首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Living cells control and regulate their biological processes through the coordinated action of a large number of proteins that assemble themselves into an array of dynamic, multi-protein complexes1. To gain a mechanistic understanding of the various cellular processes, it is crucial to determine the structure of such protein complexes, and reveal how their structural organization dictates their function. Many aspects of multi-protein complexes are, however, difficult to characterize, due to their heterogeneous nature, asymmetric structure, and dynamics. Therefore, new approaches are required for the study of the tertiary levels of protein organization.One of the emerging structural biology tools for analyzing macromolecular complexes is mass spectrometry (MS)2-5. This method yields information on the complex protein composition, subunit stoichiometry, and structural topology. The power of MS derives from its high sensitivity and, as a consequence, low sample requirement, which enables examination of protein complexes expressed at endogenous levels. Another advantage is the speed of analysis, which allows monitoring of reactions in real time. Moreover, the technique can simultaneously measure the characteristics of separate populations co-existing in a mixture. Here, we describe a detailed protocol for the application of structural MS to the analysis of large protein assemblies. The procedure begins with the preparation of gold-coated capillaries for nanoflow electrospray ionization (nESI). It then continues with sample preparation, emphasizing the buffer conditions which should be compatible with nESI on the one hand, and enable to maintain complexes intact on the other. We then explain, step-by-step, how to optimize the experimental conditions for high mass measurements and acquire MS and tandem MS spectra. Finally, we chart the data processing and analyses that follow. Rather than attempting to characterize every aspect of protein assemblies, this protocol introduces basic MS procedures, enabling the performance of MS and MS/MS experiments on non-covalent complexes. Overall, our goal is to provide researchers unacquainted with the field of structural MS, with knowledge of the principal experimental tools.  相似文献   

2.
Since most cellular processes are mediated by macromolecular assemblies, the systematic identification of protein-protein interactions (PPI) and the identification of the subunit composition of multi-protein complexes can provide insight into gene function and enhance understanding of biological systems1, 2. Physical interactions can be mapped with high confidence vialarge-scale isolation and characterization of endogenous protein complexes under near-physiological conditions based on affinity purification of chromosomally-tagged proteins in combination with mass spectrometry (APMS). This approach has been successfully applied in evolutionarily diverse organisms, including yeast, flies, worms, mammalian cells, and bacteria1-6. In particular, we have generated a carboxy-terminal Sequential Peptide Affinity (SPA) dual tagging system for affinity-purifying native protein complexes from cultured gram-negative Escherichia coli, using genetically-tractable host laboratory strains that are well-suited for genome-wide investigations of the fundamental biology and conserved processes of prokaryotes1, 2, 7. Our SPA-tagging system is analogous to the tandem affinity purification method developed originally for yeast8, 9, and consists of a calmodulin binding peptide (CBP) followed by the cleavage site for the highly specific tobacco etch virus (TEV) protease and three copies of the FLAG epitope (3X FLAG), allowing for two consecutive rounds of affinity enrichment. After cassette amplification, sequence-specific linear PCR products encoding the SPA-tag and a selectable marker are integrated and expressed in frame as carboxy-terminal fusions in a DY330 background that is induced to transiently express a highly efficient heterologous bacteriophage lambda recombination system10. Subsequent dual-step purification using calmodulin and anti-FLAG affinity beads enables the highly selective and efficient recovery of even low abundance protein complexes from large-scale cultures. Tandem mass spectrometry is then used to identify the stably co-purifying proteins with high sensitivity (low nanogram detection limits).Here, we describe detailed step-by-step procedures we commonly use for systematic protein tagging, purification and mass spectrometry-based analysis of soluble protein complexes from E. coli, which can be scaled up and potentially tailored to other bacterial species, including certain opportunistic pathogens that are amenable to recombineering. The resulting physical interactions can often reveal interesting unexpected components and connections suggesting novel mechanistic links. Integration of the PPI data with alternate molecular association data such as genetic (gene-gene) interactions and genomic-context (GC) predictions can facilitate elucidation of the global molecular organization of multi-protein complexes within biological pathways. The networks generated for E. coli can be used to gain insight into the functional architecture of orthologous gene products in other microbes for which functional annotations are currently lacking.  相似文献   

3.
Purified myelin basic protein (MBP) from various species contains several post-translationally modified forms termed charge components or charge isomers. Chicken MBP contains four charge components denoted as C1, C2, C3 and C8. (The C8 isomer is a complex mixture and was not investigated in this study.) These findings are in contrast to those found for human, bovine and other mammalian MBP’s. Mammalian MBP’s, each of which contain seven or eight charge components depending on the analysis of the CM-52 chromatographic curves and the PAGE gels obtained under basic pH conditions. Chicken MBP components C1, C2 and C3 were treated with trypsin and endoproteinase Glu-C. The resulting digests were analyzed by capillary liquid chromatography combined with either an ion trap tandem mass spectrometer or with a Fourier transform ion cyclotron resonance mass spectrometer. This instrumentation permitted establishing the amino acid composition and the determination of the post-translational modifications for each of the three charge components C1-C3. With the exception of N-terminal acetylation, the post-translational modifications were partial. The C1 component lacks any phosphorylated sites, a finding in agreement with the analysis of other MBP species. It also had a single methylation at R105 as did the components C2 and C3. The C2 component contains ten phosphorylated sites (S7, S18, S33, S64, S73, T96, S113, S141, S164, and S168), and modified arginine to citrulline residues at R24, and R165. Component C3 contains eight phosphorylated sites (S7, S33, S64, T96, S113, S141, S164, and S168), and citrulline residues at Arginine 41, R24 and R165. Partial deamidation of glutamine residues Q71, Q101 and Q146 were present in addition to asparagine N90 that was found in all three charge components. The glutamine at residue 3 is partially deamidated in isomers C1 and C2, whereas glutamine 74 and asparagine 83 were found not to be deamidated. Comparison of the PTM’s of MBP’s isolated from several vertebrate species reveals marked differences in their phosphate content. Chicken MBP does not share any phosphorylated sites with dogfish MBP; However, it does contain phosphorylated serine and threonine residues in common with mammalian MBP.  相似文献   

4.
5.
蛋白质翻译后修饰(Protein post-translational modification,PTMs)是一种重要的细胞调控机制,通过在蛋白质的氨基酸侧链上共价结合一些化学小分子基团来调节蛋白质的活性、结构、定位和蛋白质间的互作关系,从而精细调控蛋白质生物学功能的动态变化。PTMs是植物对环境变化最快、最早的反应之一,是植物蛋白质组多样性的关键机制,在植物生长发育和对环境适应中起重要作用。主要介绍了近年来植物磷酸化、乙酰化、琥珀酰化、糖基化、泛素化、巴豆酰化、S-亚硝基化及2-羟基异丁酰化等PTMs研究进展,旨为认识植物PTMs的关键生物学功能和研究前景提供参考。  相似文献   

6.
In a unique global chromatin remodeling process during mammalian spermiogenesis, 90% of the nucleosomal histones are replaced by testis-specific transition proteins, TP1, TP2, and TP4. These proteins are further substituted by sperm-specific protamines, P1 and P2, to form a highly condensed sperm chromatin. In spermatozoa, a small proportion of chromatin, which ranges from 1 to 10% in mammals, retains the nucleosomal architecture and is implicated to play a role in transgenerational inheritance. However, there is still no mechanistic understanding of the interaction of chromatin machinery with histones and transition proteins, which facilitate this selective histone replacement from chromatin. Here, we report the identification of 16 and 19 novel post-translational modifications on rat endogenous transition proteins, TP1 and TP2, respectively, by mass spectrometry. By in vitro assays and mutational analysis, we demonstrate that protein arginine methyltransferase PRMT4 (CARM1) methylates TP2 at Arg71, Arg75, and Arg92 residues, and lysine methyltransferase KMT7 (Set9) methylates TP2 at Lys88 and Lys91 residues. Further studies with modification-specific antibodies that recognize TP2K88me1 and TP2R92me1 modifications showed that they appear in elongating to condensing spermatids and predominantly associated with the chromatin-bound TP2. This work establishes the repertoire of post-translational modifications that occur on TP1 and TP2, which may play a significant role in various chromatin-templated events during spermiogenesis and in the establishment of the sperm epigenome.  相似文献   

7.
Over the last few years we have developed mass spectrometry-based approaches for selective identification of a variety of posttranslational modifications, and for sequencing the modified peptides. These methods do not involve radiolabeling or derivatization. Instead, modification-specific fragment ions are produced by collision-induced dissociation (CID) during analysis of peptides by ESMS. The formation and detection of these marker ions on-the-fly during the LC-ESMS analysis of a protein digest is a powerful technique for identifying posttranslationally modified peptides. Using the marker ion strategy in an orthogonal fashion, a precursor ion scan can detect peptides which give rise to a diagnostic fragment ion, even in an unfractionated protein digest. Once the modified peptide has been located, the appropriate precursor ion can be sequenced by tandem MS. The utility and interplay of this approach to mapping PTM is illustrated with examples that involve protein glycosylation and phosphorylation.  相似文献   

8.
Research in proteomics has exploded in recent years with advances in mass spectrometry capabilities that have led to the characterization of numerous proteomes, including those from viruses, bacteria, and yeast.  In comparison, analysis of the human proteome lags behind, partially due to the sheer number of proteins which must be studied, but also the complexity of networks and interactions these present. To specifically address the challenges of understanding the human proteome, we have developed HaloTag technology for protein isolation, particularly strong for isolation of multiprotein complexes and allowing more efficient capture of weak or transient interactions and/or proteins in low abundance.  HaloTag is a genetically encoded protein fusion tag, designed for covalent, specific, and rapid immobilization or labelling of proteins with various ligands. Leveraging these properties, numerous applications for mammalian cells were developed to characterize protein function and here we present methodologies including: protein pull-downs used for discovery of novel interactions or functional assays, and cellular localization. We find significant advantages in the speed, specificity, and covalent capture of fusion proteins to surfaces for proteomic analysis as compared to other traditional non-covalent approaches. We demonstrate these and the broad utility of the technology using two important epigenetic proteins as examples, the human bromodomain protein BRD4, and histone deacetylase HDAC1.  These examples demonstrate the power of this technology in enabling  the discovery of novel interactions and characterizing cellular localization in eukaryotes, which will together further understanding of human functional proteomics.                相似文献   

9.
A combination of mass spectrometric techniques has been used to investigate the amino acid sequence and post-translational modifications of alpha B-crystallin isolated from bovine lenses by gel filtration chromatography and reversed-phase high performance liquid chromatography. Chromatographic fractions were analyzed by electrospray ionization mass spectrometry to determine the homogeneity and molecular weights of proteins in the fractions. The alpha B-crystallin primary gene product, its mono- and diphosphorylated forms, its N- and C-terminal truncated forms, as well as other lens proteins unrelated to the alpha B-crystallins were identified by their molecular weights. Detailed information about the sites of phosphorylation, as well as evidence supporting reassignment of Asn to Asp at position 80, was obtained by analyzing proteolytic digests of these proteins by fast atom bombardment mass spectrometry. Results of this investigation indicate that alpha B-crystallin is phosphorylated in vivo at Ser 45, Ser 59, and either Ser 19 or 21. From the specificity of phosphorylation of alpha-crystallins, it appears that there may be two different kinases responsible for their phosphorylation.  相似文献   

10.
A concept of unique peptides(CUP)was proposed and implemented to identify whole-cell proteins from tandem mass spectrometry(MS/MS)ion spectra.A unique peptide is defined as a peptide,irrespective of its length,that exists only in one protein of a proteome of interest,despite the fact that this peptide may appear more than once in the same protein.Integrating CUP,a two-step whole-cell protein identification strategy was developed to further increase the confidence of identified proteins.A dataset containing 40,243 MS/MS ion spectra of Saccharomyces cerevisiae and protein identification tools including Mascot and SEQUEST were used to illustrate the proposed concept and strategy.Without implementing CUP,the proteins identified by SEQUEST are 2.26 fold of those identified by Mascot.When CUP was applied,the proteins bearing unique peptides identified by SEQUEST are3.89 fold of those identified by Mascot.By cross-comparing two sets of identified proteins,only 89 common proteins derived from CUP were found.The key discrepancy between identified proteins was resulted from the filtering criteria employed by each protein identification tool.According to the origin of peptides classified by CUP and the commonality of proteins recognized by protein identification tools,all identified proteins were cross-compared,resulting in four groups of proteins possessing different levels of assigned confidence.  相似文献   

11.
Homogenization by bead beating is a fast and efficient way to release DNA, RNA, proteins, and metabolites from budding yeast cells, which are notoriously hard to disrupt. Here we describe the use of a bead mill homogenizer for the extraction of proteins into buffers optimized to maintain the functions, interactions and post-translational modifications of proteins. Logarithmically growing cells expressing the protein of interest are grown in a liquid growth media of choice. The growth media may be supplemented with reagents to induce protein expression from inducible promoters (e.g. galactose), synchronize cell cycle stage (e.g. nocodazole), or inhibit proteasome function (e.g. MG132). Cells are then pelleted and resuspended in a suitable buffer containing protease and/or phosphatase inhibitors and are either processed immediately or frozen in liquid nitrogen for later use. Homogenization is accomplished by six cycles of 20 sec bead-beating (5.5 m/sec), each followed by one minute incubation on ice. The resulting homogenate is cleared by centrifugation and small particulates can be removed by filtration. The resulting cleared whole cell extract (WCE) is precipitated using 20% TCA for direct analysis of total proteins by SDS-PAGE followed by Western blotting. Extracts are also suitable for affinity purification of specific proteins, the detection of post-translational modifications, or the analysis of co-purifying proteins. As is the case for most protein purification protocols, some enzymes and proteins may require unique conditions or buffer compositions for their purification and others may be unstable or insoluble under the conditions stated. In the latter case, the protocol presented may provide a useful starting point to empirically determine the best bead-beating strategy for protein extraction and purification. We show the extraction and purification of an epitope-tagged SUMO E3 ligase, Siz1, a cell cycle regulated protein that becomes both sumoylated and phosphorylated, as well as a SUMO-targeted ubiquitin ligase subunit, Slx5.  相似文献   

12.
The direct contact of cells to the environment is mediated in many organisms by an extracellular matrix. One common aspect of extracellular matrices is that they contain complex sugar moieties in form of glycoproteins, proteoglycans, and/or polysaccharides. Examples include the extracellular matrix of humans and animal cells consisting mainly of fibrillar proteins and proteoglycans or the polysaccharide based cell walls of plants and fungi, and the proteoglycan/glycolipid based cell walls of bacteria. All these glycostructures play vital roles in cell-to-cell and cell-to-environment communication and signalling.An extraordinary complex example of an extracellular matrix is present in the walls of higher plant cells. Their wall is made almost entirely of sugars, up to 75% dry weight, and consists of the most abundant biopolymers present on this planet. Therefore, research is conducted how to utilize these materials best as a carbon-neutral renewable resource to replace petrochemicals derived from fossil fuel. The main challenge for fuel conversion remains the recalcitrance of walls to enzymatic or chemical degradation due to the unique glycostructures present in this unique biocomposite.Here, we present a method for the rapid and sensitive analysis of plant cell wall glycostructures. This method OLIgo Mass Profiling (OLIMP) is based the enzymatic release of oligosaccharides from wall materials facilitating specific glycosylhydrolases and subsequent analysis of the solubilized oligosaccharide mixtures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS)1 (Figure 1). OLIMP requires walls of only 5000 cells for a complete analysis, can be performed on the tissue itself2, and is amenable to high-throughput analyses3. While the absolute amount of the solubilized oligosaccharides cannot be determined by OLIMP the relative abundance of the various oligosaccharide ions can be delineated from the mass spectra giving insights about the substitution-pattern of the native polysaccharide present in the wall.OLIMP can be used to analyze a wide variety of wall polymers, limited only by the availability of specific enzymes4. For example, for the analysis of polymers present in the plant cell wall enzymes are available to analyse the hemicelluloses xyloglucan using a xyloglucanase5, 11, 12, 13, xylan using an endo-β-(1-4)-xylanase 6,7, or for pectic polysaccharides using a combination of a polygalacturonase and a methylesterase 8. Furthermore, using the same principles of OLIMP glycosylhydrolase and even glycosyltransferase activities can be monitored and determined 9.  相似文献   

13.
Cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel located primarily at the apical membranes of epithelial cells, plays a crucial role in transepithelial fluid homeostasis1-3. CFTR has been implicated in two major diseases: cystic fibrosis (CF)4 and secretory diarrhea5. In CF, the synthesis or functional activity of the CFTR Cl- channel is reduced. This disorder affects approximately 1 in 2,500 Caucasians in the United States6. Excessive CFTR activity has also been implicated in cases of toxin-induced secretory diarrhea (e.g., by cholera toxin and heat stable E. coli enterotoxin) that stimulates cAMP or cGMP production in the gut7.Accumulating evidence suggest the existence of physical and functional interactions between CFTR and a growing number of other proteins, including transporters, ion channels, receptors, kinases, phosphatases, signaling molecules, and cytoskeletal elements, and these interactions between CFTR and its binding proteins have been shown to be critically involved in regulating CFTR-mediated transepithelial ion transport in vitro and also in vivo8-19. In this protocol, we focus only on the methods that aid in the study of the interactions between CFTR carboxyl terminal tail, which possesses a protein-binding motif [referred to as PSD95/Dlg1/ZO-1 (PDZ) motif], and a group of scaffold proteins, which contain a specific binding module referred to as PDZ domains. So far, several different PDZ scaffold proteins have been reported to bind to the carboxyl terminal tail of CFTR with various affinities, such as NHERF1, NHERF2, PDZK1, PDZK2, CAL (CFTR-associated ligand), Shank2, and GRASP20-27. The PDZ motif within CFTR that is recognized by PDZ scaffold proteins is the last four amino acids at the C terminus (i.e., 1477-DTRL-1480 in human CFTR)20. Interestingly, CFTR can bind more than one PDZ domain of both NHERFs and PDZK1, albeit with varying affinities22. This multivalency with respect to CFTR binding has been shown to be of functional significance, suggesting that PDZ scaffold proteins may facilitate formation of CFTR macromolecular signaling complexes for specific/selective and efficient signaling in cells16-18.Multiple biochemical assays have been developed to study CFTR-involving protein interactions, such as co-immunoprecipitation, pull-down assay, pair-wise binding assay, colorimetric pair-wise binding assay, and macromolecular complex assembly assay16-19,28,29. Here we focus on the detailed procedures of assembling a PDZ motif-dependent CFTR-containing macromolecular complex in vitro, which is used extensively by our laboratory to study protein-protein or domain-domain interactions involving CFTR16-19,28,29.  相似文献   

14.
Terrestrial plants produce extracellular aliphatic biopolyesters that modify cell walls of specific tissues. Epidermal cells synthesize cutin, a polyester of glycerol and modified fatty acids that constitutes the framework of the cuticle that covers aerial plant surfaces. Suberin is a related lipid polyester that is deposited on the cell walls of certain tissues, including the root endodermis and the periderm of tubers, tree bark and roots. These lipid polymers are highly variable in composition among plant species, and often differ among tissues within a single species. Here, we describe a detailed protocol to study the monomer composition of cutin in Arabidopsis thaliana leaves by sodium methoxide (NaOMe)-catalyzed depolymerisation, derivatization, and subsequent gas chromatography-mass spectrometry (GC/MS) analysis. This method can be used to investigate the monomers of insoluble polyesters isolated from whole delipidated plant tissues bearing either cutin or suberin. The method can by applied not only to characterize the composition of lipid polymers in species not previously analyzed, but also as an analytical tool in forward and reverse genetic approaches to assess candidate gene function.  相似文献   

15.
Ambient ionization methods in mass spectrometry allow analytical investigations to be performed directly on a tissue or biofilm under native-like experimental conditions. Laser ablation electrospray ionization (LAESI) is one such development and is particularly well-suited for the investigation of water-containing specimens. LAESI utilizes a mid-infrared laser beam (2.94 μm wavelength) to excite the water molecules of the sample. When the ablation fluence threshold is exceeded, the sample material is expelled in the form of particulate matter and these projectiles travel to tens of millimeters above the sample surface. In LAESI, this ablation plume is intercepted by highly charged droplets to capture a fraction of the ejected sample material and convert its chemical constituents into gas-phase ions. A mass spectrometer equipped with an atmospheric-pressure ion source interface is employed to analyze and record the composition of the released ions originating from the probed area (pixel) of the sample. A systematic interrogation over an array of pixels opens a way for molecular imaging in the microprobe analysis mode. A unique aspect of LAESI mass spectrometric imaging is depth profiling that, in combination with lateral imaging, enables three-dimensional (3D) molecular imaging. With current lateral and depth resolutions of ~100 μm and ~40 μm, respectively, LAESI mass spectrometric imaging helps to explore the molecular structure of biological tissues. Herein, we review the major elements of a LAESI system and provide guidelines for a successful imaging experiment.  相似文献   

16.
Compelling evidence suggests that deoxycytidine kinase (dCK), a key enzyme in the salvage of deoxyribonucleosides and in the activation of clinically relevant nucleoside analogues, can be regulated by reversible phosphorylation. In this study, we show that dCK overexpressed in HEK-293T cells was labelled after incubation of the cells with [32P]orthophosphate. Tandem mass spectrometry allowed the identification of 4 in vivo phosphorylation sites, Thr3, Ser11, Ser15, and Ser74. These results provide the first evidence that dCK is constitutively multiphosphorylated in intact cells. In addition, site-directed mutagenesis demonstrated that phosphorylation of Ser74, the major in vivo phosphorylation site, is crucial for dCK activity.  相似文献   

17.
18.
  相似文献   

19.
串联质谱数据的从头解析与蛋白质的数据库搜索鉴定   总被引:3,自引:0,他引:3  
蛋白质的鉴定是蛋白质组学研究中必不可少的一步。用串联质谱 (tandemmassspectrometry ,MS/MS)可以进行多肽的从头测序 (denovosequencing) ,并搜索数据库以鉴定蛋白质。用图论以及真实谱 理论谱联配 (alignment)的方法对串联质谱得到的多肽图谱进行从头解析 ,得到了可靠的多肽序列 ,并应用到数据库搜索中鉴定了相应的蛋白质。同时 ,还用统计的方法对SwissProt以及TrEMBL蛋白质数据库进行了详细的分析。结果表明 ,3个四肽或者 2个五肽或者 1个八肽一般可以唯一地确定一个蛋白质  相似文献   

20.
Tyrosine phosphorylation in plants could be performed only by dual-specificity kinases. Arabidopsis thaliana dual-specificity protein kinase (AtSTYPK) exhibited strong preference for manganese over magnesium for its kinase activity. The kinase autophosphorylated on serine, threonine and tyrosine residues and phosphorylated myelin basic protein on threonine and tyrosine residues. The AtSTYPK harbors manganese dependent serine/threonine kinase domain, COG3642. His248 and Ser265 on COG3642 are conserved in AtSTYPK and the site-directed mutant, H248A showed loss of serine/threonine kinase activity. The protein kinase activity was abolished when Thr208 in the TEY motif and Thr293 of the activation loop were converted to alanine. The conversion of Thr284 in the activation loop to alanine resulted in an increased phosphorylation. This study reports the first identification of a manganese dependent dual-specificity kinase and the importance of Thr208, Thr284, and Thr293 residues in the regulation of kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号