共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In eukaryotes, ribosome assembly requires hundreds of conserved essential proteins not present in the mature particle. Despite their importance, the function of most factors remains unknown. This is because protein deletion often affects the composition of the entire particle. Additionally, many proteins are present in assembling ribosomes for extended times, which makes it difficult to pinpoint their role to a particular step. Here we have combined classical yeast biochemistry with experiments using recombinant proteins and RNA to study the role of Dim2 and its interaction with Nob1, the nuclease that generates the 3'-end of 18 S rRNA. Analysis of Dim2 mutants in which the interaction with Nob1 is disrupted demonstrates that this interaction between Dim2 and Nob1 is essential for optimal growth, and RNA binding experiments show that Dim2 increases Nob1 RNA affinity. Furthermore, our data indicate that Dim2 helps regulate Nob1 cleavage activity at the 3'-end of 18 S rRNA, as point mutants where this interaction is abolished in vitro accumulate pre-ribosomes containing Nob1 and 20 S rRNA in vivo. Interestingly, the site of interaction with Nob1 is mapped to the canonical RNA binding surface of a KH-like domain in Dim2, providing another example where an RNA-binding domain can be repurposed for protein interactions. 相似文献
3.
Alexandr Paci Xiao Hu Liu Hao Huang Abelyn Lim Walid A. Houry Rongmin Zhao 《The Journal of biological chemistry》2012,287(52):43205-43214
Pih1 is an unstable protein and a subunit of the R2TP complex that, in yeast Saccharomyces cerevisiae, also contains the helicases Rvb1, Rvb2, and the Hsp90 cofactor Tah1. Pih1 and the R2TP complex are required for the box C/D small nucleolar ribonucleoprotein (snoRNP) assembly and ribosomal RNA processing. Purified Pih1 tends to aggregate in vitro. Molecular chaperone Hsp90 and its cochaperone Tah1 are required for the stability of Pih1 in vivo. We had shown earlier that the C terminus of Pih1 destabilizes the protein and that the C terminus of Tah1 binds to the Pih1 C terminus to form a stable complex. Here, we analyzed the secondary structure of the Pih1 C terminus and identified two intrinsically disordered regions and five hydrophobic clusters. Site-directed mutagenesis indicated that one predicted intrinsically disordered region IDR2 is involved in Tah1 binding, and that the C terminus of Pih1 contains multiple destabilization or degron elements. Additionally, the Pih1 N-terminal domain, Pih11–230, was found to be able to complement the physiological role of full-length Pih1 at 37 °C. Pih11–230 as well as a shorter Pih1 N-terminal fragment Pih11–195 is able to bind Rvb1/Rvb2 heterocomplex. However, the sequence between the two disordered regions in Pih1 significantly enhances the Pih1 N-terminal domain binding to Rvb1/Rvb2. Based on these data, a model of protein-protein interactions within the R2TP complex is proposed. 相似文献
4.
Involvement of the Interaction of Afadin with ZO-1 in the Formation of Tight Junctions in Madin-Darby Canine Kidney Cells 总被引:2,自引:0,他引:2
Takako Ooshio Reiko Kobayashi Wataru Ikeda Muneaki Miyata Yuri Fukumoto Naomi Matsuzawa Hisakazu Ogita Yoshimi Takai 《The Journal of biological chemistry》2010,285(7):5003-5012
Tight junctions (TJs) and adherens junctions (AJs) are major junctional apparatuses in epithelial cells. Claudins and junctional adhesion molecules (JAMs) are major cell adhesion molecules (CAMs) at TJs, whereas cadherins and nectins are major CAMs at AJs. Claudins and JAMs are associated with ZO proteins, whereas cadherins are associated with β- and α-catenins, and nectins are associated with afadin. We previously showed that nectins first form cell-cell adhesions where the cadherin-catenin complex is recruited to form AJs, followed by the recruitment of the JAM-ZO and claudin-ZO complexes to the apical side of AJs to form TJs. It is not fully understood how TJ components are recruited to the apical side of AJs. We studied the roles of afadin and ZO-1 in the formation of TJs in Madin-Darby canine kidney (MDCK) cells. Before the formation of TJs, ZO-1 interacted with afadin through the two proline-rich regions of afadin and the SH3 domain of ZO-1. During and after the formation of TJs, ZO-1 dissociated from afadin and associated with JAM-A. Knockdown of afadin impaired the formation of both AJs and TJs in MDCK cells, whereas knockdown of ZO-1 impaired the formation of TJs, but not AJs. Re-expression of full-length afadin restored the formation of both AJs and TJs in afadin-knockdown MDCK cells, whereas re-expression of afadin-ΔPR1–2, which is incapable of binding to ZO-1, restored the formation of AJs, but not TJs. These results indicate that the transient interaction of afadin with ZO-1 is necessary for the formation of TJs in MDCK cells. 相似文献
5.
Oriana S. Fisher Weizhi Liu Rong Zhang Amy L. Stiegler Sondhya Ghedia James L. Weber Titus J. Boggon 《The Journal of biological chemistry》2015,290(5):2842-2853
Familial cerebral cavernous malformations (CCMs) are predominantly neurovascular lesions and are associated with mutations within the KRIT1, CCM2, and PDCD10 genes. The protein products of KRIT1 and CCM2 (Krev interaction trapped 1 (KRIT1) and cerebral cavernous malformations 2 (CCM2), respectively) directly interact with each other. Disease-associated mutations in KRIT1 and CCM2 mostly result in loss of their protein products, although rare missense point mutations can also occur. From gene sequencing of patients known or suspected to have one or more CCMs, we discover a series of missense point mutations in KRIT1 and CCM2 that result in missense mutations in the CCM2 and KRIT1 proteins. To place these mutations in the context of the molecular level interactions of CCM2 and KRIT1, we map the interaction of KRIT1 and CCM2 and find that the CCM2 phosphotyrosine binding (PTB) domain displays a preference toward the third of the three KRIT1 NPX(Y/F) motifs. We determine the 2.75 Å co-crystal structure of the CCM2 PTB domain with a peptide corresponding to KRIT1NPX(Y/F)3, revealing a Dab-like PTB fold for CCM2 and its interaction with KRIT1NPX(Y/F)3. We find that several disease-associated missense mutations in CCM2 have the potential to interrupt the KRIT1-CCM2 interaction by destabilizing the CCM2 PTB domain and that a KRIT1 mutation also disrupts this interaction. We therefore provide new insights into the architecture of CCM2 and how the CCM complex is disrupted in CCM disease. 相似文献
6.
7.
Jidnyasa Joshi Oliver Mueller-Cajar Yi-Chin C. Tsai F. Ulrich Hartl Manajit Hayer-Hartl 《The Journal of biological chemistry》2015,290(2):1066-1074
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme involved in photosynthetic carbon fixation, converting atmospheric CO2 to organic compounds. Form I Rubisco is a cylindrical complex composed of eight large (RbcL) subunits that are capped by four small subunits (RbcS) at the top and four at the bottom. Form I Rubiscos are phylogenetically divided into green- and red-type. Some red-type enzymes have catalytically superior properties. Thus, understanding their folding and assembly is of considerable biotechnological interest. Folding of the green-type RbcL subunits in cyanobacteria is mediated by the GroEL/ES chaperonin system, and assembly to holoenzyme requires specialized chaperones such as RbcX and RAF1. Here, we show that the red-type RbcL subunits in the proteobacterium Rhodobacter sphaeroides also fold with GroEL/ES. However, assembly proceeds in a chaperone-independent manner. We find that the C-terminal β-hairpin extension of red-type RbcS, which is absent in green-type RbcS, is critical for efficient assembly. The β-hairpins of four RbcS subunits form an eight-stranded β-barrel that protrudes into the central solvent channel of the RbcL core complex. The two β-barrels stabilize the complex through multiple interactions with the RbcL subunits. A chimeric green-type RbcS carrying the C-terminal β-hairpin renders the assembly of a cyanobacterial Rubisco independent of RbcX. Our results may facilitate the engineering of crop plants with improved growth properties expressing red-type Rubisco. 相似文献
8.
Evans Boateng Sarbeng Qingdai Liu Xueli Tian Jiao Yang Hongtao Li Jennifer Li Wong Lei Zhou Qinglian Liu 《The Journal of biological chemistry》2015,290(14):8849-8862
Highly conserved molecular chaperone Hsp70 heat shock proteins play a key role in maintaining protein homeostasis (proteostasis). DnaK, a major Hsp70 in Escherichia coli, has been widely used as a paradigm for studying Hsp70s. In the absence of ATP, purified DnaK forms low-ordered oligomer, whereas ATP binding shifts the equilibrium toward the monomer. Recently, we solved the crystal structure of DnaK in complex with ATP. There are two molecules of DnaK-ATP in the asymmetric unit. Interestingly, the interfaces between the two molecules of DnaK are large with good surface complementarity, suggesting functional importance of this crystallographic dimer. Biochemical analyses of DnaK protein supported the formation of dimer in solution. Furthermore, our cross-linking experiment based on the DnaK-ATP structure confirmed that DnaK forms specific dimer in an ATP-dependent manner. To understand the physiological function of the dimer, we mutated five residues on the dimer interface. Four mutations, R56A, T301A, N537A, and D540A, resulted in loss of chaperone activity and compromised the formation of dimer, indicating the functional importance of the dimer. Surprisingly, neither the intrinsic biochemical activities, the ATP-induced allosteric coupling, nor GrpE co-chaperone interaction is affected appreciably in all of the mutations except for R56A. Unexpectedly, the interaction with co-chaperone Hsp40 is significantly compromised. In summary, this study suggests that DnaK forms a transient dimer upon ATP binding, and this dimer is essential for the efficient interaction of DnaK with Hsp40. 相似文献
9.
10.
Kumar S Raj I Nagpal I Subbarao N Gourinath S 《The Journal of biological chemistry》2011,286(14):12533-12541
Cysteine (Cys) plays a major role in growth and survival of the human parasite Entamoeba histolytica. We report here the crystal structure of serine acetyltransferase (SAT) isoform 1, a cysteine biosynthetic pathway enzyme from E. histolytica (EhSAT1) at 1.77 Å, in complex with its substrate serine (Ser) at 1.59 Å and inhibitor Cys at 1.78 Å resolution. EhSAT1 exists as a trimer both in solution as well as in crystal structure, unlike hexamers formed by other known SATs. The difference in oligomeric state is due to the N-terminal region of the EhSAT1, which has very low sequence similarity to known structures, also differs in orientation and charge distribution. The Ser and Cys bind to the same site, confirming that Cys is a competitive inhibitor of Ser. The disordered C-terminal region and the loop near the active site are responsible for solvent-accessible acetyl-CoA binding site and, thus, lose inhibition to acetyl-CoA by the feedback inhibitor Cys. Docking and fluorescence studies show that EhSAT1 C-terminal-mimicking peptides can bind to O-acetyl serine sulfhydrylase (EhOASS), whereas native C-terminal peptide does not show any binding. To test further, C-terminal end of EhSAT1 was mutated and found that it inhibits EhOASS, confirming modified EhSAT1 can bind to EhOASS. The apparent inability of EhSAT1 to form a hexamer and differences in the C-terminal region are likely to be the major reasons for the lack of formation of the large cysteine synthase complex and loss of a complex regulatory mechanism in E. histolytica. 相似文献
11.
12.
Chuanchuan Li Miao Feng Zhubing Shi Qian Hao Xiaomin Song Wenjia Wang Yun Zhao Shi Jiao Zhaocai Zhou 《The Journal of biological chemistry》2014,289(52):35969-35978
The oxidative stress-responsive 1 (OSR1) kinase belongs to the mammalian STE20-like kinase family. OSR1 is activated by with no lysine [K] (WNKs) kinases, and then it phosphorylates cation-coupled Cl-cotransporters, regulating ion homeostasis and cell volume in mammalian cells. However, the specific mechanisms of OSR1 activation remains poorly defined, largely due to its extremely low basal activity. Here, we dissect in detail the regulatory mechanisms of OSR1 activation from the aspects of autoinhibition, upstream kinase WNK, and the newly identified master regulator mouse protein-25 (MO25). Based on our structural and biochemical studies, we propose a “double lock” model, accounting for the tight autoinhibition of OSR1, an effect that has to be removed by WNK before MO25 further activates OSR1. Particularly, the conserved C-terminal (CCT) domain and αAL helix act together to strongly suppress OSR1 basal activity. WNKs bind to the CCT and trigger its conformational rearrangement to release the kinase domain of OSR1, allowing for MO25 binding and full activation. Finally, the regulatory mechanisms of OSR1 activation were further corroborated by cellular studies of OSR1-regulated cell volume control through WNK-OSR1 signaling pathway. Collectively, these results provide insights into the OSR1 kinase activation to facilitate further functional study. 相似文献
13.
14.
Maryline Fresquet Thomas A. Jowitt Louise A. Stephen Joni Yl?stalo Michael D. Briggs 《The Journal of biological chemistry》2010,285(44):34048-34061
Matrilin-1 is expressed predominantly in cartilage and co-localizes with matrilin-3 with which it can form hetero-oligomers. We recently described novel structural and functional features of the matrilin-3 A-domain (M3A) and demonstrated that it bound with high affinity to type II and IX collagens. Interactions preferentially occurred in the presence of Zn2+ suggesting that matrilin-3 has acquired a requirement for specific metal ions for activation and/or molecular associations. To understand the interdependence of matrilin-1/-3 hetero-oligomers in extracellular matrix (ECM) interactions, we have extended these studies to include the two matrilin-1 A-domains (i.e. M1A1 and M1A2 respectively). In this study we have identified new characteristics of the matrilin-1 A-domains by describing their glycosylation state and the effect of N-glycan chains on their structure, thermal stability, and protein-protein interactions. Initial characterization revealed that N-glycosylation did not affect secretion of these two proteins, nor did it alter their folding characteristics. However, removal of the glycosylation decreased their thermal stability. We then compared the effect of different cations on binding between both M1A domains and type II and IX collagens and showed that Zn2+ also supports their interactions. Finally, we have demonstrated that both M1A1 domains and biglycan are essential for the association of the type II·VI collagen complex. We predict that a potential role of the matrilin-1/-3 hetero-oligomer might be to increase multivalency, and therefore the ability to connect various ECM components. Differing affinities could act to regulate the integrated network, thus coordinating the organization of the macromolecular structures in the cartilage ECM. 相似文献
15.
Yu-Hang Zhang Keerthi Shetty Marius D. Surleac Andrei J. Petrescu David G. Schatz 《The Journal of biological chemistry》2015,290(19):11802-11817
The RAG endonuclease consists of RAG1, which contains the active site for DNA cleavage, and RAG2, an accessory factor whose interaction with RAG1 is critical for catalytic function. How RAG2 activates RAG1 is not understood. Here, we used biolayer interferometry and pulldown assays to identify regions of RAG1 necessary for interaction with RAG2 and to measure the RAG1-RAG2 binding affinity (KD ∼0.4 μm) (where RAG1 and RAG2 are recombination activating genes 1 or 2). Using the Hermes transposase as a guide, we constructed a 36-kDa “mini” RAG1 capable of interacting robustly with RAG2. Mini-RAG1 consists primarily of the catalytic center and the residues N-terminal to it, but it lacks a zinc finger region in RAG1 previously implicated in binding RAG2. The ability of Mini-RAG1 to interact with RAG2 depends on a predicted α-helix (amino acids 997–1008) near the RAG1 C terminus and a region of RAG1 from amino acids 479 to 559. Two adjacent acidic amino acids in this region (Asp-546 and Glu-547) are important for both the RAG1-RAG2 interaction and recombination activity, with Asp-546 of particular importance. Structural modeling of Mini-RAG1 suggests that Asp-546/Glu-547 lie near the predicted 997-1008 α-helix and components of the active site, raising the possibility that RAG2 binding alters the structure of the RAG1 active site. Quantitative Western blotting allowed us to estimate that mouse thymocytes contain on average ∼1,800 monomers of RAG1 and ∼15,000 molecules of RAG2, implying that nuclear concentrations of RAG1 and RAG2 are below the KD value for their interaction, which could help limit off-target RAG activity. 相似文献
16.
Monika Feigenbutz Rebecca Jones Tabot M. D. Besong Stephen E. Harding Phil Mitchell 《The Journal of biological chemistry》2013,288(22):15959-15970
Rrp6 is a key catalytic subunit of the nuclear RNA exosome that plays a pivotal role in the processing, degradation, and quality control of a wide range of cellular RNAs. Here we report our findings on the assembly of the complex involving Rrp6 and its associated protein Rrp47, which is required for many Rrp6-mediated RNA processes. Recombinant Rrp47 is expressed as a non-globular homodimer. Analysis of the purified recombinant Rrp6·Rrp47 complex revealed a heterodimer, suggesting that Rrp47 undergoes a structural reconfiguration upon interaction with Rrp6. Studies using GFP fusion proteins show that Rrp6 and Rrp47 are localized to the yeast cell nucleus independently of one another. Consistent with this data, Rrp6, but not Rrp47, is found associated with the nuclear import adaptor protein Srp1. We show that the interaction with Rrp6 is critical for Rrp47 stability in vivo; in the absence of Rrp6, newly synthesized Rrp47 is rapidly degraded in a proteasome-dependent manner. These data resolve independent nuclear import routes for Rrp6 and Rrp47, reveal a structural reorganization of Rrp47 upon its interaction with Rrp6, and demonstrate a proteasome-dependent mechanism that efficiently suppresses the expression of Rrp47 in the absence of Rrp6. 相似文献
17.
Leonor Oliveira Ana Cuervo Paulo Tavares 《The Journal of biological chemistry》2010,285(10):7366-7373
DNA packaging in tailed bacteriophages and other viruses requires assembly of a complex molecular machine at a specific vertex of the procapsid. This machine is composed of the portal protein that provides a tunnel for DNA entry, an ATPase that fuels DNA translocation (large terminase subunit), and most frequently, a small terminase subunit. Here we characterized the interaction between the terminase ATPase subunit of bacteriophage SPP1 (gp2) and the procapsid portal vertex. We found, by affinity pulldown assays with purified proteins, that gp2 interacts with the portal protein, gp6, independently of the terminase small subunit gp1, DNA, or ATP. The gp2-procapsid interaction via the portal protein depends on gp2 concentration and requires the presence of divalent cations. Competition experiments showed that isolated gp6 can only inhibit gp2-procapsid interactions and DNA packaging at gp6:procapsid molar ratios above 10-fold. Assays with gp6 carrying mutations in distinct regions of its structure that affect the portal-induced stimulation of ATPase and DNA packaging revealed that none of these mutations impedes gp2-gp6 binding. Our results demonstrate that the SPP1 packaging ATPase binds directly to the portal and that the interaction is stronger with the portal embedded in procapsids. Identification of mutations in gp6 that allow for assembly of the ATPase-portal complex but impair DNA packaging support an intricate cross-talk between the two proteins for activity of the DNA translocation motor. 相似文献
18.
19.
Highly conserved G runs, G1M2 and ISE, regulate the proteolipid protein (PLP)/DM20 ratio. We have investigated recruitment of U1 small nuclear ribonuclear protein (snRNP) by G1M2 and ISE and examined the effect of splice site strength, distance, and context on G run function. G1M2 is necessary for initial recruitment of U1snRNP to the DM20 5' splice site independent of the strength of the splice site. G1M2 regulates E complex formation and supports DM20 splicing when functional U1snRNP is reduced. By contrast, the ISE is not required for the initial recruitment of U1snRNP to the PLP 5' splice site. However, in close proximity to either the DM20 or the PLP 5' splice site, the ISE recruits U1snRNP to both splice sites. The ISE enhances DM20 splicing, whereas close to the PLP 5' splice site, it inhibits PLP splicing. Splicing enhancement and inhibition are mediated by heterogeneous nuclear ribonuclear protein (hnRNP)H/F. The data show that recognition of the DM20 5' splice site depends on G run-mediated recruitment of U1snRNA, whereas a complex interaction between the ISE G runs, context and position determines the functional outcome on splicing. The data suggest that different mechanisms underlie G run-mediated recognition of 5' splice sites and that context and position play a critical role. 相似文献
20.
Kristina E. Overkamp Raphael Gasper Klaus Kock Christian Herrmann Eckhard Hofmann Nicole Frankenberg-Dinkel 《The Journal of biological chemistry》2014,289(39):26691-26707
Phycobiliproteins are employed by cyanobacteria, red algae, glaucophytes, and cryptophytes for light-harvesting and consist of apoproteins covalently associated with open-chain tetrapyrrole chromophores. Although the majority of organisms assemble the individual phycobiliproteins into larger aggregates called phycobilisomes, members of the cryptophytes use a single type of phycobiliprotein that is localized in the thylakoid lumen. The cryptophyte Guillardia theta (Gt) uses phycoerythrin PE545 utilizing the uncommon chromophore 15,16-dihydrobiliverdin (DHBV) in addition to phycoerythrobilin (PEB). Both the biosynthesis and the attachment of chromophores to the apophycobiliprotein have not yet been investigated for cryptophytes. In this study, we identified and characterized enzymes involved in PEB biosynthesis. In addition, we present the first in-depth biochemical characterization of a eukaryotic phycobiliprotein lyase (GtCPES). Plastid-encoded HO (GtHo) was shown to convert heme into biliverdin IXα providing the substrate with a putative nucleus-encoded DHBV:ferredoxin oxidoreductase (GtPEBA). A PEB:ferredoxin oxidoreductase (GtPEBB) was found to convert DHBV to PEB, which is the substrate for the phycobiliprotein lyase GtCPES. The x-ray structure of GtCPES was solved at 2.0 Å revealing a 10-stranded β-barrel with a modified lipocalin fold. GtCPES is an S-type lyase specific for binding of phycobilins with reduced C15=C16 double bonds (DHBV and PEB). Site-directed mutagenesis identified residues Glu-136 and Arg-146 involved in phycobilin binding. Based on the crystal structure, a model for the interaction of GtCPES with the apophycobiliprotein CpeB is proposed and discussed. 相似文献