首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The targeted modification of the mammalian genome has a variety of applications in research, medicine, and biotechnology. Site-specific recombinases have become significant tools in all of these areas. Conditional gene targeting using site-specific recombinases has enabled the functional analysis of genes, which cannot be inactivated in the germline. The site-specific integration of adeno-associated virus, a major gene therapy vehicle, relies on the recombinase activity of the viral rep proteins. Site-specific recombinases also allow the precise integration of open reading frames encoding pharmaceutically relevant proteins into highly active gene loci in cell lines and transgenic animals. These goals have been accomplished by using a variety of genetic strategies but only a few recombinase proteins. However, the vast repertoire of recombinases, which has recently become available as a result of large-scale sequencing projects, may provide a rich source for the development of novel strategies to precisely alter mammalian genomes.  相似文献   

2.
The rational modification of the actinomycetes genomes has a variety of applications in research, medicine, and biotechnology. The use of site-specific recombinases allows generation of multiple mutations, large DNA deletions, integrations, and inversions and may lead to significant progress in all of these fields. Despite their huge potential, site-specific recombinase-based technologies have primarily been used for simple marker removal from a chromosome. In this review, we summarise the site-specific recombination approaches for genome engineering in various actinomycetes.  相似文献   

3.
A B Burgin  Jr  B N Huizenga    H A Nash 《Nucleic acids research》1995,23(15):2973-2979
DNA topoisomerases and DNA site-specific recombinases are biologically important enzymes involved in a diverse set of cellular processes. We show that replacement of a phosphodiester linkage by a 5'-bridging phosphorothioate linkage creates an efficient suicide substrate for calf thymus topoisomerase I and lambda integrase protein (Int). Although the bridging phosphorothioate linkage is cleaved by these enzymes, the 5'-sulfhydryl which is generated is not competent for subsequent ligation reactions. We use the irreversibility of Int-promoted cleavage to explore conditions and factors that contribute to various steps of lambda integrative recombination. The phosphorothioate substrates offer advantages over conventional suicide substrates, may be potent tools for inhibition of the relevant cellular enzymes and represent a unique tool for the study of many other phosphoryl transfer reactions.  相似文献   

4.
Studies of the site-specific recombinase Cre suggest a key role for interactions between the C-terminus of the protein and a region located about 30 residues from the C-terminus in linking in a cyclical manner the four recombinase monomers present in a recombination complex, and in controlling the catalytic activity of each monomer. By extrapolating the Cre DNA recombinase structure to the related site-specific recombinases XerC and XerD, it is predicted that the extreme C-termini of XerC and XerD interact with alpha-helix M in XerD and the equivalent region of XerC respectively. Consequently, XerC and XerD recombinases deleted for C-terminal residues, and mutated XerD proteins containing single amino acid substitutions in alphaM or in the C-terminal residues were analysed. Deletion of C-terminal residues of XerD has no measurable effect on co-operative interactions with XerC in DNA-binding assays to the recombination site dif, whereas deletion of 5 or 10 residues of XerC reduces co-operativity with XerD some 20-fold. Co-operative interactions between pairs of truncated proteins during dif DNA binding are reduced 20- to 30-fold. All of the XerD mutants, except one, were catalytically proficient in vitro; nevertheless, many failed to mediate a recombination reaction on supercoiled plasmid in vivo or in vitro, implying that the ability to form a productive recombination complex and/or mediate a controlled recombination reaction is impaired.  相似文献   

5.
The processes of DNA topoisomerization and site-specific recombination are fundamentally similar: DNA cleavage by forming a phospho-protein covalent linkage, DNA topological rearrangement, and DNA ligation coupled with protein regeneration. Type IB DNA topoisomerases are structurally and mechanistically homologous to tyrosine recombinases. Both enzymes nick DNA double helices independent of metal ions, form 3'-phosphotyrosine intermediates, and rearrange the free 5' ends relative to the uncut strands by swiveling. In contrast, serine recombinases generate 5'-phospho-serine intermediates. A 180° relative rotation of the two halves of a 100 kDa terameric serine recombinase and DNA complex has been proposed as the mechanism of strand exchange. Here I propose an alternative mechanism. Interestingly, the catalytic domain of serine recombinases has structural similarity to the TOPRIM domain, conserved among all Type IA and Type II topoisomerases and responsible for metal binding and DNA cleavage. TOPRIM topoisomerases also cleave DNA to generate 5'-phosphate and 3'-OH groups. Based on the existing biochemical data and crystal structures of topoisomerase II and serine recombinases bound to pre- and post-cleavage DNA, I suggest a strand passage mechanism for DNA recombination by serine recombinases. This mechanism is reminiscent of DNA topoisomerization and does not require subunit rotation.  相似文献   

6.
The processes of DNA topoisomerization and site-specific recombination are fundamentally similar: DNA cleavage by forming a phospho-protein covalent linkage, DNA topological rearrangement, and DNA ligation coupled with protein regeneration. Type IB DNA topoisomerases are structurally and mechanistically homologous to tyrosine recombinases. Both enzymes nick DNA double helices independent of metal ions, form 3′-phosphotyrosine intermediates, and rearrange the free 5′ ends relative to the uncut strands by swiveling. In contrast, serine recombinases generate 5′-phospho-serine intermediates. A 180° relative rotation of the two halves of a 100?kDa terameric serine recombinase and DNA complex has been proposed as the mechanism of strand exchange. Here I propose an alternative mechanism. Interestingly, the catalytic domain of serine recombinases has structural similarity to the TOPRIM domain, conserved among all Type IA and Type II topoisomerases and responsible for metal binding and DNA cleavage. TOPRIM topoisomerases also cleave DNA to generate 5′-phosphate and 3′-OH groups. Based on the existing biochemical data and crystal structures of topoisomerase II and serine recombinases bound to pre- and post-cleavage DNA, I suggest a strand passage mechanism for DNA recombination by serine recombinases. This mechanism is reminiscent of DNA topoisomerization and does not require subunit rotation.  相似文献   

7.
Abstract The nucleotide sequence of a staphylococcal plasmid gene has been found to encode a protein highly homologous to the Hin family of conservative site-specific recombination proteins.  相似文献   

8.
The chromosome of Bacteroides fragilis has been shown to undergo 13 distinct DNA inversions affecting the expression of capsular polysaccharides and mediated by a serine site-specific recombinase designated Mpi. In this study, we demonstrate that members of the tyrosine site-specific recombinase family, conserved in B. fragilis, mediate additional DNA inversions of the B. fragilis genome. These DNA invertases flip promoter regions in their immediate downstream region. The genetic organization of the genes regulated by these invertible promoter regions suggests that they are operons and many of the products are predicted to be outer membrane proteins. Phenotypic analysis of a deletion mutant of one of these DNA invertases, tsr15 (aapI), which resulted in the promoter region for the downstream genes being locked ON, confirmed the synthesis of multiple surface proteins by this operon. In addition, this deletion mutant demonstrated an autoaggregative phenotype and showed significantly greater adherence than wild-type organisms in a biofilm assay, suggesting a possible functional role for these phase-variable outer surface proteins. This study demonstrates that DNA inversion is a universal mechanism used by this commensal microorganism to phase vary expression of its surface molecules and involves at least three conserved DNA invertases from two evolutionarily distinct families.  相似文献   

9.
The Flp recombinase of Saccharomyces cerevisae and the related R recombinase of Zygosaccharomyces rouxii can efficiently catalyze strand cleavage and strand exchange reactions in half recombination sites. A half-site consists of one recombinase binding element, a recombinase cleavage site on one strand and a 5' spacer hydroxyl group on the other that can initiate the strand exchange reaction. We have studied the various types of strand exchanges that half-sites can participate in. Reaction between a left half-site and a right half-site generates a full recombination site. Strand transfer between two left half-sites or between two right half-sites produces pseudo-full-sites. Strand transfer within a half-site results in a stem-loop or hairpin product. The half-site strand transfer reaction is fairly indifferent to the spacer sequence of the substrate per se and is less sensitive to variations in spacer lengths than a full-site recombination reaction. The optimal spacer length of eight to ten nucleotides observed for the Flp half-site reaction likely permits the most productive catalytic interactions between two Flp monomers bound to each of two partner half-sites. When reacted with a full-site, the half-site can give rise to a normal or reverse recombinant, corresponding to homologous or non-homologous alignments of the spacer sequences during substrate synapsis. The contrary recombination (resulting from non-homologous spacer alignment), whose level is low relative to normal recombination, is partly suppressed when the half-site spacer ends in a 5'-phosphate rather than a 5'-hydroxyl group. Thus, the early steps of recombination, namely synapsis and initial stand transfer, are not dependent on complete spacer homology between the two recombining substrates. The selection of properly aligned substrate partners must occur at the homology dependent branch migration step. In reactions containing a mixture of Flp and R half-sites, Flp and R catalyze strand transfer, almost exclusively, within or between their respective cognate substrates. However, under conditions where self-crosses are inhibited, strand exchange between a Flp half-site and an R half-site appears to be stimulated by a combination of R and Flp.  相似文献   

10.
In this study, we have used multiple strategies to characterize the mechanisms of the type I and type II RNA cleavage activities harbored by the Flp (pronounced here as "flip") site-specific DNA recombinase (Flp-RNase I and II, respectively). Reactions using half-sites pre-bound by step-arrest mutants of Flp agree with a "shared active site" being responsible for the type I reaction (as is the case with normal DNA recombination). In a "pre-cleaved" type I substrate containing a 3'-phosphotyrosyl bond, the Flp-RNase I activity can be elicited by either wild type Flp or by Flp(Y343F). Kinetic analyses of the type I reaction are consistent with the above observations and support the notion that the DNA recombinase and type I RNase active sites are identical. The type II RNase activity is expressed by Flp(Y343F) in a half-site substrate and is unaffected by the catalytic constitution of a Flp monomer present on a partner half-site. Reaction conditions that proscribe the assembly of a DNA bound Flp dimer have no effect on Flp-RNase II. These biochemical results, together with kinetic data, are consistent with the reaction being performed from a "non-shared active site" contained within a single Flp monomer. The Flp-related recombinase Cre, which utilizes a non-shared recombination active site, exhibits the type I RNA cleavage reaction. So far, we have failed to detect the type II RNase activity in Cre. Despite their differences in active site assembly, Cre functionally mimics Flp in being able to provide two functional active sites from a trimer of Cre bound to a three-armed (Y-shaped) substrate.  相似文献   

11.
In Xer site-specific recombination, two related recombinases, XerC and XerD, mediate the formation of recombinant products using Holliday junction-containing DNA molecules as reaction intermediates. Each recombinase catalyses the exchange of one pair of specific strands. By using synthetic Holliday junction-containing recombination substrates in which two of the four arms are tethered in an antiparallel configuration by a nine thymine oligonucleotide, we show that XerD catalyses efficient strand exchange only when its substrate strands are 'crossed'. XerC also catalyses very efficient strand exchange when its substrate strands are 'crossed', though it also appears to be able to mediate strand exchange when its substrate strands are 'continuous'. By using chemical probes of Holliday junction structure in the presence and absence of bound recombinases, we show that recombinase binding induces unstacking of the bases in the centre of the recombination site, indicating that the junction branch point is positioned there and is distorted as a consequence of recombinase binding.  相似文献   

12.
The ability to manipulate the genome and induce site-specific recombination using either Flippase (FLP) or Cre recombinase has been useful in many systems including Plasmodium berghei for specific deletion events or to obtain conditional gene expression. To test whether these recombinases are active in Plasmodium falciparum we constructed gene knockouts that contain sequences recognised as templates for site-specific recombination. We tested the ability of FLP and Cre recombinases, expressed conditionally in P. falciparum, to mediate deletion of the human dihydrofolate reductase (hdhfr) drug resistance gene. We show that Cre recombinase is capable of efficient removal of hdhfr by site-specific recombination. In contrast, FLP recombinase is very inefficient, even at the optimum temperature of 30 °C for this enzyme. These results demonstrate that Cre recombinase can be utilised in P. falciparum for deletion of specific sequences such as drug resistance genes. This can be exploited for recycling of drug resistance cassettes and for the design of specific recombination events in P. falciparum.  相似文献   

13.
The tyrosine family site-specific recombinases XerC and XerD convert dimers of the Escherichia coli chromosome and many natural plasmids to monomers. The heterotetrameric recombination complex contains two molecules of XerC and two of XerD, with each recombinase mediating one pair of DNA strand exchanges. The two pairs of strand exchanges are separated in time and space. This demands that the catalytic activity of the four recombinase molecules be controlled so that only XerC or XerD is active at any given time, there being a switch in the recombinase activity state at the Holliday junction intermediate stage. Here, we analyse chimeras and deletion variants within the recombinase C-terminal domains in order to probe determinants that may be specific to either XerC or XerD, and to further understand how XerC-XerD interactions control catalysis in a recombining heterotetramer. The data confirm that the C-terminal "end" region of each recombinase plays an important role in coordinating catalysis within the XerCD heterotetramer and suggest that the interactions between the end regions of XerC and XerD and their cognate receptors within the partner recombinase are structurally and functionally different. The results support the hypothesis that the "normal" state in the heterotetrameric complex, in which XerC is catalytically active and XerD is inactive, depends on the interactions between the C-terminal end region of XerC and its receptor region within the C-terminal domain of XerD; interference with these interactions leads to a switch in the catalytic state, so that XerD is now preferentially active.  相似文献   

14.
A combination of two methods for detecting distant relationships in protein primary sequences was used to compare the site-specific recombination proteins encoded by bacteriophage lambda, phi 80, P22, P2, 186, P4 and P1. This group of proteins exhibits an unexpectedly large diversity of sequences. Despite this diversity, all of the recombinases can be aligned in their C-terminal halves. A 40-residue region near the C terminus is particularly well conserved in all the proteins and is homologous to a region near the C terminus of the yeast 2 mu plasmid Flp protein. This family of recombinases does not appear to be related to any other site-specific recombinases. Three positions are perfectly conserved within this family: histidine, arginine and tyrosine are found at respective alignment positions 396, 399 and 433 within the well-conserved C-terminal region. We speculate that these residues contribute to the active site of this family of recombinases, and suggest that tyrosine-433 forms a transient covalent linkage to DNA during strand cleavage and rejoining.  相似文献   

15.
Genomic manipulations using site-specific recombinases rely on their applied characteristics in living systems. To understand their applied properties so that they can be optimally deployed, we compared the recombinases FLP and Cre in two assays. In both Escherichia coli and in vitro, FLP shows a different temperature optimum than Cre. FLP is more thermolabile, having an optimum near 30 degrees C and little detectable activity above 39 degrees C. Cre is optimally efficient at 37 degrees C and above. Consistent with FLP thermolability, recombination in a mammalian cell line mediated by a ligand- regulated FLP-androgen receptor fusion protein is more efficient at 35 degrees C than at higher temperatures. We also document a mutation in a commercially available FLP plasmid (FLP-F70L) which renders this recombinase even more thermolabile. The different temperature optima of FLP, FLP-F70L and Cre influence their strategies of usage. Our results recommend the use of Cre for applications in mice that require efficient recombination. The thermolabilities of FLP and FLP-F70L can be usefully exploited for gain of function and cell culture applications.  相似文献   

16.
17.
The Xer site-specific recombination system of Escherichia coli is involved in the stable inheritance of circular replicons. Multimeric replicons, produced by homologous recombination, are converted to monomers by the action of two related recombinases XerC and XerD. Site-specific recombination at a locus, dif, within the chromosomal replication terminus region is thought to convert dimeric chromosomes to monomers, which can then be segregated prior to cell division. The recombinases XerC and XerD bind cooperatively to dif, where they catalyse recombination. Chemical modification of specific bases and the phosphate-sugar backbone within dif was used to investigate the requirements for binding of the recombinases. Site-directed mutagenesis was then used to alter bases implicated in recombinase binding. Characterization of these mutants by in vitro recombinase binding and in vivo recombination, has demonstrated that the cooperative interactions between XerC and XerD can partially overcome DNA alterations that should interfere with specific recombinase-dif interactions.  相似文献   

18.
Alignments of 105 site-specific recombinases belonging to the Int family of proteins identified extended areas of similarity and three types of structural differences. In addition to the previously recognized conservation of the tetrad R-H-R-Y, located in boxes I and II, several newly identified sequence patches include charged amino acids that are highly conserved and a specific pattern of buried residues contributing to the overall protein fold. With some notable exceptions, unconserved regions correspond to loops in the crystal structures of the catalytic domains of lambda Int (Int c170) and HP1 Int (HPC) and of the recombinases XerD and Cre. Two structured regions also harbor some pronounced differences. The first comprises beta-sheets 4 and 5, alpha-helix D and the adjacent loop connecting it to alpha-helix E: two Ints of phages infecting thermophilic bacteria are missing this region altogether; the crystal structures of HPC, XerD and Cre reveal a lack of beta-sheets 4 and 5; Cre displays two additional beta-sheets following alpha-helix D; five recombinases carry large insertions. The second involves the catalytic tyrosine and is seen in a comparison of the four crystal structures. The yeast recombinases can theoretically be fitted to the Int fold, but the overall differences, involving changes in spacing as well as in motif structure, are more substantial than seen in most other proteins. The phenotypes of mutations compiled from several proteins are correlated with the available structural information and structure-function relationships are discussed. In addition, a few prokaryotic and eukaryotic enzymes with partial homology with the Int family of recombinases may be distantly related, either through divergent or convergent evolution. These include a restriction enzyme and a subgroup of eukaryotic RNA helicases (D-E-A-D proteins).  相似文献   

19.
A wide variety of tools have been used to dissect biochemical pathways, inhibitors being chief among them. Combinatorial approaches have made the search for inhibitors much more efficient. We have applied such an approach to identify hexapeptides which inhibit different steps in a site-specific recombination reaction mediated by the bacteriophage lambda integrase protein. Integrase's mechanism is still incompletely understood, in large part because several pathway intermediates remain hard to isolate. Integrase-catalyzed recombination is very efficient, but if blocked, it is highly reversible to substrates; this combination makes some intermediates exceedingly transient. We have used synthetic peptide combinatorial libraries to screen for hexapeptides that affect the recombination pathway at different stages, and have identified two families of peptides: one probably blocks DNA cleavage, the other may stabilize the Holliday junction intermediates. These peptides do not resemble parts of integrase or any of the other helper functions in the pathway. The deconvolution of hexapeptide libraries based both on inhibition of an enzymatic reaction as well as on accumulation of reaction intermediates is a novel approach to finding useful tools for dissecting a biochemical pathway.  相似文献   

20.
Fedick A  Su J  Treff NR 《Genomics》2012,99(3):127-131
The high prevalence of genetic diseases resulting from gross deletions has highlighted a need for a quick, simple, and reliable method of genotyping these mutations. Here, we developed a novel strategy for applying TaqMan allelic discrimination to accurately genotype 3 different large deletions in a high-throughput manner. Allelic discrimination has previously been used to genotype frame shift and point mutations, and small insertions or deletions six base pairs in length, but not large deletions. The assays designed here recognize a 2502 base pair deletion in the Nebulin (NEB) gene that results in Nemaline Myopathy, a 308,769 base pair deletion in the Gap Junction Protein, beta 6 (GJB6) gene that causes Hearing Loss, and a 6433 base pair deletion in the Mucolipin 1 (MCOLN1) gene responsible for causing Mucolipidosis IV Disease. This methodology may also be successfully applied to high throughput genotyping of other large deletions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号