共查询到20条相似文献,搜索用时 15 毫秒
1.
We report discoveries of different haplotypes associated with the centromeres of three potato chromosomes, including haplotypes composed of long arrays of satellite repeats and haplotypes lacking the same repeats. These results are in favor of the hypothesis that satellite repeat-based centromeres may originate from neocentromeres that lack repeats. 相似文献
2.
3.
植物着丝粒结构和功能的研究进展 总被引:1,自引:0,他引:1
着丝粒是真核生物有丝分裂和减数分裂染色体正确分离和传递所必需的染色体区域。十多年来, 已对包括拟南芥、水稻、玉米在内的一些植物的着丝粒进行了较深入的分子生物学研究。在不同的植物间, 着丝粒DNA的保守性很低, 呈现快速进化, 但着丝粒的DNA序列类型和组织方式基本相似, 一般是由夹杂排列着的卫星DNA串联重复阵列和着丝粒专一的反转录转座子构成。与着丝粒DNA相反, 着丝粒/着丝点的结构性和瞬时蛋白质在包括植物在内的真核生物中保守。与其他真核生物的情况一样, 拥有含着丝粒组蛋白H3(CENH3)的核小体是植物功能着丝粒染色质最基本的特征, CENH3在着丝粒染色质的识别和保持中起着关键作用。 相似文献
4.
The properties that define centromeres in complex eukaryotes are poorly understood because the underlying DNA is normally repetitive and indistinguishable from surrounding noncentromeric sequences. However, centromeric chromatin contains variant H3-like histones that may specify centromeric regions. Nucleosomes are normally assembled during DNA replication; therefore, we examined replication and chromatin assembly at centromeres in Drosophila cells. DNA in pericentric heterochromatin replicates late in S phase, and so centromeres are also thought to replicate late. In contrast to expectation, we show that centromeres replicate as isolated domains early in S phase. These domains do not appear to assemble conventional H3-containing nucleosomes, and deposition of the Cid centromeric H3-like variant proceeds by a replication-independent pathway. We suggest that late-replicating pericentric heterochromatin helps to maintain embedded centromeres by blocking conventional nucleosome assembly early in S phase, thereby allowing the deposition of centromeric histones. 相似文献
5.
The 1.709 or satellite IV repeated DNA family originally isolated from the domestic cow was analyzed using Southern blotting, pulsed field gel electrophoresis, fluorescence in situ hybridization, and DNA sequencing in species belonging to the genera Bos, Bison, Bubalus, Syncerus, Boselaphus, and Tragelaphus. Hybridization indicates that the family has been amplified in Bos, Bison, Bubalus, and Syncerus but not in Boselaphus or Tragelaphus. Pericentromeric, higher-order repeat substructure exists in all species, with multimeric arrays ranging in size from 10 to 1500 kb. Sequence analysis of a 492-bp PCR product revealed comparable levels (0.2–4.5%) of intra- and interspecific divergence when species of Bos and Bison were compared, supporting the idea that species of these two genera should be recognized under the genus Bos. Alternatively, all Syncerus sequences cluster as a monophyletic group on an evolutionary tree and differ from those of Bos/Bison by about 13%. Comparing these findings with the fossil record indicates that concerted evolution has occurred since Bos/Bison and Syncerus last shared a common ancestor (5.0 MYA) but before the radiation of the genus Bos (2.5 MYA): GenBank accession numbers AY517856-AY517904.
Pfizer Global Research and Development, Department of Pathology, Eastern Point Road, Groton, CT 06340, USA 相似文献
6.
7.
Günter P. Wagner Eric M. Erkenbrack Alan C. Love 《BioEssays : news and reviews in molecular, cellular and developmental biology》2019,41(4)
Understanding the evolutionary role of environmentally induced phenotypic variation (i.e., plasticity) is an important issue in developmental evolution. A major physiological response to environmental change is cellular stress, which is counteracted by generic stress reactions detoxifying the cell. A model, stress‐induced evolutionary innovation (SIEI), whereby ancestral stress reactions and their corresponding pathways can be transformed into novel structural components of body plans, such as new cell types, is described. Previous findings suggest that the cell differentiation cascade of a cell type critical to pregnancy in humans, the decidual stromal cell, evolved from a cellular stress reaction. It is hypothesized that the stress reaction in these cells was elicited ancestrally via inflammation caused by embryo attachment. The present study proposes that SIEI is a distinct form of plasticity‐based evolutionary change leading to the origin of novel structures rather than adaptive transformation of pre‐existing characters. 相似文献
8.
进化论、遗传学与生态学是在不同时期发展起来的独立学科,然而,随着科学的发展,们越来越认识到它们之间存在着密切的关系。Petrusewicz(1959)(见Shvarts,1977)曾写过《达尔文进化论是一种生态理论》一书,强调进化在本质上是一生态过程。Hutchinson(1965)写了一部题名为《生态学舞台和进化节目》一书,认为生态的布景可以作为进化过程的舞台。但是,最早提出进化生态学这一概念的则是Orians(1962)。进化生态学从产生到现在虽然只有20多年的历史,但已成为生态学研究的重要领域。下面从几个方面谈谈进化生态学的产生与发展。 相似文献
9.
Protein domain repeats are common in proteins that are central to the organization of a cell, in particular in eukaryotes. They are known to evolve through internal tandem duplications. However, the understanding of the underlying mechanisms is incomplete. To shed light on repeat expansion mechanisms, we have studied the evolution of the muscle protein Nebulin, a protein that contains a large number of actin-binding nebulin domains.Nebulin proteins have evolved from an invertebrate precursor containing two nebulin domains. Repeat regions have expanded through duplications of single domains, as well as duplications of a super repeat (SR) consisting of seven nebulins. We show that the SR has evolved independently into large regions in at least three instances: twice in the invertebrate Branchiostoma floridae and once in vertebrates.In-depth analysis reveals several recent tandem duplications in the Nebulin gene. The events involve both single-domain and multidomain SR units or several SR units. There are single events, but frequently the same unit is duplicated multiple times. For instance, an ancestor of human and chimpanzee underwent two tandem duplications. The duplication junction coincides with an Alu transposon, thus suggesting duplication through Alu-mediated homologous recombination.Duplications in the SR region consistently involve multiples of seven domains. However, the exact unit that is duplicated varies both between species and within species. Thus, multiple tandem duplications of the same motif did not create the large Nebulin protein.Finally, analysis of segmental duplications in the human genome reveals that duplications are more common in genes containing domain repeats than in those coding for nonrepeated proteins. In fact, segmental duplications are found three to six times more often in long repeated genes than expected by chance. 相似文献
10.
Budding yeast Rif1 binds to replication origins and protects DNA at blocked replication forks 下载免费PDF全文
Shin‐ichiro Hiraga Chandre Monerawela Yuki Katou Sophie Shaw Kate RM Clark Katsuhiko Shirahige Anne D Donaldson 《EMBO reports》2018,19(9)
Despite its evolutionarily conserved function in controlling DNA replication, the chromosomal binding sites of the budding yeast Rif1 protein are not well understood. Here, we analyse genome‐wide binding of budding yeast Rif1 by chromatin immunoprecipitation, during G1 phase and in S phase with replication progressing normally or blocked by hydroxyurea. Rif1 associates strongly with telomeres through interaction with Rap1. By comparing genomic binding of wild‐type Rif1 and truncated Rif1 lacking the Rap1‐interaction domain, we identify hundreds of Rap1‐dependent and Rap1‐independent chromosome interaction sites. Rif1 binds to centromeres, highly transcribed genes and replication origins in a Rap1‐independent manner, associating with both early and late‐initiating origins. Interestingly, Rif1 also binds around activated origins when replication progression is blocked by hydroxyurea, suggesting association with blocked forks. Using nascent DNA labelling and DNA combing techniques, we find that in cells treated with hydroxyurea, yeast Rif1 stabilises recently synthesised DNA. Our results indicate that, in addition to controlling DNA replication initiation, budding yeast Rif1 plays an ongoing role after initiation and controls events at blocked replication forks. 相似文献
11.
In this study, we assessed the maternal origin of six Hungarian indigenous chicken breeds using mitochondrial DNA information. Sequences of Hungarian chickens were compared with the D-loop chicken sequences annotated in the GenBank and to nine previously described reference haplotypes representing the main haplogroups of chicken. The first 530 bases of the D-loop region were sequenced in 74 chickens of nine populations. Eleven haplotypes (HIC1-HIC11) were observed from 17 variable sites. Three sequences (HIC3, HIC8 and HIC9) of our chickens were found as unique to Hungary when searched against the NCBI GenBank database. Hungarian domestic chicken mtDNA sequences could be assigned into three clades and probably two maternal lineages. Results indicated that 86% of the Hungarian haplotypes are related to the reference sequence that likely originated from the Indian subcontinent, while the minor part of our sequences presumably derive from South East Asia, China and Japan. 相似文献
12.
《Critical reviews in biochemistry and molecular biology》2013,48(2):142-167
AbstractThe expansion of repeated sequences is the cause of over 30 inherited genetic diseases, including Huntington disease, myotonic dystrophy (types 1 and 2), fragile X syndrome, many spinocerebellar ataxias, and some cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat expansions are dynamic, and disease inheritance and progression are influenced by the size and the rate of expansion. Thus, an understanding of the various cellular mechanisms that cooperate to control or promote repeat expansions is of interest to human health. In addition, the study of repeat expansion and contraction mechanisms has provided insight into how repair pathways operate in the context of structure-forming DNA, as well as insights into non-canonical roles for repair proteins. Here we review the mechanisms of repeat instability, with a special emphasis on the knowledge gained from the various model systems that have been developed to study this topic. We cover the repair pathways and proteins that operate to maintain genome stability, or in some cases cause instability, and the cross-talk and interactions between them. 相似文献
13.
前言在真核生物基因组中重复序列占有很大比重,它的绝大部分存在于诸如间隔序列和调控序列非编码序列中,但它也分布在有些结构基因的序列中,它多为轻度重复序列。植物的基因组重复序列一般占80%左右,基因组较大其重复序列所占比重较大,如玉米基因组(haploidgenome)大约有3×109,其中几乎80%以上是重复序列[12]。重复序列对维持染色体的空间结构、基因的表达、遗传重组都具有重要作用。重复序列单... 相似文献
14.
The separation of DNA replication origin licensing and activation in the cell cycle is essential for genome stability across generations in eukaryotic cells. Pre‐replicative complexes (pre‐RCs) license origins by loading Mcm2‐7 complexes in inactive form around DNA. During origin firing in S phase, replisomes assemble around the activated Mcm2‐7 DNA helicase. Budding yeast pre‐RCs have previously been reconstituted in vitro with purified proteins. Here, we show that reconstituted pre‐RCs support replication of plasmid DNA in yeast cell extracts in a reaction that exhibits hallmarks of cellular replication initiation. Plasmid replication in vitro results in the generation of covalently closed circular daughter molecules, indicating that the system recapitulates the initiation, elongation, and termination stages of DNA replication. Unexpectedly, yeast origin DNA is not strictly required for DNA replication in vitro, as heterologous DNA sequences could support replication of plasmid molecules. Our findings support the notion that epigenetic mechanisms are important for determining replication origin sites in budding yeast, highlighting mechanistic principles of replication origin specification that are common among eukaryotes. 相似文献
15.
DNA的简单串联重复扩展与遗传病 总被引:2,自引:0,他引:2
目前已知有17种遗传病或染色体脆性位点是由简单串联重复DNA拷贝数增加引起的.本文综述了这些重复扩展的特点,可能的分子机制及致病机理 相似文献
16.
17.
18.
本文报道了运用FORTRAN-77语言,在SIRIUS-1微机上计算遗传信息的冗余结构D_1、D_2、D_3的程序。计算出人线粒体DNA(16569个核苷酸残基)的H_1=1.930554,H_2=3.849254,H_3=5.760944,D_1=0.069446,D_2=0.011853,D_3=0.007011。 D_1、D_2的结果表明,人线粒体DNA的信息结构远比脊椎动物DNA的低级,这支持线粒体的共生起源学说。并对D_3的结果进行了分析,对其意义作了初步探讨。 相似文献
19.
Yongji Huang Wenjie Ding Muqing Zhang Jinlei Han Yanfen Jing Wei Yao Robert Hasterok Zonghua Wang Kai Wang 《The Plant journal : for cell and molecular biology》2021,106(3):616-629
Centromeres in eukaryotes are composed of tandem DNAs and retrotransposons. However, centromeric repeats exhibit considerable diversity, even among closely related species, and their origin and evolution are largely unknown. We conducted a genome-wide characterization of the centromeric sequences in sugarcane (Saccharum officinarum). Four centromeric tandem repeat sequences, So1, So103, So137 and So119, were isolated. So1 has a monomeric length of 137 bp, typical of a centromeric satellite, and has evolved four variants. However, these So1 variants had distinct centromere distributions and some were unique to an individual centromere. The distributions of the So1 variants were unexpectedly consistent among the Saccharum species that had different basic chromosome numbers or ploidy levels, thus suggesting evolutionary stability for approximately 7 million years in sugarcane. So103, So137 and So119 had unusually longer monomeric lengths that ranged from 327 to 1371 bp and lacked translational phasing on the CENH3 nucleosomes. Moreover, So103, So137 and So119 seemed to be highly similar to retrotransposons, which suggests that they originated from these mobile elements. Notably, all three repeats were flanked by direct repeats, and formed extrachromosomal circular DNAs (eccDNAs). The presence of circular molecules for these retrotransposon-derived centromeric satellites suggests an eccDNA-mediated centromeric satellite formation pathway in sugarcane. 相似文献
20.
Melting curves and circular dichroism spectra were measured for a number of DNA dumbbell and linear molecules containing dinucleotide repeat sequences of different lengths. To study effects of different sequences on the melting and spectroscopic properties, six DNA dumbbells whose stems contain the central sequences (AA)(10), (AC)(10), (AG)(10), (AT)(10), (GC)(10), and (GG)(10) were prepared. These represent the minimal set of 10 possible dinucleotide repeats. To study effects of dinucleotide repeat length, dumbbells with the central sequences (AG)(n), n = 5 and 20, were prepared. Control molecules, dumbbells with a random central sequence, (RN)(n), n = 5, 10, and 20, were also prepared. The central sequence of each dumbbell was flanked on both sides by the same 12 base pairs and T(4) end-loops. Melting curves were measured by optical absorbance and differential scanning calorimetry in solvents containing 25, 55, 85, and 115 mM Na(+). CD spectra were collected from 20 to 45 degrees C and [Na(+)] from 25 to 115 mM. The spectral database did not reveal any apparent temperature dependence in the pretransition region. Analysis of the melting thermodynamics evaluated as a function of Na(+) provided a means for quantitatively estimating the counterion release with melting for the different sequences. Results show a very definite sequence dependence, indicating the salt-dependent properties of duplex DNA are also sequence dependent. Linear DNA molecules containing the (AG)(n) and (RN)(n), sequences, n = 5, 10, 20, and 30, were also prepared and studied. The linear DNA molecules had the exact sequences of the dumbbell stems. That is, the central repeat sequence in each linear duplex was flanked on both sides by the same 12-bp sequence. Melting and CD studies were also performed on the linear DNA molecules. Comparison of results obtained for the same sequences in dumbbell and linear molecular environments reveals several interesting features of the interplay between sequence-dependent structural variability, sequence length, and the unconstrained (linear) or constrained (dumbbell) molecular environments. 相似文献