首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When somatosensory input via electrical stimulation of a peripheral nerve precedes a transcranial magnetic stimulation (TMS) pulse over the primary motor cortex (M1) the corticospinal output is substantially reduced, a phenomenon known as short-latency afferent inhibition (SAI). The present study investigated SAI during rest and during pre-movement, phasic and tonic components of movement. Participants were required to perform an index finger flexion reaction time task in response to an auditory cue. In a series of experiments, SAI was evoked from the mixed, median nerve at the wrist or the cutaneous, digital nerve stimulation of the index finger. To assess the spinal versus cortical origin of movement-related modulation of SAI, F-wave amplitudes were measured during rest and the three movement components. Results indicated that SAI was reduced during all movement components compared to rest, an effect that occurred for both nerves stimulated. Pre-movement SAI reduction was primarily attributed to reduced cortical inhibition, while increased spinal excitability additionally contributed to reduced SAI during tonic and phasic components of movement. SAI was differentially modulated across movement components with mixed but not cutaneous nerve stimulation. These findings reveal that SAI is reduced during movement and this reduction begins as early as the preparation to move. Further, these data suggest that the degree of SAI reduction during movement may be specific to the volume and/or composition of afferent input carried by each nerve.  相似文献   

2.

Maintenance of synaptic plasticity reserve is crucial to contrast clinical deterioration in MS and PDGF plays a key role in this phenomenon. Indeed, higher cerebrospinal fluid PDGF concentration correlates with improved clinical recovery after a relapse, and the amplitude of LTP-like cortical plasticity in relapsing-remitting MS patients. However, LTP-like cortical plasticity varies depending on the individual level of inhibitory cortical circuits. Aim of this study was to explore whether PDGF-CSF concentration correlates with inhibitory cortical circuits explored by means of transcranial magnetic stimulation in patients affected by relapsing-remitting MS. We further performed electrophysiological experiments evaluating GABAergic transmission in the experimental autoimmune encephalomyelitis (EAE) hippocampus. Our results reveal that increased CSF PDGF concentration correlates with decreased short afferent inhibition in the motor cortex in MS patients and decreased GABAergic activity in EAE. These findings show that PDGF affects GABAergic activity both in MS patients and in EAE hippocampus.

  相似文献   

3.
Information on the involvement of elongation-controlling hormones, particularly gibberellin (GA), in UV-B modulation of stem elongation and leaf growth, is limited. We aimed to study the effect of UV-B on levels of GA and indole-3-acetic acid (IAA) as well as involvement of GA in UV-B inhibition of stem elongation and leaf expansion in pea. Reduced shoot elongation (13%) and leaf area (37%) in pea in response to a 6-h daily UV-B (0.45 W m?2) exposure in the middle of the light period for 10 days were associated with decreased levels of the bioactive GA1 in apical stem tissue (59%) and young leaves (69%). UV-B also reduced the content of IAA in young leaves (35%). The importance of modulation of GA metabolism for inhibition of stem elongation in pea by UV-B was confirmed by the lack of effect of UV-B in the le GA biosynthesis mutant. No UV-B effect on stem elongation in the la cry-s (della) pea mutant demonstrates that intact GA signalling is required. In conclusion, UV-B inhibition of shoot elongation and leaf expansion in pea depends on UV-B modulation of GA metabolism in shoot apices and young leaves and GA signalling through DELLA proteins. UV-B also affects the IAA content in pea leaves.  相似文献   

4.
When all roots to the sixth ganglion of the crayfish are cut, the caudal photoreceptor unit (PRU) fires at regular intervals. With an intact preparation, stimulation of caudal tactile hairs has predominantly inhibitory effects on the PRU: short bursts of afferent impulses, produced by momentary mechanical stimulation of tactile hairs, have (a) occasional immediate excitatory effect on the PRU, (b) prolonged inhibitory effect. The mean firing rate of the afferented and deafferented PRUs reacts similarly to a step increase in light, but the same unit fires faster after deafferentation. In the dark, deafferented units often fire paired or multiple pulses; the interval between pulses in a pair is similar to the short mode in afferented histograms. A fiber-optic probe of the caudal ganglion demonstrates the approximate location of the photosensitive element.  相似文献   

5.
6.

Background

Schistosomiasis mansoni is a parasitic liver disease, which causes several metabolic disturbances. Here, we evaluate the influence of Apolipoprotein E (APOE) gene polymorphism, a known modulator of lipid metabolism, on plasma lipid levels in patients with hepatosplenic schistosomiasis.

Methodology/Principal Findings

Blood samples were used for APOE genotyping and to measure total cholesterol (TC), LDL-C, HDL-C and triglycerides. Schistosomiasis patients had reduced TC, LDL-C and triglycerides (25%, 38% and 32% lower, respectively; P<0.0001) compared to control individuals, whereas HDL-C was increased (10% higher; P = 0.0136). Frequency of the common alleles, ε2, ε3 and ε4, was similar (P = 0.3568) between controls (n = 108) and patients (n = 84), implying that APOE genotype did not affect susceptibility to the advanced stage of schistosomiasis. Nevertheless, while patient TC and LDL-C levels were significantly reduced for each allele (except TC in ε2 patients), changes in HDL-C and triglycerides were noted only for the less common ε2 and ε4 alleles. The most striking finding, however, was that accepted regulation of plasma lipid levels by APOE genotype was disrupted by schistosomiasis. Thus, while ε2 controls had higher TC and LDL-C than ε3 carriers, these parameters were lower in ε2 versus ε3 patients. Similarly, the inverse relationship of TG levels in controls (ε2>ε3>ε4) was absent in patients (ε2 or ε4>ε3), and the increase in HDL-C of ε2 or ε4 patients compared to ε3 patients was not seen in the control groups.

Conclusion/Significance

We confirm that human schistosomiasis causes dyslipidemia and report for the first time that certain changes in plasma lipid and lipoprotein levels depend on APOE gene polymorphism. Importantly, we also concluded that S. mansoni disrupts the expected regulation of plasma lipids by the different ApoE isoforms. This finding suggests ways to identify new metabolic pathways affected by schistosomiasis and also potential molecular targets to treat associated morbidities.  相似文献   

7.
The hands of 14 normal humans were used to determine the somatotopic organization of the modulation of warmth sensation and heat pain by different forms of cutaneous stimuli. Test stimuli were 5-sec heat pulses ranging from 36° to 51°C, delivered to the fingerpads of digits 1, 2, 4, and 5 with a contact thermode. Conditioning stimuli (15 sec) bracketed the test stimuli and included vibration, noxious and innocuous heat, cold, and electrical pulses delivered to the fingerpads of digits that were adjacent or nonadjacent to the tested digits. Noxious (48° ± 1.3°C), but not innocuous (43°C), heat stimuli increased the perceived magnitude estimation of innocuous test stimuli (36–43°C) by 20–37% when delivered to adjacent, but not to nonadjacent, digits. No other conditioning stimuli had any effect on the intensity of warmth perception. In contrast, both noxious and innocuous heat or electrical conditioning reduced the magnitude estimation of noxious (50–5°C), but not innocuous, test pulses by 12–22% when delivered to adjacent digits. Conditioning of nonadjacent digits was significantly less effective. The analgesic effects of noxious and innocuous conditioning were approximately equal. Vibratory (120 Hz, 3.5 μm) and cold (15°C) conditioning stimuli were ineffective. The results are consistent with a dermatomal somatotopic organization of tactile and heat modulatory influences on warmth sensation and heat pain. The results further suggest that the neural mechanisms subserving warmth mediate a negative feedback influence on heat pain intensity.  相似文献   

8.
Morphine produces a multiphasic modulation of K+-evoked substance P release from trigeminal slices and dorsal root ganglion neurons in culture. We now found that the C-fiber stimulant, capsaicin (1 M), evoked release of substance P that was inhibited, enhanced and inhibited by 0.1 nM, 1 M, and 10 M morphine, respectively. This morphine's multiphasic effect was blocked by naloxone (100 nM). Neonatal treatment with capsaicin produced thermal hypoalgesia and abolished the multiphasic effect of morphine on substance P release evoked by 50 mM K+. These findings suggest that the multiphasic modulation of substance P release by morphine is dependent on C-type afferents and may be of relevance to nociception.  相似文献   

9.
Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI) for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles) or 200 (for Pacinian corpuscles) Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.  相似文献   

10.

Background

Successful object manipulation relies on the ability to form and retrieve sensorimotor memories of digit forces and positions used in previous object lifts. Past studies of patients affected by Parkinson''s disease (PD) have revealed that the basal ganglia play a crucial role in the acquisition and/or retrieval of sensorimotor memories for grasp control. Whereas it is known that PD impairs anticipatory control of digit forces during grasp, learning deficits associated with the planning of digit placement have yet to be explored. This question is motivated by recent work in healthy subjects revealing that anticipatory control of digit placement plays a crucial role for successful manipulation.

Methodology/Principal Findings

We asked ten PD patients off medication and ten age-matched controls to reach, grasp and lift an object whose center of mass (CM) was on the left, right or center. The only task requirement was to minimize object roll during lift. The CM remained the same across consecutive trials (blocked condition) or was altered from trial to trial (random condition). We hypothesized that impairment of the basal ganglia-thalamo-cortical circuits in PD patients would reduce their ability to anticipate digit placement appropriate to the CM location. Consequently, we predicted that PD patients would exhibit similar digit placement in the blocked vs. random conditions and produce larger peak object rolls than that of control subjects. In the blocked condition, PD patients exhibited significantly weaker modulation of fingertip contact points to CM location and larger object roll than controls (p<0.05 and p<0.01, respectively). Nevertheless, both controls and PD patients minimized object roll more in the blocked than in the random condition (p<0.01).

Conclusions/Significance

Our findings indicate that, even though PD patients may have a residual ability of anticipatory control of digit contact points and forces, they fail to implement a motor plan with the same degree of effectiveness as controls. We conclude that intact basal ganglia-thalamo-cortical circuits are necessary for successful sensorimotor learning of both grasp kinematics and kinetics required for dexterous hand-object interactions.  相似文献   

11.
The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway.  相似文献   

12.
We have used single-unit recording techniques to map the spatial distribution of the primary somatosensory (SI) cortical influences on thalamic somatosensory relay nuclei in the rat. A total of 193 microelectrode penetrations were made to record single neurons in tracks through the medial and lateral ventroposterior (VPL and VPM), ventrolateral (VL), posterior (Po), and reticular (nRt) thalamic nuclei. Single units were classified according to their (1) location within the nuclei, (2) receptive fields, and (3) response to standardized microstimulation in deep layers of the SI cortical forepaw areas. The SI stimulation produced short-latency (1- to 7-msec) excitatory responses in different percentages of neurons recorded in the following thalamic nuclei: VPL, 42.0%; Po, 25.0%; nRt, 16.4%; VL, 13.6%; and VPM, 9.9%. Within the VPL, the highest proportion of responsive neurons was found in the anterior region. Although most of the VL region was unresponsive, the caudal subregion bordering the rostral VPL showed some responsiveness (13.6% of neurons). In general, the spatial pattern of corticothalamic influences appeared to reciprocate the known thalamocortical connection patterns, but with a heterogeneity that was unpredicted.

The same parameters of SI cortical stimulation were used in studies of corticofugal modulation of afferent transmission through the VPL thalamus. A condition—test (C-T) paradigm was implemented in which the cortical stimulation (C) was delivered at a range of time intervals before test (T) mechanical vibratory stimulation was applied to digit 4 of the contralateral forepaw. The time course of cortical effects was analyzed by measuring the averaged evoked unit responses of thalamic neurons to the T stimuli, and plotting them as a function of C-T intervals from 5 to 50 msec. Of the 20 VPL neurons tested during SI stimulation, the average response to T stimulation was decreased a mean of 36%, with the suppression peaking (at 49% inhibition of the afferent response) about 15 msec after the C stimulus. Considerable rostrocaudal variation was observed, however. Whereas neurons in the rostral VPL (near VL) were strongly inhibited (-69%), neurons in the middle and caudal VPL exhibited facilitations at long and short C-T intervals, respectively. This study establishes a specific projection system from the forepaw region of SI cortex to different subregions of the VPL thalamus, producing specific temporal patterns of sensory modulation.  相似文献   

13.
A comparative study of the power spectra of short-latency auditory evoked potentials (SLAEPs) was made in norm and pathological states (neurinoma of the acoustic nerve, concussion of the brain, and epilepsy). Rather specific pattern of changes in the power of the medium- and high-frequency components along with the appearance of subcomponents was revealed. It is supposed that spectral analysis of SLAEP is highly informative and may be useful for neurophysiological clinical diagnostics.  相似文献   

14.
Attached leaves of pumpkin (Cucurbita pepo L.) were treated in high or moderate light at room temperature or a 1°C. The symptoms of photoinhibition appearing during light treatments at room temperature could be attributed to a decrease in the primary activity of PSII. However, when the light treatment was given at 1°C, the quantum yield of photosynthetic oxygen evolution decreased much more than would be expected from the decrease in the ratio of variable to maximum fluorescence at 77°K. Also, light treatment at 1°C lowered the chloroplast wholechain electron transfer capacity much more than it affected PSII electron transport (H2O to paraphenylbenzoquinone). Light treatments at both room temperature and 1°C led to an increase in Bmax, which indicates an increase in the proportion of PSIIβ centers. PSI was not affected by the light treatments, and the treatments in the dark at 1°C caused only minor changes in the measured properties of the leaves. We conclude that high light always inhibits the primary activity of PSII, but at low temperature there is greater inhibition of electron transfer from primary electron accepting plastoquinone of PSII to the plastoquinone pool, which leads to a drastic decrease in the quantum yield of oxygen evolution in the chilling-sensitive pumpkin.  相似文献   

15.
A complete understanding of phagocytosis requires insight into both its biochemical and physical aspects. One of the ways to explore the physical mechanism of phagocytosis is to probe whether and how the target properties (e.g., size, shape, surface states, stiffness, etc.) affect their uptake. Here we report an imaging-based method to explore phagocytosis kinetics, which is compatible with real-time imaging and can be used to validate existing reports using fixed and stained cells. We measure single-event engulfment time from a large number of phagocytosis events to compare how size and shape of targets determine their engulfment. The data shows an increase in the average engulfment time for increased target size, for spherical particles. The uptake time data on nonspherical particles confirms that target shape plays a more dominant role than target size for phagocytosis: Ellipsoids with an eccentricity of 0.954 and much smaller surface areas than spheres were taken up five times more slowly than spherical targets.  相似文献   

16.
Recent physiological studies have shown that neurons in various regions of the central nervous systems continuously receive noisy excitatory and inhibitory synaptic inputs in a balanced and covaried fashion. While this balanced synaptic input (BSI) is typically described in terms of maintaining the stability of neural circuits, a number of experimental and theoretical studies have suggested that BSI plays a proactive role in brain functions such as top-down modulation for executive control. Two issues have remained unclear in this picture. First, given the noisy nature of neuronal activities in neural circuits, how do the modulatory effects change if the top-down control implements BSI with different ratios between inhibition and excitation? Second, how is a top-down BSI realized via only excitatory long-range projections in the neocortex? To address the first issue, we systematically tested how the inhibition/excitation ratio affects the accuracy and reaction times of a spiking neural circuit model of perceptual decision. We defined an energy function to characterize the network dynamics, and found that different ratios modulate the energy function of the circuit differently and form two distinct functional modes. To address the second issue, we tested BSI with long-distance projection to inhibitory neurons that are either feedforward or feedback, depending on whether these inhibitory neurons do or do not receive inputs from local excitatory cells, respectively. We found that BSI occurs in both cases. Furthermore, when relying on feedback inhibitory neurons, through the recurrent interactions inside the circuit, BSI dynamically and automatically speeds up the decision by gradually reducing its inhibitory component in the course of a trial when a decision process takes too long.  相似文献   

17.
南极风大最高每秒可达百米,南极寒冷最低可选零下892摄氏度.南极雪多.遇有阴天随时雪花飘飞。在如此严酷的自然环境下中国南极考察队员要生存要坚持常年考察必须拥有能够依身的站房。可以说把国内的任何建筑模式照搬到南极都是行不通的,不仅影响考察任务的完成.还会对考察队员生命构成威胁。  相似文献   

18.
A complete understanding of phagocytosis requires insight into both its biochemical and physical aspects. One of the ways to explore the physical mechanism of phagocytosis is to probe whether and how the target properties (e.g., size, shape, surface states, stiffness, etc.) affect their uptake. Here we report an imaging-based method to explore phagocytosis kinetics, which is compatible with real-time imaging and can be used to validate existing reports using fixed and stained cells. We measure single-event engulfment time from a large number of phagocytosis events to compare how size and shape of targets determine their engulfment. The data shows an increase in the average engulfment time for increased target size, for spherical particles. The uptake time data on nonspherical particles confirms that target shape plays a more dominant role than target size for phagocytosis: Ellipsoids with an eccentricity of 0.954 and much smaller surface areas than spheres were taken up five times more slowly than spherical targets.  相似文献   

19.
Neuronal assemblies often exhibit stimulus-induced rhythmic activity in the gamma range (30–80 Hz), whose magnitude depends on the attentional load. This has led to the suggestion that gamma rhythms form dynamic communication channels across cortical areas processing the features of behaviorally relevant stimuli. Recently, attention has been linked to a normalization mechanism, in which the response of a neuron is suppressed (normalized) by the overall activity of a large pool of neighboring neurons. In this model, attention increases the excitatory drive received by the neuron, which in turn also increases the strength of normalization, thereby changing the balance of excitation and inhibition. Recent studies have shown that gamma power also depends on such excitatory–inhibitory interactions. Could modulation in gamma power during an attention task be a reflection of the changes in the underlying excitation–inhibition interactions? By manipulating the normalization strength independent of attentional load in macaque monkeys, we show that gamma power increases with increasing normalization, even when the attentional load is fixed. Further, manipulations of attention that increase normalization increase gamma power, even when they decrease the firing rate. Thus, gamma rhythms could be a reflection of changes in the relative strengths of excitation and normalization rather than playing a functional role in communication or control.  相似文献   

20.
Migratory birds can be efficient dispersers of pathogens, yet we know little about the effect of migration and season on the microbial community in avian plumage. This is the first study to describe and compare the microbial plumage community of adult and juvenile migratory birds during the annual cycle and compare the plumage community of migrants to that of resident birds at both neotropical and nearctic locations. We used length heterogeneity PCR (16S rRNA) to describe the microbial assemblage sampled from the plumage of 66 birds in two age classes and from 16 soil samples. Resident birds differed significantly in plumage microbial community composition from migrants (R ≥ 0.238, P < 0.01). Nearctic resident birds had higher plumage microbial diversity than nearctic migrants (R = 0.402, P < 0.01). Plumage microbial composition differed significantly between fall premigratory and either breeding (R ≥ 0.161, P < 0.05) or nonbreeding stages (R = 0.267, P < 0.01). Six bacterial operational taxonomic units contributed most to the dissimilarities found in this assay. Soil microbial community composition was significantly different from all samples of plumage microbial communities (R ≥ 0.700, P < 0.01). The plumage microbial community varies in relation to migration strategy and stage of the annual cycle. We suggest that plumage microbial acquisition begins in the first year at natal breeding locations and reaches equilibrium at the neotropical wintering sites. These data lead us to conclude that migration and season play an important role in the dynamics of the microbial community in avian plumage and may reflect patterns of pathogen dispersal by birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号