首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Autophagy is a lysosomal degradative pathway that plays an important role in maintaining cellular homeostasis. We previously showed that the inhibition of autophagy causes pancreatic β-cell apoptosis, suggesting that autophagy is a protective mechanism for the survival of pancreatic β-cells. The current study demonstrates that treatment with inhibitors and knockdown of the lysosomal cysteine proteases such as cathepsins B and L impair autophagy, enhancing the caspase-dependent apoptosis of INS-1 cells and islets upon exposure to high concentration of glucose. Interestingly, treatment with cathepsin B and L inhibitors prevented the proteolytic processing of cathepsins B, D and L, as evidenced by gradual accumulation of the respective pro-forms. Of note, inhibition of aspartic cathepsins had no effect on autophagy and cell viability, suggesting the selective role of cathepsins B and L in the regulation of β-cell autophagy and apoptosis. Lysosomal localization of accumulated pro-cathepsins in the presence of cathepsin B and L inhibitors was verified via immunocytochemistry and lysosomal fractionation. Lysotracker staining indicated that cathepsin B and L inhibitors led to the formation of severely enlarged lysosomes in a time-dependent manner. The abnormal accumulation of pro-cathepsins following treatment with inhibitors of cathepsins B and L suppressed normal lysosomal degradation and the processing of lysosomal enzymes, leading to lysosomal dysfunction. Collectively, our findings suggest that cathepsin defects following the inhibition of cathepsin B and L result in lysosomal dysfunction and consequent cell death in pancreatic β-cells.  相似文献   

2.
Pancreatic β-cell dysfunction is central to type 2 diabetes pathogenesis. Prolonged elevated levels of circulating free-fatty acids and hyperglycemia, also termed glucolipotoxicity, mediate β-cell dysfunction and apoptosis associated with increased c-Jun N-terminal Kinase (JNK) activity. Endoplasmic reticulum (ER) and oxidative stress are elicited by palmitate and high glucose concentrations further potentiating JNK activity. Our aim was to determine the role of the JNK subtypes JNK1, JNK2 and JNK3 in palmitate and high glucose-induced β-cell apoptosis. We established insulin-producing INS1 cell lines stably expressing JNK subtype specific shRNAs to understand the differential roles of the individual JNK isoforms. JNK activity was increased after 3 h of palmitate and high glucose exposure associated with increased expression of ER and mitochondrial stress markers. JNK1 shRNA expressing INS1 cells showed increased apoptosis and cleaved caspase 9 and 3 compared to non-sense shRNA expressing control INS1 cells when exposed to palmitate and high glucose associated with increased CHOP expression, ROS formation and Puma mRNA expression. JNK2 shRNA expressing INS1 cells did not affect palmitate and high glucose induced apoptosis or ER stress markers, but increased Puma mRNA expression compared to non-sense shRNA expressing INS1 cells. Finally, JNK3 shRNA expressing INS1 cells did not induce apoptosis compared to non-sense shRNA expressing INS1 cells when exposed to palmitate and high glucose but showed increased caspase 9 and 3 cleavage associated with increased DP5 and Puma mRNA expression. These data suggest that JNK1 protects against palmitate and high glucose-induced β-cell apoptosis associated with reduced ER and mitochondrial stress.  相似文献   

3.
Diabetes is the most common and complex metabolic disorder, and one of the most important health threats now. MicroRNAs (miRNAs) are a group of small non-coding RNAs that have been suggested to play a vital role in a variety of physiological processes, including glucose homeostasis. In this study, we investigated the role of miR-185 in diabetes. MiR-185 was significantly downregulated in diabetic patients and mice, and the low level was correlated to blood glucose concentration. Overexpression of miR-185 enhanced insulin secretion of pancreatic β-cells, promoted cell proliferation and protected cells from apoptosis. Further experiments using in silico prediction, luciferase reporter assay and western blot assay demonstrated that miR-185 directly targeted SOCS3 by binding to its 3’-UTR. On the contrary to miR-185’s protective effects, SOCS3 significantly suppressed functions of β-cell and inactivated Stat3 pathway. When treating cells with miR-185 mimics in combination with SOCS3 overexpression plasmid, the inhibitory effects of SOCS3 were reversed. While combined treatment of miR-185 mimics and SOCS3 siRNA induced synergistically promotive effects compared to either miR-185 mimics or SOCS3 siRNA treatment alone. Moreover, we observed that miR-185 level was inversely correlated with SOCS3 expression in diabetes patients. In conclusion, this study revealed a functional and mechanistic link between miR-185 and SOCS3 in the pathogenesis of diabetes. MiR-185 plays an important role in the regulation of insulin secretion and β-cell growth in diabetes. Restoration of miR-185 expression may serve a potentially promising and efficient therapeutic approach for diabetes.  相似文献   

4.

Aims

Beta-cell dysfunction is an early event in the natural history of type 2 diabetes. However, its progression is variable and potentially influenced by several clinical factors. We report the baseline data of the BetaDecline study, an Italian prospective multicenter study on clinical predictors of beta-cell dysfunction in type 2 diabetes.

Materials and Methods

Clinical, lifestyle, and laboratory data, including circulating levels of inflammatory markers and non-esterified fatty acids, were collected in 507 type 2 diabetic outpatients on stable treatment with oral hypoglycemic drugs or diet for more than 1 year. Beta-cell dysfunction was evaluated by calculating the proinsulin/insulin ratio (P/I).

Results

At baseline, the subjects in the upper PI/I ratio quartile were more likely to be men and receiving secretagogue drugs; they also showed a borderline longer diabetes duration (P = 0.06) and higher serum levels of glycated hemoglobin (HbA1c), fasting blood glucose, and triglycerides. An inverse trend across all PI/I quartiles was noted for BMI and serum levels of total cholesterol (T-C), LDL-C, HDL-C and C reactive protein (CRP), and with homeostatic model assessment (HOMA-B) and HOMA of insulin resistance (HOMA-IR) values (P<0.05 for all). At multivariate analysis, the risk of having a P/I ratio in the upper quartile was higher in the subjects on secretagogue drugs (odds ratio [OR] 4.2; 95% confidence interval [CI], 2.6–6.9) and in the males (OR 1.8; 95% CI, 1.1–2.9).

Conclusions

In the BetaDecline study population, baseline higher PI/I values, a marker of beta-cell dysfunction, were more frequent in men and in patients on secretagogues drugs. Follow-up of this cohort will allow the identification of clinical predictors of beta-cell failure in type 2 diabetic outpatients.  相似文献   

5.
Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1), that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10–12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10–12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10–12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.  相似文献   

6.
Lyssaviruses are highly neurotropic viruses associated with neuronal apoptosis. Previous observations have indicated that the matrix proteins (M) of some lyssaviruses induce strong neuronal apoptosis. However, the molecular mechanism(s) involved in this phenomenon is still unknown. We show that for Mokola virus (MOK), a lyssavirus of low pathogenicity, the M (M-MOK) targets mitochondria, disrupts the mitochondrial morphology, and induces apoptosis. Our analysis of truncated M-MOK mutants suggests that the information required for efficient mitochondrial targeting and dysfunction, as well as caspase-9 activation and apoptosis, is held between residues 46 and 110 of M-MOK. We used a yeast two-hybrid approach, a coimmunoprecipitation assay, and confocal microscopy to demonstrate that M-MOK physically associates with the subunit I of the cytochrome c (cyt-c) oxidase (CcO) of the mitochondrial respiratory chain; this is in contrast to the M of the highly pathogenic Thailand lyssavirus (M-THA). M-MOK expression induces a significant decrease in CcO activity, which is not the case with M-THA. M-MOK mutations (K77R and N81E) resulting in a similar sequence to M-THA at positions 77 and 81 annul cyt-c release and apoptosis and restore CcO activity. As expected, the reverse mutations, R77K and E81N, introduced in M-THA induce a phenotype similar to that due to M-MOK. These features indicate a novel mechanism for energy depletion during lyssavirus-induced apoptosis.During coevolution with their hosts, viruses have developed many ways of manipulating the cellular machinery of infected cells. They inhibit or induce apoptosis for their own benefit, with the purpose of increasing viral replication and spread or subverting the host''s immune response (4, 12, 51, 59).Mitochondria have several functions in the cell, including energy production, calcium buffering, and regulation of cellular apoptosis. Death signals in the intrinsic pathway of apoptosis act directly on mitochondria, leading to their dysfunction and the release of proapoptotic factors responsible for the caspase-dependent and/or -independent death pathways (43). The process is tightly regulated positively or negatively by proteins from the Bcl-2 family (32). Caspase activation can be initiated in the extrinsic pathway of apoptosis by death receptors expressed at the cell surface; this later causes mitochondrial dysfunction (8, 20).Lyssaviruses are highly neurotropic viruses associated with rabies, a fatal encephalomyelitis considered to be a reemerging zoonosis throughout most of the world (10). It has been suggested that lyssavirus-induced neuronal apoptosis (1), previously thought to be a principal cause of pathogenesis, is an important defense mechanism against lyssavirus infection (26, 34, 56). However, the molecular basis of lyssavirus-induced neuronal apoptosis is still poorly understood (16, 55). The involvement of the viral glycoprotein (G) in inducing neuronal apoptosis has been extensively shown (13, 38, 39, 45), whereas we have suggested that M is an inducer of neuronal cell death through a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-dependent pathway (29). However, the molecular mechanism of apoptosis has not been precisely defined, and little is known about mitochondrial involvement during lyssavirus infections (46).In this study, we take advantage of the fact that Mokola virus (MOK), a member of the genotype 3 lyssaviruses (5), is known to be less pathogenic than viruses of genotype 1 and, in particular, Thailand virus (THA) (3). We report for the first time the involvement of the mitochondrial machinery during MOK-induced apoptosis. We show that the MOK matrix protein (M-MOK), a previously described apoptogenic factor (29), interacts directly with cytochrome c (cyt-c) oxidase (CcO) subunit I (CcO1), the terminal component of the mitochondrial respiratory chain (MRC). This finding is of interest, as this interaction, which is not found with M-THA, may have a key role in controlling ATP synthesis and cellular respiration during lyssavirus-induced neuronal apoptosis and may contribute to the low pathogenesis of MOK infection.  相似文献   

7.
8.
9.
Telomere dysfunction results in fertility defects in a number of organisms. Although data from fission yeast and Caenorhabditis elegans suggests that telomere dysfunction manifests itself primarily as defects in proper meiotic chromosome segregation, it is unclear how mammalian telomere dysfunction results in germ cell death. To investigate the specific effects of telomere dysfunction on mammalian germ cell development, we examined the meiotic progression and germ cell apoptosis in late generation telomerase null mice. Our results indicate that chromosome asynapsis and missegregation are not the cause of infertility in mice with shortened telomeres. Rather, telomere dysfunction is recognized at the onset of meiosis, and cells with telomeric defects are removed from the germ cell precursor pool. This germ cell telomere surveillance may be an important mechanism to protect against the transmission of dysfunctional telomeres and chromosomal abnormalities.  相似文献   

10.
11.
BackgroundGrowth factors, energy sources, and mitochondrial function strongly affect embryo growth and development in vitro. The biological role and prospective significance of the mitofusin gene Mfn2 in the development of preimplantation embryos remain poorly understood. Our goal is to profile the role of Mfn2 in mouse embryos and determine the underlying mechanism of Mfn2 function in embryo development.MethodsWe transfected Mfn2-siRNA into 2-cell fertilized eggs and then examined the expression of Mfn2, the anti-apoptotic protein Bcl-2, and the apoptosis-promoting protein Bax by Western blot. Additionally, we determined the blastocyst formation rate and measured ATP levels, mtDNA levels, mitochondrial membrane potential (ΔΨm), and apoptosis in all of the embryos.ResultsThe results indicate that the Mfn2 and Bcl-2 levels were markedly decreased, whereas Bax levels were increased in the T group (embryos transfected with Mfn2-siRNA) compared with the C group (embryos transfected with control-siRNA). The blastocyst formation rate was significantly decreased in the T group. The ATP content and the relative amounts of mtDNA and cDNA in the T group were significantly reduced compared with the C group. In the T group, ΔΨm and Ca2+ levels were reduced, and the number of apoptotic cells was increased.ConclusionLow in vitro expression of Mfn2 attenuates the blastocyst formation rate and cleavage speed in mouse zygotes and causes mitochondrial dysfunction, as confirmed by the ATP and mtDNA levels and mitochondrial membrane potential. Mfn2 deficiency induced apoptosis through the Bcl-2/Bax and Ca2+ pathways. These findings indicate that Mfn2 could affect preimplantation embryo development through mitochondrial function and cellular apoptosis.  相似文献   

12.
13.
The evolutionary divergence of mitochondrial ribosomes from their bacterial and cytoplasmic ancestors has resulted in reduced RNA content and the acquisition of mitochondria-specific proteins. The mitochondrial ribosomal protein of the small subunit 34 (MRPS34) is a mitochondria-specific ribosomal protein found only in chordates, whose function we investigated in mice carrying a homozygous mutation in the nuclear gene encoding this protein. The Mrps34 mutation causes a significant decrease of this protein, which we show is required for the stability of the 12S rRNA, the small ribosomal subunit and actively translating ribosomes. The synthesis of all 13 mitochondrially-encoded polypeptides is compromised in the mutant mice, resulting in reduced levels of mitochondrial proteins and complexes, which leads to decreased oxygen consumption and respiratory complex activity. The Mrps34 mutation causes tissue-specific molecular changes that result in heterogeneous pathology involving alterations in fractional shortening of the heart and pronounced liver dysfunction that is exacerbated with age. The defects in mitochondrial protein synthesis in the mutant mice are caused by destabilization of the small ribosomal subunit that affects the stability of the mitochondrial ribosome with age.  相似文献   

14.
The innate immune system is responsible for the initial response of an organism to potentially harmful stressors, pathogens or tissue injury, and accordingly plays an essential role in the pathogenesis of many inflammatory processes, including some cardiovascular diseases. Toll like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLRs) are pattern recognition receptors that play an important role in the induction of innate immune and inflammatory responses. There is a line of evidence supporting that activation of TLRs contributes to the development and progression of cardiovascular diseases but less is known regarding the role of NLRs. Here we demonstrate the presence of the NLR member NOD1 (nucleotide-binding oligomerization domain containing 1) in the murine heart. Activation of NOD1 with the specific agonist C12-iEDAP, but not with the inactive analogue iE-Lys, induces a time- and dose-dependent cardiac dysfunction that occurs concomitantly with cardiac fibrosis and apoptosis. The administration of iEDAP promotes the activation of the NF-κB and TGF-β pathways and induces apoptosis in whole hearts. At the cellular level, both native cardiomyocytes and cardiac fibroblasts expressed NOD1. The NLR activation in cardiomyocytes was associated with NF-κB activation and induction of apoptosis. NOD1 stimulation in fibroblasts was linked to NF-κB activation and to increased expression of pro-fibrotic mediators. The down-regulation of NOD1 by specific siRNAs blunted the effect of iEDAP on the pro-fibrotic TGF-β pathway and cell apoptosis. In conclusion, our report uncovers a new pro-inflammatory target that is expressed in the heart, NOD1. The specific activation of this NLR induces cardiac dysfunction and modulates cardiac fibrosis and cardiomyocyte apoptosis, pathological processes involved in several cardiac diseases such as heart failure.  相似文献   

15.
Norcantharidin (NCTD), a demethylated analog of cantharidin derived from blister beetles, has attracted considerable attentions in recent years due to their definitely toxic properties and the noteworthy advantages in stimulating bone marrow and increasing the peripheral leukocytes. Hence, it is worth studying the anti-tumor effect of NCTD on human prostate cancer cells DU145. It was found that after the treatment of NCTD with different concentrations (25-100 μM), the cell proliferation was significantly inhibited, which led to the appearance of micronucleus (MN). Moreover, the cells could be killed in a dose-/ time-dependent manner along with the reduction of PCNA (proliferating cell nuclear antigen) expression, destruction of mitochondrial membrane potential (MMP), down-regulation of MnSOD, induction of ROS, depletion of ATP, and activation of AMPK (Adenosine 5‘-monophosphate -activated protein kinase) . In addition, a remarkable release of cytochrome c was found in the cells exposed to 100 μM NCTD and exogenous SOD-PEG could eliminate the generation of NCTD-induced MN. In conclusion, our studies indicated that NCTD could induce the collapse of MMP and mitochondria dysfunction. Accumulation of intercellular ROS could eventually switch on the apoptotic pathway by causing DNA damage and depleting ATP.  相似文献   

16.

Purpose

Ketamine toxicity has been demonstrated in nonhuman mammalian neurons. To study the toxic effect of ketamine on human neurons, an experimental model of cultured neurons from human induced pluripotent stem cells (iPSCs) was examined, and the mechanism of its toxicity was investigated.

Methods

Human iPSC-derived dopaminergic neurons were treated with 0, 20, 100 or 500 μM ketamine for 6 and 24 h. Ketamine toxicity was evaluated by quantification of caspase 3/7 activity, reactive oxygen species (ROS) production, mitochondrial membrane potential, ATP concentration, neurotransmitter reuptake activity and NADH/NAD+ ratio. Mitochondrial morphological change was analyzed by transmission electron microscopy and confocal microscopy.

Results

Twenty-four-hour exposure of iPSC-derived neurons to 500 μM ketamine resulted in a 40% increase in caspase 3/7 activity (P < 0.01), 14% increase in ROS production (P < 0.01), and 81% reduction in mitochondrial membrane potential (P < 0.01), compared with untreated cells. Lower concentration of ketamine (100 μM) decreased the ATP level (22%, P < 0.01) and increased the NADH/NAD+ ratio (46%, P < 0.05) without caspase activation. Transmission electron microscopy showed enhanced mitochondrial fission and autophagocytosis at the 100 μM ketamine concentration, which suggests that mitochondrial dysfunction preceded ROS generation and caspase activation.

Conclusions

We established an in vitro model for assessing the neurotoxicity of ketamine in iPSC-derived neurons. The present data indicate that the initial mitochondrial dysfunction and autophagy may be related to its inhibitory effect on the mitochondrial electron transport system, which underlies ketamine-induced neural toxicity. Higher ketamine concentration can induce ROS generation and apoptosis in human neurons.  相似文献   

17.
Aristolochic acid nephropathy, initially found in patients intaking of slimming herbs containing aristolochic acid (AA), was previously considered as a progressive renal interstitial fibrosis and urothelial malignancy. However, the presence of albuminuria in some patients with AAN suggests that AA may also damage the glomerular filtration barrier. In this study, mice AAN model was generated by daily administration of aristolochic acid I sodium salt intraperitoneally at a dose of 6 mg/kg body weight for 3 days. All of the mice developed heavy albuminuria at day 3 and 7 after receiving AA. In the mice received AA, morphologic change of glomeruli was minor under light microscopy but podocyte foot-process effacement was evident under electron microscopy. In mitochondria isolated from kidney, prominent mitochondrial DNA (mtDNA) damage was accompanied with marked decrease of mtDNA copy number and mitochondrial protein expression level. Similar to those in vivo results, AA treatment impaired the filtration barrier function of cultured podocytes. AA promoted mtDNA damage, decreased mtDNA copy number and mitochondrial protein expression in cultured podocytes. In addition, AA treatment also decreased ATP content, oxygen consumption rate and mitochondrial membrane potential as well as increased cellular reactive oxygen species in cultured podocytes. This study highlighted that AA could induce podocyte damage and albuminuria, which may be mediated by promoting mtDNA damage and mitochondrial dysfunction in podocytes.  相似文献   

18.
19.
Cardiomyocyte apoptosis is an important event in doxorubicin (DOX)-induced cardiac injury. The aim of the present study was to investigate the protection of berberine (Ber) against DOX- triggered cardiomyocyte apoptosis in neonatal rat cardiomyocytes and rats. In neonatal rat cardiomyocytes, Ber attenuated DOX-induced cellular injury and apoptosis in a dose-dependent manner. However, Ber has no significant effect on viability of MCF-7 breast cancer cells treated with DOX. Ber reduced caspase-3 and caspase-9, but not caspase-8 activity in DOX-treated cardiomyocytes. Furthermore, Ber decreased adenosine monophosphate-activated protein kinase α (AMPKα) and p53 phosphorylation at 2 h, cytosolic cytochrome c and mitochondrial Bax levels and increased Bcl-2 level at 6 h in DOX-stimulated cardiomyocytes. Pretreatment with compound C, an AMPK inhibitor, also suppressed p53 phosphorylation and apoptosis in DOX-treated cardiomyocytes. DOX stimulation for 30 min led to a loss of mitochondrial membrane potential and a rise in the AMP/ATP ratio. Ber markedly reduced DOX-induced mitochondrial membrane potential loss and an increase in the AMP/ATP ratio at 1 h and 2 h post DOX exposure. In in vivo experiments, Ber significantly improved survival, increased stroke volume and attenuated myocardial injury in DOX-challenged rats. TUNEL and Western blot assays showed that Ber not only decreased myocardial apoptosis, caspase-3 activation, AMPKα and p53 phosphorylation, but also increased Bcl-2 expression in myocardium of rats exposed to DOX for 84 h. These findings indicate that Ber attenuates DOX-induced cardiomyocyte apoptosis via protecting mitochondria, inhibiting an increase in the AMP/ATP ratio and AMPKα phosphorylation as well as elevating Bcl-2 expression, which offer a novel mechanism responsible for protection of Ber against DOX-induced cardiomyopathy.  相似文献   

20.
Kindler Syndrome (KS), characterized by transient skin blistering followed by abnormal pigmentation, skin atrophy, and skin cancer, is caused by mutations in the FERMT1 gene. Although a few KS patients have been reported to also develop ulcerative colitis (UC), a causal link to the FERMT1 gene mutation is unknown. The FERMT1 gene product belongs to a family of focal adhesion proteins (Kindlin-1, -2, -3) that bind several β integrin cytoplasmic domains. Here, we show that deleting Kindlin-1 in mice gives rise to skin atrophy and an intestinal epithelial dysfunction with similarities to human UC. This intestinal dysfunction results in perinatal lethality and is triggered by defective intestinal epithelial cell integrin activation, leading to detachment of this barrier followed by a destructive inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号