首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The basidiomycete Coprinopsis cinerea contains a quinohemoprotein (CcPDH named as CcSDH in our previous paper), which is a new type of pyrroloquinoline-quinone (PQQ)-dependent pyranose dehydrogenase and is the first found among all eukaryotes. This enzyme has a three-domain structure consisting of an N-terminal heme b containing a cytochrome domain that is homologous to the cytochrome domain of cellobiose dehydrogenase (CDH; EC 1.1.99.18) from the wood-rotting basidiomycete Phanerochaete chrysosporium, a C-terminal family 1-type carbohydrate-binding module, and a novel central catalytic domain containing PQQ as a cofactor. Here, we describe the biochemical and electrochemical characterization of recombinant CcPDH. UV-vis and resonance Raman spectroscopic studies clearly reveal characteristics of a 6-coordinated low-spin heme b in both the ferric and ferrous states, as well as intramolecular electron transfer from the PQQ to heme b. Moreover, the formal potential of the heme was evaluated to be 130 mV vs. NHE by cyclic voltammetry. These results indicate that the cytochrome domain of CcPDH possesses similar biophysical properties to that in CDH. A comparison of the conformations of monosaccharides as substrates and the associated catalytic efficiency (kcat/Km) of CcPDH indicates that the enzyme prefers monosaccharides with equatorial C-2, C-3 hydroxyl groups and an axial C-4 hydroxyl group in the 1C4 chair conformation. Furthermore, a binding study shows a high binding affinity of CcPDH for cellulose, suggesting that CcPDH function is related to the enzymatic degradation of plant cell wall.  相似文献   

2.
Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.  相似文献   

3.
A metagenomic fosmid library from bovine rumen was used to identify clones with lipolytic activity. One positive clone was isolated. The gene responsible for the observed phenotype was identified by in vitro transposon mutagenesis and sequencing and was named est10. The 367 amino acids sequence harbors a signal peptide, the conserved secondary structure arrangement of alpha/beta hydrolases, and a GHSQG pentapeptide which is characteristic of esterases and lipases. Homology based 3D-modelling confirmed the conserved spatial orientation of the serine in a nucleophilic elbow. By sequence comparison, Est10 is related to hydrolases that are grouped into the non-specific Pfam family DUF3089 and to other characterized esterases that were recently classified into the new family XV of lipolytic enzymes. Est10 was heterologously expressed in Escherichia coli as a His-tagged fusion protein, purified and biochemically characterized. Est10 showed maximum activity towards C4 aliphatic chains and undetectable activity towards C10 and longer chains which prompted its classification as an esterase. However, it was able to efficiently catalyze the hydrolysis of aryl esters such as methyl phenylacetate and phenyl acetate. The optimum pH of this enzyme is 9.0, which is uncommon for esterases, and it exhibits an optimal temperature at 40°C. The activity of Est10 was inhibited by metal ions, detergents, chelating agents and additives. We have characterized an alkaline esterase produced by a still unidentified bacterium belonging to a recently proposed new family of esterases.  相似文献   

4.
5.
A dipeptidase was purified from a cell extract of Bifidobacterium longum BORI by ammonium sulfate precipitation and chromatography on DEAE-cellulose and Q-Sepharose columns. The purified dipeptidase had a molecular mass of about 49 kDa and was optimally active at pH 8.0 and 50°C. The enzyme was a strict dipeptidase, being capable of hydrolyzing a range of dipeptides but not tri- and tetrapeptides, p-nitroanilide derivatives of amino acids, or N- or C-terminus-blocked dipeptides. A search of the amino acid sequence of an internal tryptic fragment against protein sequences deduced from the total genome sequence of B. longum NCC2705 revealed that it was identical to an internal sequence of the dipeptidase gene (pepD), which comprised 1,602 nucleotides encoding 533 amino acids with a molecular mass of 60 kDa, and thereby differed considerably from the 49-kDa mass of the purified dipeptidase. To understand this discrepancy, pepD was cloned into an Escherichia coli expression vector (pBAD-TOPO derivative) to generate the recombinant plasmids pBAD-pepD and pBAD-pepD-His (note that His in the plasmid designation stands for a polyhistidine coding region). Both plasmids were successfully expressed in E. coli, and the recombinant protein PepD-His was purified using nickel-chelating affinity chromatography and reconfirmed by internal amino acid sequencing. The PepD sequence was highly homologous to those of the U34 family of peptidases, suggesting that the B. longum BORI dipeptidase is a type of cysteine-type N-terminal nucleophile hydrolase and has a β-hairpin motif similar to that of penicillin V acylase, which is activated by autoproteolytic processing.  相似文献   

6.
FLRG于1998年在白血病人B细胞中发现,与卵泡抑素(FS)高度同源,因而归属于FS家族。FLRG主要与TGF-β超家族成员结合产生负调节作用,其表达调控与多系统生理作用密切相关。此外,近来研究发现其可能与子宫内膜癌、胰岛素抵抗、代谢综合征等有重要作用。本文综述了FLRG的发现、结构特点、细胞内信号转导途径,组织分布、表达调控和生物学作用等方面的研究现状,并指出目前的研究热点集中于FLRG与TGF-β超家族成员之间以及与卵泡抑素之间的相互作用,希望为疾病的诊断和治疗提供新的途径。  相似文献   

7.
Xylan is an important part of plant biomass and represents a renewable raw material for biorefineries. Contrary to cellulose, the structure of hemicellulose is quite complex. Therefore, the biodegradation of xylan needs the cooperation of many enzymes. For industrial production of xylanase multienzyme complexes (cocktails) and selected monocomponent xylanases, different Trichoderma reesei mutants and recombinants are used. T. reesei QM 6a (wild-type parent of best existing mutants) was selected as a starting material in the 1960s when the modern in-depth analytical methods were not yet in use. Therefore, screening of fungi genetically close to T. reesei in biodegradation of xylan may have a scientific value. Fifteen different strains from Trichoderma section Longibrachiatum have been tested for extracellular xylan-degrading enzyme production on three carbon sources (wheat straw, corn fiber, and eucalyptus wood) in shake flask cultivation. The enzyme activities were evaluated by traditional colorimetric enzyme assays and by HPLC and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Degradation of xylan was studied on four different xylan-rich model substrates. T. reesei CPK 155, Trichoderma parareesei TUB F-2535, and Trichoderma gracile TUB F-2543 isolates were equally good or better in degradation of the wheat arabinoxylan (WAX) and corn fiber alcohol insoluble solids as hydolysis substrates than the well-known T. reesei QM 6a and RUT C30 strains. Though Trichoderma saturnisporum ATCC 18903 gave relatively low volumetric enzyme activities by traditional colorimetric assays, it could release quite large amount of hydrolysis products (mono- and oligosaccharides) from WAX. Therefore, these fungi may be potential candidates for further experiments. Enzyme production on wheat straw and corn fiber carbon sources was more effective than on eucalyptus wood.  相似文献   

8.
9.
Volvariella volvacea is one of a few commercial cultivated mushrooms mainly using straw as carbon source. In this study, the genome of V. volcacea was sequenced and assembled. A total of 285 genes encoding carbohydrate-active enzymes (CAZymes) in V. volvacea were identified and annotated. Among 15 fungi with sequenced genomes, V. volvacea ranks seventh in the number of genes encoding CAZymes. In addition, the composition of glycoside hydrolases in V. volcacea is dramatically different from other basidiomycetes: it is particularly rich in members of the glycoside hydrolase families GH10 (hemicellulose degradation) and GH43 (hemicellulose and pectin degradation), and the lyase families PL1, PL3 and PL4 (pectin degradation) but lacks families GH5b, GH11, GH26, GH62, GH93, GH115, GH105, GH9, GH53, GH32, GH74 and CE12. Analysis of genome-wide gene expression profiles of 3 strains using 3′-tag digital gene expression (DGE) reveals that 239 CAZyme genes were expressed even in potato destrose broth medium. Our data also showed that the formation of a heterokaryotic strain could dramatically increase the expression of a number of genes which were poorly expressed in its parental homokaryotic strains.  相似文献   

10.
Halohydrin dehalogenases are very rare enzymes that are naturally involved in the mineralization of halogenated xenobiotics. Due to their catalytic potential and promiscuity, many biocatalytic reactions have been described that have led to several interesting and industrially important applications. Nevertheless, only a few of these enzymes have been made available through recombinant techniques; hence, it is of general interest to expand the repertoire of these enzymes so as to enable novel biocatalytic applications. After the identification of specific sequence motifs, 37 novel enzyme sequences were readily identified in public sequence databases. All enzymes that could be heterologously expressed also catalyzed typical halohydrin dehalogenase reactions. Phylogenetic inference for enzymes of the halohydrin dehalogenase enzyme family confirmed that all enzymes form a distinct monophyletic clade within the short-chain dehydrogenase/reductase superfamily. In addition, the majority of novel enzymes are substantially different from previously known phylogenetic subtypes. Consequently, four additional phylogenetic subtypes were defined, greatly expanding the halohydrin dehalogenase enzyme family. We show that the enormous wealth of environmental and genome sequences present in public databases can be tapped for in silico identification of very rare but biotechnologically important biocatalysts. Our findings help to readily identify halohydrin dehalogenases in ever-growing sequence databases and, as a consequence, make even more members of this interesting enzyme family available to the scientific and industrial community.  相似文献   

11.
Menthol is an organic compound with diverse medicinal and commercial applications, and is made either synthetically or through extraction from mint oils. The aim of the present study was to investigate menthol levels in selected menthol-producing species belonging to the Lamiaceae family, and to determine phylogenetic relationships of menthol dehydrogenase gene sequence among these species. Three genus of Lamiaceae, namely Mentha, Salvia, and Micromeria, were selected for phytochemical and phylogenetic analyses. After identification of each species based on menthol dehydrogenase gene in NCBI, BLAST software was used for the sequence alignment. MEGA4 software was used to draw phylogenetic tree for various species. Phytochemical analysis revealed that the highest and lowest amounts of both essential oil and menthol belonged to Mentha spicata and Micromeria hyssopifolia, respectively. The species Mentha spicata and Mentha piperita, which were assigned to one cluster in the dendrogram, contained the highest amounts of essential oil and menthol while Micromeria species, which was in the distinct cluster and placed in the farther evolutionary distance, contained the lowest amount of essential oil and menthol. Phylogenetic and phytochemistry analyses showed that essential oil and menthol contents of menthol-producing species are associated with menthol dehydrogenase gene sequence.  相似文献   

12.
13.
新辅基吡咯喹啉醌(PQQ)生物合成基因研究进展   总被引:1,自引:0,他引:1  
吡咯喹啉醌(Pyroloquinoline-Quinone,PQQ)是氧化还原酶的新辅基。它在细菌体内是由一组排列成簇的相关基因即pqq基因控制合成的。根据不同细菌来源pqq基因的同源性和对应关系,可将pqq基因归为7类:簇基因1~7。在Acinetobactercalcoaceticus中存在其中四个,KlebsielaPneumoniae和MethylobacteriumOrganophilumDSM760中6个,而Methylobacteriumex-torquensAM1中存在全部7个簇基因。簇基因1编码一个由22~29年氨基酸组成的小肽,此小肽可能是PQQ的前体,簇基因2可能涉及PQQ跨膜转运,簇基因3可能负责PQQ合成的最后一步酶催化,簇基因5可能涉及PQQ合成中某种酶的辅因子合成,簇基因6和7可能负责小肽的加工。簇基因4功能还不清楚,但在M.extorquensAM1中簇基因3和4是以融合基因存在的。  相似文献   

14.
DNA的胞嘧啶(C)5-甲基化是一种重要的表观修饰,它参与基因调节、基因组印记、X-染色体失活、重复序列抑制和癌症发生等过程. 5-甲基胞嘧啶(5mC)可被TET (ten-eleven translocation)蛋白家族进一步转化为5-羟甲基胞嘧啶(5hmC),该过程是DNA去甲基化的1个必要阶段. 5hmC可在活性转录基因起始位点和Polycomb抑制基因启动子延伸区域富集.TET蛋白包括3个成员TET1、TET2和TET3,均属于α-酮戊二酸和Fe2+依赖的双加氧酶,其催化涉及氧化过程.小鼠Tet1在胚胎干细胞发育中拥有双重作用,即促进全能因子的转录,又参与发育调节因子的抑制.人TET蛋白的破坏与造血系统肿瘤相关,如在骨髓增生性疾病/肿瘤存在频繁的TET2基因突变.TET蛋白和5hmC的研究为DNA甲基化/去甲基化及其生物学功能提供了新的视点.  相似文献   

15.
We have cloned, sequenced, and expressed the gene for a unique ATP- and NADPH-dependent carboxylic acid reductase (CAR) from a Nocardia species that reduces carboxylic acids to their corresponding aldehydes. Recombinant CAR containing an N-terminal histidine affinity tag had Km values for benzoate, ATP, and NADPH that were similar to those for natural CAR, and recombinant CAR reduced benzoic, vanillic, and ferulic acids to their corresponding aldehydes. car is the first example of a new gene family encoding oxidoreductases with remote acyl adenylation and reductase sites.  相似文献   

16.
Amino acid analysis of internal sequences of purified NADH-hexacyanoferrate(III) oxidoreductase (NFORase), obtained from highly purified plasma membranes (PM) of spinach (Spinacia oleracea L.) leaves, showed 90 to 100% homology to internal amino acid sequences of monodehydroascorbate (MDA) reductases (EC 1.6.5.4) from three different plant species. Specificity, kinetics, inhibitor sensitivity, and cross-reactivity with anti-MDA reductase antibodies were all consistent with this identification. The right-side-out PM vesicles were subjected to consecutive salt washing and detergent (polyoxyethylene 20 dodecylether and 3-[(3-cholamido-propyl)-dimethylammonio]-1-propane sulfonate [CHAPS]) treatments, and the fractions were analyzed for NFORase and MDA reductase activities. Similar results were obtained when the 300 mm sucrose in the homogenization buffer and in all steps of the salt-washing and detergent treatments had been replaced by 150 mm KCl to mimic the conditions in the cytoplasm. We conclude that (a) MDA reductase is strongly associated with the inner (cytoplasmic) surface of the PM under in vivo conditions and requires washing with 1.0 m KCl or CHAPS treatment for removal, (b) the PM-bound MDA reductase activity is responsible for the majority of PM NFORase activity, and (c) there is another redox enzyme(s) in the spinach leaf PM that cannot be released from the PM by salt-washing and/or CHAPS treatment. The PM-associated MDA reductase may have a role in reduction of ascorbate in both the cytosol and the apoplast.  相似文献   

17.
Intracellular bacteria have been found previously in one isolate of the arbuscular mycorrhizal (AM) fungus Gigaspora margarita BEG 34. In this study, we extended our investigation to 11 fungal isolates obtained from different geographic areas and belonging to six different species of the family Gigasporaceae. With the exception of Gigaspora rosea, isolates of all of the AM species harbored bacteria, and their DNA could be PCR amplified with universal bacterial primers. Primers specific for the endosymbiotic bacteria of BEG 34 could also amplify spore DNA from four species. These specific primers were successfully used as probes for in situ hybridization of endobacteria in G. margarita spores. Neighbor-joining analysis of the 16S ribosomal DNA sequences obtained from isolates of Scutellospora persica, Scutellospora castanea, and G. margarita revealed a single, strongly supported branch nested in the genus Burkholderia.  相似文献   

18.
Spatial distribution pattern of biological related species present unique opportunities and challenges to explain species coexistence. In this study, we explored the spatial distributions and associations among congeneric species at both the species and genus levels to explain their coexistence through examining the similarities and differences at these two levels. We first used DNA and cluster analysis to confirmed the relative relationship of eight species within a 20 ha subtropical forest in southern China. We compared Diameter at breast height (DBH) classes, aggregation intensities and spatial patterns, associations, and distributions of four closely related species pairs to reveal similarities and differences at the species and genus levels. These comparisons provided insight into the mechanisms of coexistence of these congeners. O-ring statistics were used to measure spatial patterns of species. Ω 0–10, the mean conspecific density within 10 m of a tree, was used as a measure of the intensity of aggregation of a species, and g-function was used to analyze spatial associations. Our results suggested that spatial aggregations were common, but the differences between spatial patterns were reduced at the genus level. Aggregation intensity clearly reduced at the genus level. Negative association frequencies decreased at the genus level, such that independent association was commonplace among all four genera. Relationships between more closely related species appeared to be more competitive at both the species and genus levels. The importance of competition on interactions is most likely influenced by similarity in lifestyle, and the habitat diversity within the species’ distribution areas. Relatives with different lifestyles likely produce different distribution patterns through different interaction process. In order to fully understand the mechanisms generating spatial distributions of coexisting siblings, further research is required to determine the spatial patterns and associations at other classification levels.  相似文献   

19.
20.
Roseobacter strain 27-4 has been isolated from a turbot larval rearing unit and is capable of reducing mortality in turbot egg yolk sac larvae. Here, we demonstrate that the supernatant of Roseobacter 27-4 is lethal to the larval pathogens Vibrio anguillarum and Vibrio splendidus in a buffer system and inhibited their growth in marine broth. Liquid chromatography (LC) with both UV spectral detection and high-resolution mass spectrometry (HR-MS) identified the known antibacterial compound thiotropocin or its closely related precursor tropodithietic acid in the bioactive fractions. Antibacterial activity correlated with the appearance of a brownish pigment and was only formed in marine broth under static growth conditions. A thick biofilm of multicellular star-shaped aggregated cells formed at the air-liquid interface under static growth conditions. Here, the bioactive compound was the base peak in the LC-UV chromatograms of the extracts where it constituted 15% of the total peak area. Aerated conditions results in 10-fold-higher cell yield, however, cultures were nonpigmented, did not produce antibacterial activity, and grew as single cells. Production of antibacterial compounds may be quorum regulated, and we identified the acylated homoserine lactone (3-hydroxy-decanoyl homoserine lactone) from cultures of Roseobacter 27-4 using LC-HR-MS. The signal molecule was primarily detected in stagnant cultures. Roseobacter 27-4 grew between 10 and 30°C but died rapidly at 37°C. Also, the antibacterial compounds was sensitive to heat and was inactivated at 37°C in less than 2 days and at 25°C in 8 days. Using Roseobacter 27-4 as a probiotic culture will require that is be established in stagnant or adhered conditions and, due to the temperature sensitivity of the active compound, constant production must be ensured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号