首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic markers are often used to examine population history. There is considerable debate about the behaviour of molecular clock rates around the population-species transition. Nevertheless, appropriate calibration is critical to any inference regarding the absolute timing and scale of demographic changes. Here, we use a mitochondrial cytochrome b gene genealogy, based entirely on modern sequences and calibrated from recent geophysical events, to date the post-glacial expansion of the Eurasian field vole (Microtus agrestis), a widespread temperate mammal species. The phylogeographic structure reflects the subsequent expansion of populations that went through bottlenecks at the time of the Younger Dryas (ca 12,000 years BP) rather than the Last Glacial Maximum (LGM, ca 24,000 years BP), which is usually seen as the time when present-day patterns were determined. The nucleotide substitution rate that was estimated here, ca 4 × 10(-7) substitutions/site/year, remains extremely high throughout the relevant time frame. Calibration with similarly high population-based substitution rates, rather than long-term rates derived from species divergence times, will show that post-LGM climatic events generated current phylogeographic structure in many other organisms from temperate latitudes.  相似文献   

2.

Background

Ligia isopods are widely distributed in the Pacific rocky intertidal shores from central California to central Mexico, including the Gulf of California. Yet, their biological characteristics restrict them to complete their life cycles in a very narrow range of the rocky intertidal supralittoral. Herein, we examine phylogeographic patterns of Ligia isopods from 122 localities between central California and central Mexico. We expect to find high levels of allopatric diversity. In addition, we expect the phylogeographic patterns to show signatures of past vicariant events that occurred in this geologically dynamic region.

Methodology/Principal Findings

We sequenced two mitochondrial genes (Cytochrome Oxidase I and 16S ribosomal DNA). We conducted Maximum Likelihood and Bayesian phylogenetic analyses. We found many divergent clades that, in general, group according to geography. Some of the most striking features of the Ligia phylogeographic pattern include: (1) deep mid-peninsular phylogeographic breaks on the Pacific and Gulf sides of Baja peninsula; (2) within the Gulf lineages, the northern peninsula is most closely related to the northern mainland, while the southern peninsula is most closely related to the central-southern mainland; and, (3) the southernmost portion of the peninsula (Cape Region) is most closely related to the southernmost portion of mainland.

Conclusions/Significance

Our results shed light on the phylogenetic relationships of Ligia populations in the study area. This study probably represents the finest-scale phylogeographic examination for any organism to date in this region. Presence of highly divergent lineages suggests multiple Ligia species exist in this region. The phylogeographic patterns of Ligia in the Gulf of California and Baja peninsula are incongruent with a widely accepted vicariant scenario among phylogeographers, but consistent with aspects of alternative geological hypotheses and phylo- and biogeographic patterns of several other taxa. Our findings contribute to the ongoing debate regarding the geological origin of this important biogeographic region.  相似文献   

3.
We investigate the evolutionary history of the greater white-toothed shrew across its distribution in northern Africa and mainland Europe using sex-specific (mtDNA and Y chromosome) and biparental (X chromosome) markers. All three loci confirm a large divergence between eastern (Tunisia and Sardinia) and western (Morocco and mainland Europe) lineages, and application of a molecular clock to mtDNA divergence estimates indicates a more ancient separation (2.25 M yr ago) than described by some previous studies, supporting claims for taxonomic revision. Moroccan ancestry for the mainland European population is inconclusive from phylogenetic trees, but is supported by greater nucleotide diversity and a more ancient population expansion in Morocco than in Europe. Signatures of rapid population expansion in mtDNA, combined with low X and Y chromosome diversity, suggest a single colonization of mainland Europe by a small number of Moroccan shrews >38 K yr ago. This study illustrates that multilocus genetic analyses can facilitate the interpretation of species' evolutionary history but that phylogeographic inference using X and Y chromosomes is restricted by low levels of observed polymorphism.  相似文献   

4.
Estimates of speciation times are subject to a number of potential errors. One source of bias is that effective population size (Ne) has been shown to influence substitution rates. This issue is of particular interest for phylogeographic studies because population sizes can vary dramatically among genetically structured populations across species’ ranges. In this study, we used multilocus data to examine temporal phylogeographic patterns in a widespread North American songbird, the Northern Cardinal (Cardinalis cardinalis). Species tree estimation indicated that the phylogeographic structure of C. cardinalis was comprised of four well-supported mainland lineages with large population sizes (large Ne) and two island lineages comprised of much smaller populations (small Ne). We inferred speciation times from mtDNA and multilocus data and found there was discordance between events that represented island-mainland divergences, whereas both estimates were similar for divergences among mainland lineages. We performed coalescent simulations and found that the difference in speciation times could be attributed to stochasticity for a recently diverged island lineage. However, the magnitude of the change between speciation times estimated from mtDNA and multilocus data of an older island lineage was substantially greater than predicted by coalescent simulations. For this divergence, we found the discordance in time estimates was due to a substantial increase in the mtDNA substitution rate in the small island population. These findings indicate that in phylogeographic studies the relative tempo of evolution between mtDNA and nuclear DNA can become highly discordant in small populations.  相似文献   

5.
Phylogeographic structures of two weakly dispersing Mysis sibling species, one with a circumarctic coastal, the other with a boreal lacustrine-Baltic distribution, were studied from mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Mysis segerstralei showed high overall diversity and little phylogeographic structure across the Arctic, indicating late-glacial dispersal among coastal and lake populations from Alaska, Siberia and the north of Europe. A strongly divergent refugial lineage was however identified in Beringia. The boreal 'glacial relict'Mysis salemaai in turn displayed clear structuring among postglacially isolated Scandinavian lake populations. The inferred pattern of intralake mitochondrial DNA (mtDNA) monophyly in Scandinavia suggested relatively small population sizes and a remarkably fast postglacial mtDNA divergence rate (0.27% per 10 000 years). Nevertheless, the broader phylogeographic pattern did not support distinct eastern and western glacial refugia in Northern Europe, unlike in some other aquatic taxa. In all, the two species comprised three equidistant mitochondrial lineages (approximately 2% divergence), corresponding to M. salemaai, to the bulk of M. segerstralei, and to the Beringian M. segerstralei lineage. The lack of reciprocal monophyly of the two species in respect to their mitochondrial genealogy could indicate postspeciation mitochondrial introgression, also exemplified by an evidently more recent capture of M. segerstralei mitochondria in a Karelian population of M. salemaai. Overall, the data suggest that the continental boreal M. salemaai has a relatively recent ancestry in arctic coastal waters, whereas two other boreal 'glacial relict'Mysis sibling species in Europe (Mysis relicta) and North America (Mysis diluviana) have colonized inland waters much earlier (approximately 8% COI divergence).  相似文献   

6.
Jaarola M  Searle JB 《Heredity》2004,92(3):228-234
The Mediterranean peninsulas constitute important areas for endemism and intraspecific variation, and are likely places for cryptic biodiversity. We assessed the phylogeographic pattern of field voles (Microtus agrestis) in southern and central Europe by sequence analysis of a 385-bp fragment of the mitochondrial cytochrome b gene in 74 specimens from 44 localities. The majority of samples consisted of skulls collected from owl pellets. The data revealed a highly distinct cytochrome b lineage in an area ranging from Portugal to Hungary. This southern field vole phylogroup differed by a sequence divergence of 5.6-7.1% from the remaining haplotypes, a level of divergence comparable to that found between known Microtus sibling species. However, this ancient phylogeographic break that dates back many glacial cycles has not been recognised previously by either morphology or karyotype. The southern cytochrome b lineage was further divided into two well-defined sublineages that appear to have derived from different glacial refugia in the Iberian Peninsula.  相似文献   

7.
Leaf beetles of the genus Plateumaris inhabit wetlands across the temperate zone of the Holarctic region. To explore the phylogeographic relationships among North American, East Asian, and European members of this genus and the origin of the species endemic to Japan, we studied the molecular phylogeny of 20 of the 27 species in this genus using partial sequences of mitochondrial cytochrome oxidase subunit I (COI) and the 16S and nuclear 28S rRNA genes. The molecular phylogeny revealed that three species endemic to Europe are monophyletic and sister to the remaining 11 North American and six Asian species. Within the latter clade, North American and Asian species did not show reciprocal monophyly. Dispersal-vicariance analysis and divergence time estimation revealed that the European and North America-Asian lineages diverged during the Eocene. Moreover, subsequent differentiation occurred repeatedly between North American and Asian species, which was facilitated by three dispersal events from North America to Asia and one in the opposite direction during the late Eocene through the late Miocene. Two Japanese endemics originated from different divergence events; one differentiated from the mainland lineage after differentiation from the North American lineage, whereas the other showed a deep coalescence from the North American lineage with no present-day sister species on the East Asian mainland. This study of extant insects provides molecular phylogenetic evidence for ancient vicariance between Europe and East Asia-North America, and for more recent (but pre-Pleistocene) faunal exchanges between East Asia and North America.  相似文献   

8.
Geological events, landscape features, and climate fluctuations have shaped the distribution of genetic diversity and evolutionary history in freshwater fish, but little attention has been paid to that around the Gulf of Tonkin; therefore, we investigated the phylogeographic structure of the dwarf snakehead (Channa gachua) on Hainan Island and mainland China, as well as two populations in Vietnam. We attempted to elucidate the origins of freshwater fish in South Hainan by incorporating genetic data from DNA markers on both the mitochondrial cytochrome b gene (cyt b) and the nuclear recombination‐activating gene 1 (RAG‐1). Mitochondrial phylogenetic analysis identified two major lineages (lineages A and B), which may represent separate species. Divergence data suggested that C. gachua populations diverged between 0.516 and 2.376 myr. The divergence of the two cryptic species is congruent with sea‐level rise, which subsequently isolated Hainan from the mainland. During the Pleistocene glaciations, the entire region of the Gulf of Tonkin and the Qiongzhou Strait became part of the coastal plain of the Asian continent, which might have resulted in the current distribution patterns and dispersal routes of C. gachua populations. The formation of three sublineages in lineage A indicated that the Gulf of Tonkin was a geographical barrier between Hainan Island and mainland China but not between Vietnam and Hainan Island. The results of this study may help to elucidate the origins of freshwater fish in South Hainan and the phylogeographic structure of C. gachua.  相似文献   

9.
The recent shift toward dispersal rather than vicariant explanations of disjunct distributions has been driven by the use of molecular data to estimate divergence dates between lineages. However, other kinds of evidence can also be critical in evaluating such biogeographic hypotheses. In the present study, we used a multifaceted approach employing diverse analyses of mitochondrial DNA sequences to assess explanations for the disjunct distribution of the gartersnake Thamnophis validus. The occurrence of this species in the Cape Region of the Baja California peninsula, isolated from mainland populations that occur along the west coast of Mexico, might be explained by: (1) separation of the peninsula from mainland Mexico through rifting 4–8 Mya (tectonic vicariance); (2) fragmentation of the range of this semi‐aquatic species because of post‐Pleistocene aridification (vicariance by aridification); (3) natural overwater dispersal across the Gulf of California; or (4) human introduction. Divergence dating indicates that peninsular and mainland T. validus separated from each other within the last 0.5 Myr, thus rejecting tectonic vicariance. In addition, the estimated closest mainland relatives of peninsular snakes are found farther north than expected under this hypothesis. Three findings argue against vicariance by aridification: (1) peninsular snakes and their closest mainland relatives are more genetically similar than predicted; (2) the location of closest mainland relatives is farther south than predicted; and (3) the species is absent from areas where one might expect to find relict populations. Taken together, refutation of the vicariance hypotheses and the fact that the estimated closest mainland relatives are found almost directly across the Gulf from the Cape Region supports some form of overwater colonization. Various additional arguments suggest that natural dispersal is more likely than human introduction. The present study emphasizes the need for multiple kinds of evidence, beyond divergence dates, to discriminate among hypotheses and to provide independent sources of corroboration or refutation in historical biogeography. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 409–424.  相似文献   

10.
Studies of biodiversity in the Maghreb have revealed high genetic diversity and divergent genetic lineages among many taxa including squamates. Geographic barriers such as the Atlas Mountains are one of the key factors promoting genetic differentiation and the high levels of endemism. The lizard-fingered gecko Saurodactylus brosseti is endemic to Morocco. Its range includes both sides of the Atlas Mountains, and although high diversity was previously identified within the species, much of the range was unsampled. To understand the evolutionary and biogeographical history of this species, we used mitochondrial and nuclear DNA sequence data from 64 populations sampled across the entire species range. We employed phylogenetic methods based on gene trees and species trees as well as a time calibrated Bayesian genealogy and coalescent species delimitation approaches. We uncovered four highly divergent and allopatric mitochondrial lineages that did not share haplotypes at variable nuclear loci, suggesting the four groups have been evolving independently since the Miocene, according to our molecular dating estimates. These results coupled with the geographic pattern of genetic diversity suggest a possible role of the Atlas Mountains for the divergence observed between the four lineages of S. brosseti, while each lineage probably later underwent several episodes of fragmentation followed by (re-) expansion during Pleistocene climatic oscillations. Bayesian species delimitation analysis indicates that the four lineages may well be distinct species but we suggest that detailed morphological analyses are needed prior to taxonomic changes. The four lineages represent ancient independent evolutionary units, and deserve conservation management as distinct entities.  相似文献   

11.
Leptobrachium ailaonicum is a vulnerable anuran restricted to a patchy distribution associated with small mountain streams surrounded by forested slopes at mid-elevations (approximately 2000–2600 m) in the subtropical Mount Wuliang and Mount Ailao ranges in southwest China (Yunnan Province) and northern Vietnam. Given high habitat specificity and lack of suitable habitat in lower elevations between these ranges, we hypothesized limited gene flow between populations throughout its range. We used two mitochondrial genes to construct a phylogeographic pattern within this species in order to test our hypothesis. We also examined whether this phylogeographic pattern is a response to past geological events and/or climatic oscillations. A total of 1989 base pairs were obtained from 81 individuals of nine populations yielding 51 unique haplotypes. Both Bayesian and maximum parsimony phylogenetic analyses revealed four deeply divergent and reciprocally monophyletic mtDNA lineages that approximately correspond to four geographical regions separated by deep river valleys. These results suggest a long history of allopatric separation by vicariance. The distinct geographic distributions of four major clades and the estimated divergence time suggest spatial and temporal separations that coincide with climatic and paleogeographic changes following the orogeny and uplift of Mount Ailao during the late Miocene to mid Pliocene in southwest China. At the southern distribution, the presence of two sympatric yet differentiated clades in two areas are interpreted as a result of secondary contact between previously allopatric populations during cooler Pleistocene glacial cycles. Analysis of molecular variance indicates that most of the observed genetic variation occurs among the four regions implying long-term interruption of maternal gene flow, suggesting that L. ailaonicum may represent more than one distinct species and should at least be separated into four management units corresponding to these four geographic lineages for conservation.  相似文献   

12.
Tegeticula maculata is one of the most ancient and morphologically variable lineages within the yucca moths, yet has apparently undergone little diversification in comparison with much younger yucca moth lineages that have rapidly diversified. A phylogeographic approach was used to determine the number of independent lineages within T. maculata and to examine whether these patterns corresponded with morphological differences between its subspecies maculata and extranea. Phylogenetic analysis of mitochondrial DNA sequence variation indicated that the two subspecies are in separate clades, but there was also an equally deep split within subspecies maculata. There was no evidence for gene flow among regions and there was considerable substructure within clades. The phylogeographic structure of moth populations among and within subspecies can be explained in part by historical biogeographic boundaries and increasingly patchy postglacial distribution of the exclusive host plant, Hesperoyucca whipplei. Local specialization and co-adaptation would be possible in the absence of apparent gene flow, yet gross morphological divergence is limited to the very old split between the subspecies. Sorting of ancient mitochondrial lineages followed by local genetic differentiation may explain the pattern of high genetic structure with limited speciation.  相似文献   

13.
Differential rates of nucleotide substitution among different gene segments and between distinct evolutionary lineages is well documented among mitochondrial genes and is likely a consequence of locus-specific selective constraints that delimit mutational divergence over evolutionary time. We compared sequence variation of 18 homologous loci (15 coding genes and 3 parts of the control region) among 10 mammalian mitochondrial DNA genomes which allowed us to describe different mitochondrial evolutionary patterns and to produce an estimation of the relative order of gene divergence. The relative rates of divergence of mitochondrial DNA genes in the family Felidae were estimated by comparing their divergence from homologous counterpart genes included in nuclear mitochondrial DNA (Numt, pronounced "new might"), a genomic fossil that represents an ancient transfer of 7.9 kb of mitochondrial DNA to the nuclear genome of an ancestral species of the domestic cat (Felis catus). Phylogenetic analyses of mitochondrial (mtDNA) sequences with multiple outgroup species were conducted to date the ancestral node common to the Numt and the cytoplasmic (Cymt) mtDNA genes and to calibrate the rate of sequence divergence of mitochondrial genes relative to nuclear homologous counterparts. By setting the fastest substitution rate as strictly mutational, an empirical "selective retardation index" is computed to quantify the sum of all constraints, selective and otherwise, that limit sequence divergence of mitochondrial gene sequences over time.   相似文献   

14.

Background

The complex history of Southeast Asian islands has long been of interest to biogeographers. Dispersal and vicariance events in the Pleistocene have received the most attention, though recent studies suggest a potentially more ancient history to components of the terrestrial fauna. Among this fauna is the enigmatic archaeobatrachian frog genus Barbourula, which only occurs on the islands of Borneo and Palawan. We utilize this lineage to gain unique insight into the temporal history of lineage diversification in Southeast Asian islands.

Methodology/Principal Findings

Using mitochondrial and nuclear genetic data, multiple fossil calibration points, and likelihood and Bayesian methods, we estimate phylogenetic relationships and divergence times for Barbourula. We determine the sensitivity of focal divergence times to specific calibration points by jackknife approach in which each calibration point is excluded from analysis. We find that relevant divergence time estimates are robust to the exclusion of specific calibration points. Barbourula is recovered as a monophyletic lineage nested within a monophyletic Costata. Barbourula diverged from its sister taxon Bombina in the Paleogene and the two species of Barbourula diverged in the Late Miocene.

Conclusions/Significance

The divergences within Barbourula and between it and Bombina are surprisingly old and represent the oldest estimates for a cladogenetic event resulting in living taxa endemic to Southeast Asian islands. Moreover, these divergence time estimates are consistent with a new biogeographic scenario: the Palawan Ark Hypothesis. We suggest that components of Palawan''s terrestrial fauna might have “rafted” on emergent portions of the North Palawan Block during its migration from the Asian mainland to its present-day position near Borneo. Further, dispersal from Palawan to Borneo (rather than Borneo to Palawan) may explain the current day disjunct distribution of this ancient lineage.  相似文献   

15.
In this study we analyzed the phylogenetic relationships of eastern Mediterranean freshwater planarians of the genus Dugesia, estimated divergence times for the various clades, and correlated their phylogeographic patterns with geological and paleoclimatic events, in order to discover which evolutionary processes have shaped the present-day distribution of these animals. Specimens were collected from freshwater courses and lakes in continental and insular Greece. Genetic divergences and phylogenetic relationships were inferred by using the mitochondrial gene subunit I of cytochrome oxidase (COI) and the nuclear ribosomal internal transcribed spacer-1 (ITS-1) from 74 newly collected individuals from Greece. Divergence time estimates were obtained under a Bayesian framework, using the COI sequences. Two alternative geological dates for the isolation of Crete from the mainland were tested as calibration points. A clear phylogeographic pattern was present for Dugesia lineages in the Eastern Mediterranean. Morphological data, combined with information on genetic divergences, revealed that eight out of the nine known species were represented in the samples, while additional new, and still undescribed species were detected. Divergence time analyses suggested that Dugesia species became isolated in Crete after the first geological isolation of the island, and that their present distribution in the Eastern Mediterranean has been shaped mainly by vicariant events but also by dispersal. During the Messinian salinity crisis these freshwater planarians apparently were not able to cross the sea barrier between Crete and the mainland, while they probably did disperse between islands in the Aegean Sea. Their dependence on freshwater to survive suggests the presence of contiguous freshwater bodies in those regions. Our results also suggest a major extinction of freshwater planarians on the Peloponnese at the end of the Pliocene, while about 2 Mya ago, when the current Mediterranean climate was established, these Peloponnese populations probably began to disperse again. At the end of the Pliocene or during the Pleistocene, mainland populations of Dugesia colonized the western coast, including the Ionian Islands, which were then part of the continent.  相似文献   

16.
New Guinea is a biologically diverse island, with a unique geologic history and topography that has likely played a role in the evolution of species. Few island-wide studies, however, have examined the phylogeographic history of lowland species. The objective of this study was to examine patterns of phylogeographic variation of a common and widespread New Guinean bird species (Colluricincla megarhyncha). Specifically, we test the mechanisms hypothesized to cause geographic and genetic variation (e.g., vicariance, isolation by distance and founder-effect with dispersal). To accomplish this, we surveyed three regions of the mitochondrial genome and a nuclear intron and assessed differences among 23 of the 30 described subspecies from throughout their range. We found support for eight highly divergent lineages within C. megarhyncha. Genetic lineages were found within continuous lowland habitat or on smaller islands, but all individuals within clades were not necessarily structured by predicted biogeographic barriers. There was some evidence of isolation by distance and potential founder-effects. Mitochondrial DNA sequence divergence among lineages was at a level often observed among different species or even genera of birds (5-11%), suggesting lineages within regions have been isolated for long periods of time. When topographical barriers were associated with divergence patterns, the estimated divergence date for the clade coincided with the estimated time of barrier formation. We also found that dispersal distance and range size are positively correlated across lineages. Evidence from this research suggests that different phylogeographic mechanisms concurrently structure lineages of C. megarhyncha and are not mutually exclusive. These lineages are a result of evolutionary forces acting at different temporal and spatial scales concordant with New Guinea's geological history.  相似文献   

17.
The association between demographic history, genealogy and geographical distribution of mitochondrial DNA cytochrome b haplotypes was studied in the wood lemming (Myopus schisticolor), a species that is closely associated with the boreal forest of the Eurasian taiga zone from Scandinavia to the Pacific coast. Except for a major phylogeographic discontinuity (0.9% nucleotide divergence) in southeastern Siberia, only shallow regional genetic structure was detected across northern Eurasia. Genetic signs of demographic expansions imply that successive range contractions and expansions on different spatial scales represented the primary historical events that shaped geographical patterns of genetic variation. Comparison of phylogeographic structure across a taxonomically diverse array of other species that are ecologically associated with the taiga forest revealed similar patterns and identified two general aspects. First, the major south-north phylogeographic discontinuity observed in five out of six species studied in southeastern Siberia and the Far East implies vicariant separation in two different refugial areas. The limited distribution range of the southeastern lineages provides no evidence of the importance of the putative southeastern refugial area for postglacial colonization of northern Eurasia by boreal forest species. Second, the lack of phylogeographic structure associated with significant reciprocal monophyly and genetic signatures of demographic expansion in all nine boreal forest animal species studied to date across most of northern Eurasia imply contraction of each species to a single refugial area during the late Pleistocene followed by range expansion on a continental scale. Similar phylogeographic patterns observed in this taxonomically diverse set of organisms with different life histories and dispersal potentials reflect the historical dynamics of their shared environment, the taiga forest in northern Eurasia.  相似文献   

18.
Heterochronous data sets comprise molecular sequences sampled at different points in time. If the temporal range of the sampled sequences is large relative to the rate of mutation, the sampling times can directly calibrate evolutionary rates to calendar time. Here, we extend this calibration process to provide a full probabilistic method that utilizes temporal information in heterochronous data sets to estimate sampling times (leaf-ages) for sequenced for which this information unavailable. Our method is similar to relaxing the constraints of the molecular clock on specific lineages within a phylogenetic tree. Using a combination of synthetic and empirical data sets, we demonstrate that the method estimates leaf-ages reliably and accurately. Potential applications of our approach include incorporating samples of uncertain or radiocarbon-infinite age into ancient DNA analyses, evaluating the temporal signal in a particular sequence or data set, and exploring the reliability of sequence ages that are somehow contentious.  相似文献   

19.
Understanding how historical processes have either similarly, or differentially, shaped the evolution of lineages or biotic assemblages is important for a broad spectrum of fields. Gaining such understanding can be particularly challenging, however, especially for regions that have a complex geologic and biological history. In this study we apply a broad comparative approach to distill such regional biogeographic perspectives, by characterizing sets of divergence times for major biogeographic boundaries estimated from multiple codistributed lineages of snakes. We use a large combined (mitochondrial gene sequence) phylogeographic/phylogenetic dataset containing several clades of snakes that range across Middle America – the tropical region between Mexico and northwestern South America. This region is known for its complex tectonic history, and poorly understood historical biogeography. Based on our results, we highlight how phylogeographic transition zones between Middle and South America and the Nicaragua Depression appear to have undergone multiple episodes of diversification in different lineages. This is in contrast to other examples we find where apparently a single vicariant period is shared across multiple lineages. We specifically evaluate the distributions of divergence time estimates across multiple lineages and estimate the number of temporal periods of lineage diversification per biogeographic break. Overall, our results highlight a great deal of shared temporal divergence, and provide important hypotheses for yet unstudied lineages. These multi‐lineage comparisons across multiple spatial and temporal scales provide excellent predictive power for identifying the roles of geology, climate, ecology and natural history in shaping regional biodiversity.  相似文献   

20.
A major goal of phylogeographic analysis using molecular markers is to understand the ecological and historical variables that influence genetic diversity within a species. Here, we used sequences of the mitochondrial Cox1 gene and nuclear internal transcribed spacer to reconstruct its phylogeography and demographic history of the intertidal red seaweed Chondrus ocellatus over most of its geographical range in the Northwest Pacific. We found three deeply separated lineages A, B and C, which diverged from one another in the early Pliocene–late Miocene (c. 4.5–7.7 Ma). The remarkably deep divergences, both within and between lineages, appear to have resulted from ancient isolations, accelerated by random drift and limited genetic exchange between regions. The disjunct distributions of lineages A and C along the coasts of Japan may reflect divergence during isolation in scattered refugia. The distribution of lineage B, from the South China Sea to the Korean Peninsula, appears to reflect postglacial recolonizations of coastal habitats. These three lineages do not coincide with the three documented morphological formae in C. ocellatus, suggesting that additional cryptic species may exist in this taxon. Our study illustrates the interaction of environmental variability and demographic processes in producing lineage diversification in an intertidal seaweed and highlights the importance of phylogeographic approaches for discovering cryptic marine biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号