse mammary epithelium results in hyper-activation of both Abl and Arg kinases. Together these data demonstrate that Abl kinases link Met activation to Rho signaling and Abl kinases are required for Met-dependent cell scattering, tubulogenesis, migration, and invasion. Thus, inhibition of Abl kinases might be exploited for the treatment of cancers driven by hyperactivation of HGF/Met signaling.  相似文献   

15.
Freeze-induced cell tensions were determined by cell water relations in leaves of broadleaf evergreen species and cell cultures of grapes (Vitis spp.) and apple (Malus domestica). Cell tensions increased in response to cold acclimation in leaves of broadleaf evergreen species during extracellular freezing, indicating a higher resistance to cell volume changes during freezing in cold-hardened leaves than in unhardened leaves. Unhardened leaves, typically, did not develop tension greater than 3.67 MPa, whereas cold-hardened leaves attained tensions up to 12 MPa. With further freezing there was a rapid decline and a loss of tension in unhardened leaves of all the broadleaf evergreen species studied. Also, similar results were observed in cold-hardened leaves of all of the species except in those of inkberry (Ilex glabra) and Euonymus fortunei, in which negative pressures persisted below -40[deg]C. Abscisic acid treatment of inkberry and Euonymus kiautschovica resulted in increases in freeze-induced tensions in leaves, suggesting that both cold acclimation and abscisic acid have similar effects on freezing behavior[mdash] specifically on the ability of cell walls to undergo deformation. Decreases in peak tensions were generally associated with lethal freezing injury and may suggest cavitation of cellular water. However, in suspension-cultured cells of grapes and apple, no cell tension was observed during freezing. Cold acclimation of these cells resulted in an increase in the cell-wall strength and a decrease in the limiting cell-wall pore size from 35 to 22 A in grape cells and from 29 to 22 A in apple cells.  相似文献   

16.
17.
Rapid polymerization of actin filament barbed ends generates protrusive forces at the cell edge, leading to cell migration. Two important regulators of free barbed ends, cofilin and Arp2/3, have been shown to work in synergy (net effect greater than additive). To explore this synergy, we model the dynamics of F-actin at the leading edge, motivated by data from EGF-stimulated mammary carcinoma cells. We study how synergy depends on the localized rates and relative timing of cofilin and Arp2/3 activation at the cell edge. The model incorporates diffusion of cofilin, membrane protrusion, F-actin capping, aging, and severing by cofilin and branch nucleation by Arp2/3 (but not G-actin recycling). In a well-mixed system, cofilin and Arp2/3 can each generate a large pulse of barbed ends on their own, but have little synergy; high synergy occurs only at low activation rates, when few barbed ends are produced. In the full spatially distributed model, both synergy and barbed-end production are significant over a range of activation rates. Furthermore, barbed-end production is greatest when Arp2/3 activation is delayed relative to cofilin. Our model supports a direct role for cofilin-mediated actin polymerization in stimulated cell migration, including chemotaxis and cancer invasion.  相似文献   

18.
19.
20.

Background and Aims

Hepatic stellate cells (HSC), which can participate in liver regeneration and fibrogenesis, have recently been identified as liver-resident mesenchymal stem cells. During their activation HSC adopt a myofibroblast-like phenotype accompanied by profound changes in the gene expression profile. DNA methylation changes at single genes have been reported during HSC activation and may participate in the regulation of this process, but comprehensive DNA methylation analyses are still missing. The aim of the present study was to elucidate the role of DNA methylation during in vitro activation of HSC.

Methods and Results

The analysis of DNA methylation changes by antibody-based assays revealed a strong decrease in the global DNA methylation level during culture-induced activation of HSC. To identify genes which may be regulated by DNA methylation, we performed a genome-wide Methyl-MiniSeq EpiQuest sequencing comparing quiescent and early culture-activated HSC. Approximately 400 differentially methylated regions with a methylation change of at least 20% were identified, showing either hypo- or hypermethylation during activation. Further analysis of selected genes for DNA methylation and expression were performed revealing a good correlation between DNA methylation changes and gene expression. Furthermore, global DNA demethylation during HSC activation was investigated by 5-bromo-2-deoxyuridine assay and L-mimosine treatment showing that demethylation was independent of DNA synthesis and thereby excluding a passive DNA demethylation mechanism.

Conclusions

In summary, in vitro activation of HSC initiated strong DNA methylation changes, which were associated with gene regulation. These results indicate that epigenetic mechanisms are important for the control of early HSC activation. Furthermore, the data show that global DNA demethylation during activation is based on an active DNA demethylation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号