首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schistosomiasis, also known as bilharzia or snail fever, is a debilitating neglected tropical disease (NTD), caused by parasitic trematode flatworms of the genus Schistosoma, that has an annual mortality rate of 280,000 people in sub-Saharan Africa alone. Schistosomiasis is transmitted via contact with water bodies that are home to the intermediate host snail which shed the infective cercariae into the water. Schistosome lifecycles are complex, and while not all schistosome species cause human disease, endemic regions also typically feature animal-infecting schistosomes that can have broader economic and/or food security implications. Therefore, the development of species-specific Schistosoma detection technologies may help to inform evidence-based local environmental, food security and health systems policy making. Crucially, schistosomiasis disproportionally affects low- and middle-income (LMIC) countries and for that reason, environmental screening of water bodies for schistosomes may aid with the targeting of water, sanitation, and hygiene (WASH) interventions and preventive chemotherapy to regions at highest risk of schistosomiasis transmission, and to monitor the effectiveness of such interventions at reducing the risk over time. To this end, we developed a DNA-based biosensor termed Specific Nucleic AcId Ligation for the detection of Schistosomes or ‘SNAILS’. Here we show that ‘SNAILS’ enables species-specific detection from genomic DNA (gDNA) samples that were collected from the field in endemic areas.  相似文献   

2.
Schistosomes, parasitic flatworms that cause the tropical disease schistosomiasis, are still a threat. They are responsible for 200 million infections worldwide and an estimated 280,000 deaths annually in sub-Saharan Africa alone. The adult parasites reside as pairs in the mesenteric or perivesicular veins of their human host, where they can survive for up to 30 years. The parasite is a potential activator of blood coagulation according to Virchow''s triad, because it is expected to alter blood flow and endothelial function, leading to hypercoagulability. In contrast, hepatosplenic schistosomiasis patients are in a hypocoagulable and hyperfibrinolytic state, indicating that schistosomes interfere with the haemostatic system of their host. In this review, the interactions of schistosomes with primary haemostasis, secondary haemostasis, fibrinolysis, and the vascular tone will be discussed to provide insight into the reduction in coagulation observed in schistosomiasis patients.Interference with the haemostatic system by pathogens is a common mechanism and has been described for other parasitic worms, bacteria, and fungi as a mechanism to support survival and spread or enhance virulence. Insight into the mechanisms used by schistosomes to interfere with the haemostatic system will provide important insight into the maintenance of the parasitic life cycle within the host. This knowledge may reveal new potential anti-schistosome drug and vaccine targets. In addition, some of the survival mechanisms employed by schistosomes might be used by other pathogens, and therefore, these mechanisms that interfere with host haemostasis might be a broad target for drug development against blood-dwelling pathogens. Also, schistosome antithrombotic or thrombolytic molecules could form potential new drugs in the treatment of haemostatic disorders.  相似文献   

3.
Schistosomes are blood-dwelling parasitic helminths which produce eggs in order to facilitate transmission. Intestinal schistosomes lay eggs in the mesenteries, however, it is unclear how their eggs escape the vasculature to exit the host. Using a murine model of infection, we reveal that Schistosoma mansoni exploits Peyer''s Patches (PP) gut lymphoid tissue as a preferential route of egress for their eggs. Egg deposition is favoured within PP as a result of their more abundant vasculature. Moreover, the presence of eggs causes significant vascular remodeling leading to an expanded venule network. Egg deposition results in a decrease in stromal integrity and lymphoid cellularity, including secretory IgA producing lymphocytes, and the focal recruitment of macrophages. In mice lacking PP, egg excretion is significantly impaired, leading to greater numbers of ova being entrapped in tissues and consequently, exacerbated morbidity. Thus, we demonstrate how schistosomes directly facilitate transmission from the host by targeting lymphoid tissue. For the host, PP-dependency of egg egress represents a trade-off, as limiting potentially life-threatening morbidity is balanced by loss of PP structure and perturbed PP IgA production.  相似文献   

4.
Parasitic flatworms of the genus Schistosoma cause schistosomiasis, a neglected tropical disease that affects hundreds of millions. Treatment of schistosomiasis depends almost entirely on the drug praziquantel (PZQ). Though essential to treating and controlling schistosomiasis, a major limitation of PZQ is that it is not active against immature mammalian-stage schistosomes. Furthermore, there are reports of field isolates with heritable reductions in PZQ susceptibility, and researchers have selected for PZQ-resistant schistosomes in the laboratory. P-glycoprotein (Pgp; ABCB1) and other ATP binding cassette (ABC) transporters remove a wide variety of toxins and xenobiotics from cells, and have been implicated in multidrug resistance (MDR). Changes in ABC transporter structure or expression levels are also associated with reduced drug susceptibility in parasitic helminths, including schistosomes. Here, we show that the activity of PZQ against schistosome adults and juveniles ex vivo is potentiated by co-administration of either the highly potent Pgp inhibitor tariquidar or combinations of inhibitors targeting multiple ABC multidrug transporters. Adult worms exposed to sublethal PZQ concentrations remain active, but co-administration of ABC transporter inhibitors results in complete loss of motility and disruption of the tegument. Notably, juvenile schistosomes (3–4 weeks post infection), normally refractory to 2 µM PZQ, become paralyzed when transporter inhibitors are added in combination with the PZQ. Experiments using the fluorescent PZQ derivative (R)-PZQ-BODIPY are consistent with the transporter inhibitors increasing effective intraworm concentrations of PZQ. Adult worms in which expression of ABC transporters has been suppressed by RNA interference show increased responsiveness to PZQ and increased retention of (R)-PZQ-BODIPY consistent with an important role for these proteins in setting levels of PZQ susceptibility. These results indicate that parasite ABC multidrug transporters might serve as important targets for enhancing the action of PZQ. They also suggest a potentially novel and readily-available strategy for overcoming reduced PZQ susceptibility of schistosomes.  相似文献   

5.
Schistosomes are digenetic trematodes which cause schistosomiasis, also known as bilharzia, one of the main parasitic infections in man. In tropical and subtropical areas an estimated 200 million people are infected and suffer from the debilitating effects of this chronic disease. Schistosomes live in the blood vessels and strongly modulate the immune response of their host to be able to survive the hostile environment that they are exposed to. It has become increasingly clear that glycoconjugates of schistosome larvae, adult worms and eggs play an important role in the evasion mechanisms that schistosomes utilise to withstand the immunological measures of the host. Upon infection, the host mounts innate as well as adaptive immune responses to antigenic glycan elements, setting the immunological scene characteristic for schistosomiasis. In this review we summarise the structural data now available on schistosome glycans and provide data and ideas regarding the role that these glycans play in the various aspects of the glycobiology and immunology of schistosomiasis.  相似文献   

6.
Schistosomes are the causative agents of schistosomiasis, a neglected tropical disease affecting hundreds of millions worldwide and a major global health burden. Current control of schistosomiasis depends largely on a single drug, praziquantel (PZQ). One potential physiological target for new antischistosomal drugs is the parasite's excretory system, which removes wastes and xenobiotics. Multidrug resistance (MDR) transporters that are members of the ATP-binding cassette (ABC) superfamily of proteins are ATP-dependent efflux pumps involved in removal of toxins and xenobiotics from cells. They mediate the phenomenon of multidrug resistance, in which cells resistant to one drug show cross-resistance to a broad range of other agents, and are also associated with reduced drug susceptibility in parasitic helminths. In this review, we survey the different types of ABC transporter genes present within the schistosome genome, and examine recent evidence indicating that at least some of these transporters may play a role in fine-tuning susceptibility of schistosomes to PZQ. Disruption of their function may therefore provide a strategy for enhancing drug action or overcoming or attenuating drug resistance. Furthermore, dissection of the roles these transporters may play in normal schistosome physiology could potentially lead to identification of highly "druggable" targets for new antischistosomals.  相似文献   

7.
Schistosome worms of the genus Schistosoma are the causative agents of schistosomiasis, a devastating parasitic disease affecting more than 240 million people worldwide. Schistosomes have complex life cycles, and have been challenging to manipulate genetically due to the dearth of molecular tools. Although the use of gene overexpression, gene knockouts or knockdowns are straight-forward genetic tools applied in many model systems, gene misexpression and genetic manipulation of schistosome genes in vivo has been exceptionally challenging, and plasmid based transfection inducing gene expression is limited. We recently reported the use of polyethyleneimine (PEI) as a simple and effective method for schistosome transfection and gene expression. Here, we use PEI-mediated schistosome plasmid transgenesis to define and compare gene expression profiles from endogenous and nonendogenous promoters in the schistosomula stage of schistosomes that are potentially useful to misexpress (underexpress or overexpress) gene product levels. In addition, we overexpress schistosome genes in vivo using a strong promoter and show plasmid-based misregulation of genes in schistosomes, producing a clear and distinct phenotype- death. These data focus on the schistosomula stage, but they foreshadow strong potential for genetic characterization of schistosome molecular pathways, and potential for use in overexpression screens and drug resistance studies in schistosomes using plasmid-based gene expression.  相似文献   

8.
Schistosomiasis is caused by dioecious helminths of the genus Schistosoma. Recent work indicated that unpaired female and male schistosomes can survive within their definitive host for at least 1 year, although the viability or fertility of these worms after subsequent pairing remained untested. We performed two experiments on laboratory mice, one with female Schistosoma japonicum exposure first and male schistosomes second and another vice versa. After surviving as single-sex unpaired forms for up to 1 year, 58.5% of male and 70% of female schistosomes were able to mate and produce viable eggs. This highlights an additional biological challenge in achieving elimination of schistosomiasis.  相似文献   

9.
Schistosomes are parasitic worms that are a prime example of a complex multicellular pathogen that flourishes in the human host despite the development of a pronounced immune response. Understanding how the immune system deals with such pathogens is a daunting challenge. The past decade has seen the use of a wide range of new approaches to determine the nature and function of the immune response to schistosomes. Here, we attempt to summarize advances in our understanding of the immunology of schistosomiasis, with the bulk of the review reflecting the experimental focus on Schistosoma mansoni infection in mice.  相似文献   

10.
Schistosomiasis is a parasitic zoonosis caused by small trematode worms called schistosomes, amongst which Schistosoma japonicum (S. japonicum) is endemic in Asia. In order to understand the schistosome-induced changes in the host metabolism so as to facilitate early diagnosis of schistosomiasis, we systematically investigated the dynamic metabolic responses of mice biofluids and liver tissues to S. japonicum infection for five weeks using 1H NMR spectroscopy in conjunction with multivariate data analysis. We were able to detect schistosomiasis at the third week post-infection, which was one week earlier than “gold standard” methods. We found that S. japonicum infection caused significant elevation of urinary 3-ureidopropionate, a uracil catabolic product, and disturbance of lipid metabolism, stimulation of glycolysis, depression of tricarboxylic acid cycle and disruption of gut microbiota regulations. We further found that the changes of 3-ureidopropionate and overall metabolic changes in both urinary and plasma samples were closely correlated with the time-course of disease progression. Furthermore, such changes together with liver tissue metabonome were clearly associated with the worm-burdens. These findings provided more insightful understandings of host biological responses to the infection and demonstrated that metabonomic analysis is potentially useful for early detection of schistosomiasis and comprehension of the mechanistic aspects of disease progression.  相似文献   

11.
Schistosomes cause schistosomiasis, the world’s second most important parasitic disease after malaria in terms of public health and social-economic impacts. A peculiar feature of these dioecious parasites is their ability to produce viable and fertile hybrid offspring. Originally only present in the tropics, schistosomiasis is now also endemic in southern Europe. Based on the analysis of two genetic markers the European schistosomes had previously been identified as hybrids between the livestock- and the human-infective species Schistosoma bovis and Schistosoma haematobium, respectively. Here, using PacBio long-read sequencing technology we performed genome assembly improvement and annotation of S. bovis, one of the parental species for which no satisfactory genome assembly was available. We then describe the whole genome introgression levels of the hybrid schistosomes, their morphometric parameters (eggs and adult worms) and their compatibility with two European snail strains used as vectors (Bulinus truncatus and Planorbarius metidjensis). Schistosome-snail compatibility is a key parameter for the parasites life cycle progression, and thus the capability of the parasite to establish in a given area. Our results show that this Schistosoma hybrid is strongly introgressed genetically, composed of 77% S. haematobium and 23% S. bovis origin. This genomic admixture suggests an ancient hybridization event and subsequent backcrosses with the human-specific species, S. haematobium, before its introduction in Corsica. We also show that egg morphology (commonly used as a species diagnostic) does not allow for accurate hybrid identification while genetic tests do.  相似文献   

12.
Schistosomes, parasitic flatworms that cause the neglected tropical disease schistosomiasis, have been considered to have an entirely carbohydrate based metabolism, with glycolysis playing a dominant role in the adult parasites. However, we have discovered a close link between mitochondrial oxygen consumption by female schistosomes and their ability to produce eggs. We show that oxygen consumption rates (OCR) and egg production are significantly diminished by pharmacologic inhibition of carnitine palmitoyl transferase 1 (CPT1), which catalyzes a rate limiting step in fatty acid β-oxidation (FAO) and by genetic loss of function of acyl CoA synthetase, which complexes with CPT1 and activates long chain FA for use in FAO, and of acyl CoA dehydrogenase, which catalyzes the first step in FAO within mitochondria. Declines in OCR and egg production correlate with changes in a network of lipid droplets within cells in a specialized reproductive organ, the vitellarium. Our data point to the importance of regulated lipid stores and FAO for the compartmentalized process of egg production in schistosomes.  相似文献   

13.
Schistosomes have a well developed nervous system that coordinates virtually every activity of the parasite and therefore is considered to be a promising target for chemotherapeutic intervention. Neurotransmitter receptors, in particular those involved in neuromuscular control, are proven drug targets in other helminths but very few of these receptors have been identified in schistosomes and little is known about their roles in the biology of the worm. Here we describe a novel Schistosoma mansoni G protein-coupled receptor (named SmGPR-3) that was cloned, expressed heterologously and shown to be activated by dopamine, a well established neurotransmitter of the schistosome nervous system. SmGPR-3 belongs to a new clade of "orphan" amine-like receptors that exist in schistosomes but not the mammalian host. Further analysis of the recombinant protein showed that SmGPR-3 can also be activated by other catecholamines, including the dopamine metabolite, epinine, and it has an unusual antagonist profile when compared to mammalian receptors. Confocal immunofluorescence experiments using a specific peptide antibody showed that SmGPR-3 is abundantly expressed in the nervous system of schistosomes, particularly in the main nerve cords and the peripheral innervation of the body wall muscles. In addition, we show that dopamine, epinine and other dopaminergic agents have strong effects on the motility of larval schistosomes in culture. Together, the results suggest that SmGPR-3 is an important neuronal receptor and is probably involved in the control of motor activity in schistosomes. We have conducted a first analysis of the structure of SmGPR-3 by means of homology modeling and virtual ligand-docking simulations. This investigation has identified potentially important differences between SmGPR-3 and host dopamine receptors that could be exploited to develop new, parasite-selective anti-schistosomal drugs.  相似文献   

14.
15.
16.
Adults of the human parasitic trematode Schistosoma mansoni, which causes hepatosplenic/intestinal complications in humans, synthesize glycoconjugates containing the Lewis x (Lex) Galbeta1-->4(Fucalpha1-- >3)GlcNAcbeta1-->R, but not sialyl Lewis x (sLex), antigen. We now report on our analyses of Lexand sLexexpression in S.haematobium and S.japonicum, which are two other major species of human schistosomes that cause disease, and the possible autoimmunity to these antigens in infected individuals. Antigen expression was evaluated by both ELISA and Western blot analyses of detergent extracts of parasites using monoclonal antibodies. Several high molecular weight glycoproteins in both S. haematobium and S. japonicum contain the Lexantigen, but no sialyl Lexantigen was detected. In addition, sera from humans and rodents infected with S.haematobium and S.japonicum contain antibodies reactive with Lex. These results led us to investigate whether Lexantigens are expressed in other helminths, including the parasitic trematode Fasciola hepatica , the parasitic nematode Dirofilaria immitis (dog heartworm), the ruminant nematode Haemonchus contortus , and the free-living nematode Caenorhabditis elegans . Neither Lexnor sialyl-Lexis detectable in these other helminths. Furthermore, none of the helminths, including schistosomes, express Lea, Leb, Ley, or the H- type 1 antigen. However, several glycoproteins from all helminths analyzed are bound by Lotus tetragonolobus agglutinin , which binds Fucalpha1-->3GlcNAc, and Wisteria floribunda agglutinin, which binds GalNAcbeta1-->4GlcNAc (lacdiNAc or LDN). Thus, schistosomes may be unique among helminths in expressing the Lexantigen, whereas many different helminths may express alpha1,3-fucosylated glycans and the LDN motif.   相似文献   

17.
Schistosomes are intravascular helminths that infect over 200 million people worldwide. Deposition of eggs by adult schistosomes stimulates Th2 responses to egg antigens and induces granulomatous pathology that is a hallmark of schistosome infection. Paradoxically, schistosomes require host immune function for their development and reproduction and for egress of parasite eggs from the host. To identify potential mechanisms by which immune cells might influence parasite development prior to the onset of egg production, we assessed immune function in mice infected with developing schistosomes. We found that pre-patent schistosome infection is associated with a loss of T cell responsiveness to other antigens and is due to a diminution in the ability of innate antigen-presenting cells to stimulate T cells. Diminution of stimulatory capacity by schistosome worms specifically affected CD11b+ cells and did not require concomitant adaptive responses. We could not find evidence for production of a diffusible inhibitor of T cells by innate cells from infected mice. Rather, inhibition of T cell responsiveness by accessory cells required cell contact and only occurred when cells from infected mice outnumbered competent APCs by more than 3∶1. Finally, we show that loss of T cell stimulatory capacity may in part be due to suppression of IL-12 expression during pre-patent schistosome infection. Modulation of CD4+ T cell and APC function may be an aspect of host immune exploitation by schistosomes, as both cell types influence parasite development during pre-patent schistosome infection.  相似文献   

18.
BackgroundWhipworms and blood flukes combined infect almost one billion people in developing countries. Only a handful of anthelmintic drugs are currently available to treat these infections effectively; there is therefore an urgent need for new generations of anthelmintic compounds. Medicinal plants have presented as a viable source of new parasiticides. Ajania nubigena, the Bhutanese daisy, has been used in Bhutanese traditional medicine for treating various diseases and our previous studies revealed that small molecules from this plant have antimalarial properties. Encouraged by these findings, we screened four major compounds isolated from A. nubigena for their anthelmintic properties.Conclusions/SignificanceAmong the four compounds tested, luteolin demonstrated the best broad-spectrum activity against two different helminths—T. muris and S. mansoni—and was effective against juvenile schistosomes, the stage that is refractory to the current gold standard drug, praziquantel. Medicinal chemistry optimisation including cytotoxicity analysis, analogue development and structure-activity relationship studies are warranted and could lead to the identification of more potent chemical entities for the control of parasitic helminths of humans and animals.  相似文献   

19.
Schistosomes are parasitic flatworms that infect millions of people in (sub)tropical areas around the world. Glycoconjugates of schistosomes play a critical role in the interaction of the different developmental stages of the parasite with the host. In particular, glycosylated components of the eggs produced by the adult worm pairs living in the bloodstream are strongly immunogenic. We have investigated the glycosylation of interleukin-4-inducing factor from schistosome eggs (IPSE/alpha-1), a major secretory egg antigen from Schistosoma mansoni that triggers interleukin-4 production in human basophils, by MS analysis of tryptic glycopeptides. Nanoscale LC-MS(/MS) and MALDI-TOF(/TOF)-MS studies combined with enzymatic degradations showed that monomeric IPSE/alpha-1 contains two N-glycosylation sites, which are each occupied for a large proportion with core-difucosylated diantennary glycans that carry one or more Lewis X motifs. Lewis X has been reported as a major immunogenic glycan element of schistosomes. This is the first report both on the expression of Lewis X on a specific schistosome egg protein and on a protein-specific glycosylation analysis of schistosome eggs.  相似文献   

20.
Allergic reactions can be considered as maladaptive IgE immune responses towards environmental antigens. Intriguingly, these mechanisms are observed to be very similar to those implicated in the acquisition of an important degree of immunity against metazoan parasites (helminths and arthropods) in mammalian hosts. Based on the hypothesis that IgE-mediated immune responses evolved in mammals to provide extra protection against metazoan parasites rather than to cause allergy, we predict that the environmental allergens will share key properties with the metazoan parasite antigens that are specifically targeted by IgE in infected human populations. We seek to test this prediction by examining if significant similarity exists between molecular features of allergens and helminth proteins that induce an IgE response in the human host. By employing various computational approaches, 2712 unique protein molecules that are known IgE antigens were searched against a dataset of proteins from helminths and parasitic arthropods, resulting in a comprehensive list of 2445 parasite proteins that show significant similarity through sequence and structure with allergenic proteins. Nearly half of these parasite proteins from 31 species fall within the 10 most abundant allergenic protein domain families (EF-hand, Tropomyosin, CAP, Profilin, Lipocalin, Trypsin-like serine protease, Cupin, BetV1, Expansin and Prolamin). We identified epitopic-like regions in 206 parasite proteins and present the first example of a plant protein (BetV1) that is the commonest allergen in pollen in a worm, and confirming it as the target of IgE in schistosomiasis infected humans. The identification of significant similarity, inclusive of the epitopic regions, between allergens and helminth proteins against which IgE is an observed marker of protective immunity explains the ‘off-target’ effects of the IgE-mediated immune system in allergy. All these findings can impact the discovery and design of molecules used in immunotherapy of allergic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号