首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The degree of methylesterification (DM) of homogalacturonans (HGs), the main constituent of pectins in Arabidopsis thaliana, can be modified by pectin methylesterases (PMEs). Regulation of PME activity occurs through interaction with PME inhibitors (PMEIs) and subtilases (SBTs). Considering the size of the gene families encoding PMEs, PMEIs and SBTs, it is highly likely that specific pairs mediate localized changes in pectin structure with consequences on cell wall rheology and plant development. We previously reported that PME17, a group 2 PME expressed in root, could be processed by SBT3.5, a co-expressed subtilisin-like serine protease, to mediate changes in pectin properties and root growth. Here, we further report that a PMEI, PMEI4, is co-expressed with PME17 and is likely to regulate its activity. This sheds new light on the possible interplay of specific PMEs, PMEIs and SBTs in the fine-tuning of pectin structure.  相似文献   

2.
Four cellulose synthase genes were identified by analysis of their class-specific regions (CSRII) in plants of fiber flax during the “rapid growth” stage. These genes were designated as LusCesA1, LusCesA4, LusCesA7 and LusCesA9. LusCesA4, LusCesA7, and LusCesA9 genes were expressed in the stem; LusCesA1 and LusCesA4 genes were expressed in the apex part of plants; and the LusCesA4 gene was expressed in the leaves of fiber flax. The expression of the LusCesA7 and LusCesA9 genes was specific to the stems of fiber flax. These genes may influence the quality of the flax fiber.  相似文献   

3.
4.
Pectin methylesterases (PMEs) catalyze pectin demethylation and facilitate the determination of the degree of methyl esterification of cell wall in higher plants. The regulation of PME activity through endogenous proteinaceous PME inhibitors (PMEIs) alters the status of pectin methylation and influences plant growth and development. In this study, we performed a PMEI screening assay using a chemical library and identified a strong inhibitor, phenylephrine (PE). PE, a small molecule, competitively inhibited plant PMEs, including orange PME and Arabidopsis PME. Physiologically, cultivation of Brassica campestris seedlings in the presence of PE showed root growth inhibition. Microscopic observation revealed that PE inhibits elongation and development of root hairs. Molecular studies demonstrated that Root Hair Specific 12 (RHS12) encoding a PME, which plays a role in root hair development, was inhibited by PE with a Ki value of 44.1?μM. The biochemical mechanism of PE-mediated PME inhibition as well as a molecular docking model between PE and RHS12 revealed that PE interacts within the catalytic cleft of RHS12 and interferes with PME catalytic activity. Taken together, these findings suggest that PE is a novel and non-proteinaceous PME inhibitor. Furthermore, PE could be a lead compound for developing a potent plant growth regulator in agriculture.  相似文献   

5.
The effects of soil drought on various stages of phloem fiber development during the period of flax (Linum usitatissimum L.) rapid growth were assessed. The formation of the secondary cell wall was shown to be most retarded. The content of a tissue-specific galactan was reduced especially sharply, and its side chains were changed. Under conditions of pronounced stress-induced plant growth retardation, fiber intrusive growth was suppressed relatively softly: their number on the stem transverse sections was reduced only by 16%. However, this determined irreversible diversity in the fiber length in various stem regions. Such insignificant suppression of intrusive growth under osmotic stress (simultaneously with substantial retardation of plant growth and metabolism inhibition) indicates the functioning of special mechanisms of its regulation.  相似文献   

6.
Flax (Linum usitatissimum L.) phloem fibers elongate considerably during their development and intrude between existing cells. We questioned whether fiber elongation is caused by cell tip growth or intercalary growth. Cells with tip growth are characterized by having two specific zones of cytoplasm in the cell tip, one with vesicles and no large organelles at the very tip and one with various organelles amongst others longitudinally arranged cortical microtubules in the subapex. Such zones were not observed in elongating flax fibers. Instead, organelles moved into the very tip region, and cortical microtubules showed transversal and helical configurations as known for cells growing in intercalary way. In addition, pulse-chase experiments with Calcofluor White resulted in a spotted fluorescence in the cell wall all over the length of the fiber. Therefore, it is concluded that fiber elongation is not achieved by tip growth but by intercalary growth. The intrusively growing fiber is a coenocytic cell that has no plasmodesmata, making the fibers a symplastically isolated domain within the stem. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

7.
Mago nashi proteins are highly conserved among eukaryotes. They are involved in oogenesis, embryogenesis and germ-line determination during animal development, and play important roles in pollen tube growth, root development and spermatogenesis during plant development. In this study, we used yeast two-hybrid screening to show that the TcMago protein can interact with a Taiwania (Taiwania cryptomerioides) pectin methylesterase-like protein (TcPME1) which consists of a transmembrane domain, a pectin methylesterase inhibitor (PMEI) domain and a pectin methylesterase (PME) domain. The PME domain of TcPME1 was necessary for binding with the TcMago protein. The PME domain was highly conserved in all the plants assayed and had five well conserved active site residues. The predicted protein tertiary structures revealed that the PMEI domain and PME domain of TcPME1 are similar to kiwi (Actinidia deliciosa) PMEI and carrot (Daucus carota) PME, respectively. TcPME1 was expressed abundantly in the early stage of root elongation and accumulated at root tip. Moreover, TcPME1 expression was inhibited by the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). Thus, TcPME1 might be involved in root elongation, shoot development and auxin transport during Taiwania development.  相似文献   

8.
9.
10.
11.
12.
We have identified two major groups of pectin methylesterase (PME, EC 3.1.1.11) isoforms in various tissues of tomatoes (Lycopersicon esculentum). These two groups exhibited differential immuno-cross-reactivity with polyclonal antibodies raised against tomato fruit PME or flax callus PME and differences in their accumulation patterns in tissues of wild-type and transgenic tomato plants expressing a PME antisense gene. The group I isoforms with isoelectric points (pls) of 8.2, 8.4, and 8.5 are specific to fruit tissue, where they are the major forms of PME activity. The group II PME isoforms, with pl values of 9 and above, are observed in both vegetative and fruit tissues. The group I isoforms cross-react with polyclonal antibodies raised to a PME isoform purified from fruit, whereas the group II isoforms cross-react with antibodies to a PME purified from flax callus. Expression of a fruit-specific PME anti-sense gene impairs accumulation of the group I PME isoforms, with no apparent effect on the accumulation of the group II PME isoforms. The absence of any noticeable effects on growth and development of transgenic plants suggests that the group I PME isoforms are not involved in plant growth and development and may play a role under special circumstances such as cell separation during fruit ripening.  相似文献   

13.
14.
Intrusive growth is a type of cell elongation when the rate of its longitudinal growth is higher than that of surrounding cells; therefore, these cells intrude between the neighboring cells penetrating the middle lamella. The review considers the classical example of intrusive growth, e.g., elongation of sclerenchyma fibers when the cells achieve the length of several centimeters. We sum the published results of investigations of plant fiber intrusive growth and present some features of intrusive growth characterized by the authors for flax (Linum usitatissimum L.) and hemp (Cannabis sativa L.) fibers. The following characteristics of intrusive growth are considered: its rate and duration, relationship with the growth rate of surrounding cells, the type of cell elongation, peculiarities of the fiber primary cell wall structure, fibers as multinucleate cells, and also the control of intrusive growth. Genes, which expression is sharply reduced at suppression of intrusive growth, are also considered. Arguments for separation of cell elongation and secondary cell wall formation in phloem fibers and also data indicating diffuse type of cell enlargement during intrusive growth are presented.  相似文献   

15.
In extraxylary tissues of the stem Gnetum gnemon produces gelatinous fibers that can also function as reaction or tension fibers. These gelatinous fibers occur in all axes in the outer cortex and in displaced axes progressively in the middle and inner cortex and finally in the secondary phloem. Early cell differentiation in the cortex produces initials of laticifers that are unique in gymnosperms. Subsequently narrow fibers differentiate from cells that undergo both extensive passive elongation, as a result of internodal elongation, together with their active apical intrusive growth. Outer fibers always complete secondary wall development and become an important mechanical component of stems. Differentiation of fiber initials continues in the middle and inner cortex, but secondary wall formation can only be determined by a gravimorphic stimulus that produces eccentric development of fibers. Further eccentric development of fibers then continues in the outer secondary phloem from dedifferentiated phloem parenchyma cells that initially undergo extensive intrusive growth. All such cells have characteristic features of tension fibers of angiosperms. They exhibit a pronounced purely cellulosic innermost layer of the secondary wall (Sg layer). In addition, fiber initials are coenocytic, including up to eight nuclei that become distributed uniformly throughout the length of the cell. Mature macerated fibers are markedly brittle, making accurate length measurements difficult. Although cytologically uniform, these fibers thus originate from two kinds of initial (primary and secondary). They also differ in their response to a gravimorphic stimulus determined by their times of inception and their eccentric location. These cells show a suite of positional and gravimorphic responses that illustrate the complexity of plant cell differentiation.  相似文献   

16.
17.
18.
19.
Aloni R 《Plant physiology》1979,63(4):609-614
The hypothesis that auxin and gibberellic acid (GA3) control the differentiation of primary phloem fibers is confirmed for the stem of Coleus blumei Benth. Indoleacetic acid (IAA) alone sufficed to cause the differentiation of a few primary phloem fibers. In long term experiments auxin induced a considerable number of fibers in mature internodes. GA3 by itself did not exert any effect on fiber differentiation. Combinatiosn of IAA with GA3 completely replaced the role of the leaves in primary phloem fiber differentiation qualitatively and quantitatively. Although the combined effect of the two growth hormones diminished considerably with increasing distance from the source of induction, auxin with GA3 or IAA alone induced fibers in a few internodes below the application site. When various combinations of both hormones were applied, high concentrations of IAA stimulated rapid differentiation of fibers with thick secondary walls, while high levels of GA3 resulted in long fibers with thin walls. The size of the primary phloem fibers correlated with the dimensions of the differentiating internode, thereby providing evidence that both growth regulators figure in the control of stem extension. High IAA/low GA3 concentrations have an inhibitory effect on internode elongation, whereas low IAA/high GA3 concentrations promote maximal stem elongation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号