首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The great variety of species-typical electric signals (electric organ discharges, EOD) emitted by weakly electric mormyrid fish might be the result of evolutionary pressures stemming from the two main functions of the electro-sensory-motor system: electrocommunication and electrolocation. Employing a conditioned discrimination task we tested four species of mormyrids, emitting EODs differing in waveform, for their ability to detect capacitive properties of objects during electrolocation. Each fish could discriminate capacitive objects within a certain range of capacitive values, which was species specific. The upper and lower limits (upper and lower thresholds) of this detectable range were determined for each fish. In fish species emitting long duration EODs composed of mainly low spectral frequencies both the lower and the upper thresholds were shifted to larger capacitive values compared to fish species emitting shorter EODs. The upper limit of the detectable range was much more variable between species than the lower limit, which was relatively low in all fish. We interpret this as an adaptation of mormyrids to detect small capacitive objects, for example food items. All mormyrids could discriminate between a resistive object and a capacitive object even if the complex impedances of the two objects were identical. This implies that the fish are highly sensitive to small waveform distortions of their self produced EODs.  相似文献   

2.
The lesser electric ray, Narcine brasiliensis, is a small, demersal ray capable of generating electricity through its main and accessory electric organs. Although closely related to the large piscivorous torpedo rays, it differs in size, habitat, and prey. Based on these differences, we hypothesized that the main electric organs are used for predator defense rather than feeding and that the accessory electric organs, specific to this species, are used for intraspecific communication. We found that the mass of the main and accessory electric organs were both significantly smaller in females than in males. Whereas the main electro-somatic index does not change with growth, the accessory electro-somatic index increases, providing support for the accessory electric organs’ use in intraspecific communication. We characterized the discharge properties of the main electric organ throughout ontogeny by simulating a predation attempt on the ray. Rays always responded by generating electric organ discharges (EODs) and by flexing the tail dorsoventrally and laterally. The main EOD amplitude, measured directly at the source, increased logarithmically with disc width to a maximum measured amplitude of 56 V. Minimum amplitude was more variable, but followed a positive power relationship with disc width. Neonates produced trains comprised of significantly more EODs than the adults. Over the course of the first set of discharges, all age classes showed a decrease in fundamental frequency and an increase in train duration. In contrast to these defensive responses, the rays did not generate EODs while foraging or feeding on live prey.  相似文献   

3.
We describe patterns of geographic variation in electric signal waveforms among populations of the mormyrid electric fish species Paramormyrops kingsleyae. This analysis includes study of electric organs and electric organ discharge (EOD) signals from 553 specimens collected from 12 localities in Gabon, West-Central Africa from 1998 to 2009. We measured time, slope, and voltage values from nine defined EOD “landmarks” and determined peak spectral frequencies from each waveform; these data were subjected to principal components analysis. The majority of variation in EODs is explained by two factors: the first related to EOD duration, the second related to the magnitude of the weak head-negative pre-potential, P0. Both factors varied clinally across Gabon. EODs are shorter in eastern Gabon and longer in western Gabon. Peak P0 is slightly larger in northern Gabon and smaller in southern Gabon. P0 in the EOD is due to the presence of penetrating-stalked (Pa) electrocytes in the electric organ while absence is due to the presence of non-penetrating stalked electrocytes (NPp). Across Gabon, the majority of P. kingsleyae populations surveyed have only individuals with P0-present EODs and Pa electrocytes. We discovered two geographically distinct populations, isolated from others by barriers to migration, where all individuals have P0-absent EODs with NPp electrocytes. At two sites along a boundary between P0-absent and P0-present populations, P0-absent and P0-present individuals were found in sympatry; specimens collected there had electric organs of intermediate morphology. This pattern of geographic variation in EODs is considered in the context of current phylogenetic work. Multiple independent paedomorphic losses of penetrating stalked electrocytes have occurred within five Paramormyrops species and seven genera of mormyrids. We suggest that this key anatomical feature in EOD signal evolution may be under a simple mechanism of genetic control, and may be easily influenced by selection or drift throughout the evolutionary history of mormyrids.  相似文献   

4.
A hormone-sensitive communication system in an electric fish   总被引:1,自引:0,他引:1  
The electric communication system includes both special muscle-derived cells or electrocytes that produce species-typical electric signals, or electric organ discharges (EODs), and specialized sensory receptors, or electroreceptors, that encode the electric fields set up by EODs. Steroid hormones can influence the characteristic properties of both EODs and electroreceptors. Steroids appear to directly effect the anatomy and physiology of the electrocytes that generate an EOD. In contrast, the steroid effect on electroreceptors may be predominantly via an indirect mechanism whereby changes in the spectral characteristics of the EOD appear to induce changes in the spectral sensitivity of electroreceptors. Continued studies of electrosensory and electromotor systems will offer insights into the cellular bases for the development and evolution of steroid-sensitive pathways in the vertebrate nervous system.  相似文献   

5.
Electric signals of mormyrid fishes have recently been described from several regions of Africa. Members of the Mormyridae produce weak electric organ discharges (EODs) as part of a specialized electrosensory communication and orientation system. Sympatric species often express distinctive EODs, which may contribute to species recognition during mate choice in some lineages. Striking examples of interspecific EOD variation within assemblages have been reported for two monophyletic radiations: the Paramormyrops of Gabon and the Campylomormyrus of Lower Congo. Here, we describe a speciose assemblage of Petrocephalus in the Lékoli River system of Odzala National Park, Republic of Congo. This widespread genus comprises the subfamily (Petrocephalinae) that is the sister group to all other mormyrids (Mormyrinae). Eleven Petrocephalus species were collected in Odzala, five of which are not described taxonomically. We quantify EOD variation within this assemblage and show that all eleven species produce EOD waveforms of brief duration (species means range from 144 to 663 μs) compared to many other mormyrids. We also present reconstructed phylogenetic relationships among species based on cytochrome b sequences. Discovery of the Odzala assemblage greatly increases the number of Petrocephalus species for which EODs and DNA sequence data are available, permitting a first qualitative comparison between mormyrid subfamilies of the divergence patterns that have been described within lineages. We find that the Petrocephalus assemblage in Odzala is not a monophyletic radiation. Genetic divergence among Petrocephalus species often appears higher than among Paramormyrops or Campylomormyrus species. In contrast, results of this study and others suggest that Petrocephalus may generally exhibit less interspecific EOD divergence, as well as smaller sex differences in EOD waveforms, compared to Paramormyrops and Campylomormyrus. We discuss possible causes and consequences of EOD diversification patterns observed within mormyrid subfamilies as a framework for future comparative studies of signal evolution using this emerging model system.  相似文献   

6.
Summary Members of the family of African electric fish, Mormyridae, exhibit a novelty response, consisting of an acceleration in the rate of electric organ discharges (EODs), when faced with changes in feedback arising from their EODs. In this study, the novelty responses of three different species of mormyrids to shunts with different electrical characteristics were noted. The three species differed in the frequency contents of their EODs: two species had relatively high spectral frequencies in their EODs (>10 kHz), while the third species had only lower spectral frequencies (< 10 kHz). Primarily resistive shunts elicited novelty response accelerations in all three species, and the magnitudes of these responses, when normalized to the responses obtained for a shunt with no introduced resistance, were comparable for all three species. For primarily capacitive shunts, however, the magnitudes of the normalized responses were different for the three species: the two species with high spectral frequencies in their EODs showed larger normalized responses than the third species which had only low EOD spectral frequencies.The differences in species responses for capacitive shunts, and the similarities in species responses for resistive shunts, suggest that electric fish detect the complex impedance of objects in their near field environment: a circuit model consisting of a fish emitting discharges into the surrounding water, which can be shunted by a variable complex impedance, conforms well to the data. Thus, electrolocation is a frequency dependent sensory process, and this frequency dependency should be considered in any speculation about the adaptive value of different EOD waveforms.Abbreviation EOD electric organ discharge  相似文献   

7.
Teleost fishes not only communicate with well-known visual cues, but also olfactory and acoustic signals. Communicating with sound has advantages, as acoustic signals propagate fast, omnidirectionally, around obstacles and over long distances. Heterogeneous environments might favour multimodal communication, especially in socially complex species, as the combination of modalities’ strengths helps overcome their individual limitations. Fishes of the ecologically and morphologically diverse family Cichlidae are known to be vocal. Here we investigated sound production in the socially complex Princess cichlid Neolamprologus pulcher from Lake Tanganyika in East Africa. We show that wild and captive N. pulcher produce only short-duration, broadband high-frequency sounds (mean: 12 kHz), when stimulated by mirror images. The evolutionary reasons for this “low frequency silencing” are still unclear. In laboratory experiments, N. pulcher produced distinct two-pulsed calls mostly, but not exclusively, associated with agonistic displays. Princess cichlids produce these high-frequency sounds both in combination with and independent from visual displays, suggesting that sounds are not a by-product of behavioural displays. Further studies on the hearing abilities of N. pulcher are needed to clarify whether the high-frequency sounds are used in intra- or inter-specific communication.  相似文献   

8.
9.
Energetic demands of social communication signals can constrain signal duration, repetition, and magnitude. The metabolic costs of communication signals are further magnified when they are coupled to active sensory systems that require constant signal generation. Under such circumstances, metabolic stress incurs additional risk because energy shortfalls could degrade sensory system performance as well as the social functions of the communication signal. The weakly electric fish Eigenmannia virescens generates electric organ discharges (EODs) that serve as both active sensory and communication signals. These EODs are maintained at steady frequencies of 200–600 Hz throughout the lifespan, and thus represent a substantial metabolic investment. We investigated the effects of metabolic stress (food deprivation) on EOD amplitude (EODa) and EOD frequency (EODf) in E. virescens and found that only EODa decreases during food deprivation and recovers after restoration of feeding. Cortisol did not alter EODa under any conditions, and plasma cortisol levels were not changed by food deprivation. Both melanocortin hormones and social challenges caused transient EODa increases in both food-deprived and well-fed fish. Intramuscular injections of leptin increased EODa in food-deprived fish but not well-fed fish, identifying leptin as a novel regulator of EODa and suggesting that leptin mediates EODa responses to metabolic stress. The sensitivity of EODa to dietary energy availability likely arises because of the extreme energetic costs of EOD production in E. virescens and also could reflect reproductive strategies of iteroparous species that reduce social signaling and reproduction during periods of stress to later resume reproductive efforts when conditions improve.  相似文献   

10.
I recorded the electric organ discharges (EODs) of 331 immature Brachyhypopomus pinnicaudatus 6–88 mm long. Larvae produced head-positive pulses 1.3 ms long at 7 mm (6 days) and added a second, small head-negative phase at 12 mm. Both phases shortened duration and increased amplitude during growth. Relative to the whole EOD, the negative phase increased duration until 22 mm and amplitude until 37 mm. Fish above 37 mm produced a “symmetric” EOD like that of adult females. I stained cleared fish with Sudan black, or fluorescently labeled serial sections with anti-desmin (electric organ) or anti-myosin (muscle). From day 6 onward, a single electric organ was found at the ventral margin of the hypaxial muscle. Electrocytes were initially cylindrical, overlapping, and stalk-less, but later shortened along the rostrocaudal axis, separated into rows, and formed caudal stalks. This differentiation started in the posterior electric organ in 12-mm fish and was complete in the anterior region of fish with “symmetric” EODs. The lack of a distinct “larval” electric organ in this pulse-type species weakens the hypothesis that all gymnotiforms develop both a temporary (larval) and a permanent (adult) electric organ. Accepted: 1 March 1997  相似文献   

11.
The electric organ discharges (EODs) of pairs of weakly electric fish, Gnathonemus petersii, were simultaneously recorded to study the significance of the EODs as communication signals. In a 400-litre tank a larger fish (12 to 15 cm) was passively moved within a shelter tube toward a smaller specimen (6 to 9 cm), either in steps or a continuous move. The movement was stopped at that distance when at least one fish significantly lowered or ceased its EOD activity. From this ‘threshold interfish distance’ the spatial range of a ‘communication field’ was found to extend about 30 cm from the fish. At threshold distances an EOD frequency increase caused a temporary EOD activity cessation in the second fish. The spontaneous irregular EOD pattern of the fish displaying the increased EOD rate changed into a regular one with almost equal time intervals between fish pulses.  相似文献   

12.
Serotonin modulates agonistic and reproductive behavior across vertebrate species. 5HT1A and 5HT1B receptors mediate many serotonergic effects on social behavior, but other receptors, including 5HT2 receptors, may also contribute. We investigated serotonergic regulation of electrocommunication signals in the weakly electric fish Apteronotus leptorhynchus. During social interactions, these fish modulate their electric organ discharges (EODs) to produce signals known as chirps. Males chirp more than females and produce two chirp types. Males produce high-frequency chirps as courtship signals; whereas both sexes produce low-frequency chirps during same-sex interactions. Serotonergic innervation of the prepacemaker nucleus, which controls chirping, is more robust in females than males. Serotonin inhibits chirping and may contribute to sexual dimorphism and individual variation in chirping. We elicited chirps with EOD playbacks and pharmacologically manipulated serotonin receptors to determine which receptors regulated chirping. We also asked whether serotonin receptor activation generally modulated chirping or more specifically targeted particular chirp types. Agonists and antagonists of 5HT1B/1D receptors (CP-94253 and GR-125743) did not affect chirping. The 5HT1A receptor agonist 8OH-DPAT specifically increased production of high-frequency chirps. The 5HT2 receptor agonist DOI decreased chirping. Receptor antagonists (WAY-100635 and MDL-11939) opposed the effects of their corresponding agonists. These results suggest that serotonergic inhibition of chirping may be mediated by 5HT2 receptors, but that serotonergic activation of 5HT1A receptors specifically increases the production of high-frequency chirps. The enhancement of chirping by 5HT1A receptors may result from interactions with cortisol and/or arginine vasotocin, which similarly enhance chirping and are influenced by 5HT1A activity in other systems.  相似文献   

13.
Weakly electric fish communicate with brief electrostatic field pulses called electric organ discharges (EODs). EOD waveforms are sexually dimorphic in most genera, a condition thought to result from mate choice acting to shape the electric signal's constituent action potentials. We have no direct behavioural evidence that sexual selection by either mate choice or intrasexual competition is responsible for sex differences in the EOD waveforms of electric fish. We explored sexual selection in electric fish by conducting two-choice unforced preference tests with live, unaltered gymnotiform electric fish,Brachyhypopomus pinnicaudatus , which are sexually dimorphic. In the initial test, gravid females selected males over females only when the males were larger than average. Gravid females in later tests preferred larger males to smaller males in a significant majority of those trials in which they showed a preference. In about one-third of those trials, females spawned with their preferred male, confirming their preference. We concluded that passage through the choice apparatus was related to mate choice. The signals of chosen males had larger EOD amplitudes and longer EOD durations. These findings show that femaleB. pinnicaudatus do have a preference for a certain male phenotype. The system requires additional study to dissociate correlated male phenotypic characters to identify which male traits the female prefers. Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

14.
15.
This study explores the evolutionary origins of waveform complexity in electric organ discharges (EODs) of weakly electric fish. I attempt to answer the basic question of what selective forces led to the transition from the simplest signal to the second simplest signal in the gymnotiform electric fishes. The simplest electric signal is a monophasic pulse and the second simplest is a biphasic pulse. I consider five adaptive hypotheses for the evolutionary transition from a monophasic to a biphasic EOD: (i) electrolocation, (ii) sexual selection, (iii) species isolation, (iv) territory defense, (v) crypsis from electroreceptive predators. Evaluating these hypotheses with data drawn largely from the literature, I find best support for predation. Predation is typically viewed as a restraining force on evolution of communication signals, but among the electric fishes, predation appears to have served as a creative catalyst. In suppressing spectral energy in the sensitivity range of predators (a spectral simplification), the EOD waveforms have become more complex in their time domain structure. Complexity in the time domain is readily discernable by the high frequency electroreceptor systems of gymnotiform and mormyrid electric fish. The addition of phases to the EOD can cloak the EOD from predators, but also provides a substrate for subsequent modification by sexual selection. But, while juveniles and females remain protected from predators, breeding males modify their EODs in ways that enhance their conspicuousness to predators.  相似文献   

16.

Background

Intermediate forms in the evolution of new adaptations such as transitions from water to land and the evolution of flight are often poorly understood. Similarly, the evolution of superfast sonic muscles in fishes, often considered the fastest muscles in vertebrates, has been a mystery because slow bladder movement does not generate sound. Slow muscles that stretch the swimbladder and then produce sound during recoil have recently been discovered in ophidiiform fishes. Here we describe the disturbance call (produced when fish are held) and sonic mechanism in an unrelated perciform pearl perch (Glaucosomatidae) that represents an intermediate condition in the evolution of super-fast sonic muscles.

Results

The pearl perch disturbance call is a two-part sound produced by a fast sonic muscle that rapidly stretches the bladder and an antagonistic tendon-smooth muscle combination (part 1) causing the tendon and bladder to snap back (part 2) generating a higher-frequency and greater-amplitude pulse. The smooth muscle is confirmed by electron microscopy and protein analysis. To our knowledge smooth muscle attachment to a tendon is unknown in animals.

Conclusion

The pearl perch, an advanced perciform teleost unrelated to ophidiiform fishes, uses a slow type mechanism to produce the major portion of the sound pulse during recoil, but the swimbladder is stretched by a fast muscle. Similarities between the two unrelated lineages, suggest independent and convergent evolution of sonic muscles and indicate intermediate forms in the evolution of superfast muscles.  相似文献   

17.
This paper is the first detailed analysis of situation-specific temporal patterning of electric organ discharges (EODs) in a strong electric fish. Using a resident-intruder paradigm EODs were recorded during interactions between dyads composed of Malapterurus electricus (Gmelin) and four different types of fish: (1) conspecifics; (2) large prey-type mid-water fish, goldfish ( Carassius auratus , Linnaeus 1758) and tilapia ( Oreochromis melanotheron , Rüppel, 1852); (3) a sympatric competitor, Polypterus palmas (Ayres 1850) and (4) a larger, threatening catfish, Clarias sp.
An analysis of the EODs emitted showed that in the presence of conspecifics the average EOD volley consisted of a single long-duration, low frequency train of EODs. The presence of the midwater fish (goldfish and Tilapia) elicited volleys consisting of two short trains, and P. palmas elicited long duration volleys with two trains and long inter-train intervals. Finally, an attacking Clarias resulted on average in volleys consisting of two high-frequency trains of EODs. With nonconspecific partner species resident electric catfish emitted volleys with more pulses, more trains that were longer in duration and higher in frequency than the EODs in volleys emitted by intruder electric catfish with the same species stimulus fish.  相似文献   

18.
No information on the inheritance of the ability to produce sounds exists for fishes. In birds, which usually provide extensive post-hatching parental care, acoustic signals are learned in some species but are innate in others. Almost no fishes provide extensive post-hatching parental care and, consequently, the offspring have little opportunity to hear and learn sounds produced by the parents (usually the male in fishes); they may, however, be exposed to acoustic signals of conspecifics in the same habitat. We used a cyprinid, Codoma ornata, to test whether sound production is learned from the parents or whether it is innate. Fertilized eggs of this species were raised in isolation from adults. Upon maturity, these fish were tested for sound production in aggressive and reproductive contexts. Fish which had no contact with adults, and therefore no opportunity to hear the acoustic signals of their species, produced sounds that were similar to those produced by their parents, and they produced these in the same contexts. Significant differences were observed in dominant frequency for one context, with the smaller F1 fish having signals of higher frequency than parental fish. Since no opportunity for learning existed, this provided evidence that the ability to produce sounds is innate in this minnow species.  相似文献   

19.
This paper explores the relationship between dissolved oxygen concentration and the distribution and electric signal diversity of 64 species of gymnotiforms from the Tefé region of the upper Amazon basin. Seventeen species are able to tolerate protracted periods of anoxia in inundated várzea floodplains or in terra firme swamps. The majority do so by breathing air—either with specialist accessory air-breathing organs or via their gills. An assemblage of 38 species of gymnotiforms which are unable to tolerate hypoxia undertake lateral migrations from well-oxygenated river channels into and out of the várzea floodplain in response to oxygen availability. These have evolved behavioural adaptations to avoid hypoxic water. While there is a mix of tone- and pulse-type electric organ discharges (EODs) in species that live only in permanently well-oxygenated habitats, 16 out of the 17 species that live in anoxic habitats have pulse-type EODs. The tone-type signals may have less flexible and perhaps greater overall energetic demands that impose handicaps in habitats where oxygen is a limiting factor. Many tone-type species also have more active swimming behaviour which could impose further energetic demands.  相似文献   

20.
Summary Gymnotoid electric fish with pulse-type electric organ discharges (EODs) shorten (lengthen) their EOD intervals as pulses of a slightly slower (faster) train scan their EODs (Figs. 1, 2). They thus minimize the chance of pulse coincidence by transient accelerations (decelerations) of their EOD rate.Studies in curarized preparations demonstrate that this Jamming Avoidance Response (JAR) is controlled by electroreceptive input alone and without reference to an internal electric organ pacemaker-related signal (Fig. 8). A sufficient stimulus input consists of a train of strong, EOD-like stimulus pulses (S1), which mimic the animal's experience of its own EOD, and a train of small pulses (S2) of slightly different repetition rate, which mimic EODs of a neighbor. Correct behavioral responses require S1 pulses of sufficient intensity to recruit pulse-markertype receptors; also spatial and temporal patterns must closely resemble those of the animal's EOD. These features are of little significance for S2 pulses which, while scanning S1 pulses, only provide a small perturbation of electroreceptive feedback from S1 pulses. Inappropriate S1 stimulation impairs and sometimes reverses (Fig. 7) the behavioral discrimination of scan directions. The JAR is explained in terms of excitatory and inhibitory processes (Fig. 3) which are triggered by S2 stimulation, at specific phases within the S1 cycle (Figs. 4–6).The JAR in pulse species strongly resembles the JAR in wave-species (Bullock et al., 1972) and could be considered an evolutionary ancestor of the latter. It is a response to a particular novelty in electroreceptive feedback.We thank Drs. T.H. Bullock, C. Hopkins and an anonymous referee for most helpful criticism. This research was supported by NSF grand BMS74-18640 and NIMH grant PHSMH-2614901 to W.H. and NIH grant/ROI NS 12337-01 to J.B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号