首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circadian pacemakers in many animals are compound. In rodents, a two-oscillator model of the pacemaker composed of an evening (E) and a morning (M) oscillator has been proposed based on the phenomenon of "splitting" and bimodal activity peaks. The authors describe computer simulations of the pacemaker in tau mutant hamsters viewed as a system of mutually coupled E and M oscillators. These mutant animals exhibit normal type 1 PRCs when released into DD but make a transition to a type 0 PRC when held for many weeks in DD. The two-oscillator model describes particularly well some recent behavioral experiments on these hamsters. The authors sought to determine the relationships between oscillator amplitude, period, PRC, and activity duration through computer simulations. Two complementary approaches proved useful for analyzing weakly coupled oscillator systems. The authors adopted a "distinct oscillators" view when considering the component E and M oscillators and a "system" view when considering the system as a whole. For strongly coupled systems, only the system view is appropriate. The simulations lead the authors to two primary conjectures: (1) the total amplitude of the pacemaker system in tau mutant hamsters is less than in the wild-type animals, and (2) the coupling between the unit E and M oscillators is weakened during continuous exposure of hamsters to DD. As coupling strength decreases, activity duration (alpha) increases due to a greater phase difference between E and M. At the same time, the total amplitude of the system decreases, causing an increase in observable PRC amplitudes. Reduced coupling also increases the relative autonomy of the unit oscillators. The relatively autonomous phase shifts of E and M oscillators can account for both immediate compression and expansion of activity bands in tau mutant and wild-type hamsters subjected to light pulses.  相似文献   

2.
A model for neuronal oscillations in the visual cortex   总被引:1,自引:0,他引:1  
  相似文献   

3.
Circadian rhythm generation in the suprachiasmatic nucleus was modeled by locally coupled self-sustained oscillators. The model is composed of 10,000 oscillators, arranged in a square array. Coupling between oscillators and standard deviation of (randomly determined) intrinsic oscillator periods were varied. A stable overall rhythm emerged. The model behavior was investigated for phase shifts of a 24-h zeitgeber cycle. Prolongation of either the dark or the light phase resulted in a lengthening of the period, whereas shortening of the dark or the light phase shortened the period. The model's response to shifts in the light-dark cycle was dependent only on the extent of the shift and was insensitive to changes in parameters. Phase response curves (PRC) and amplitude response curves were determined for single and triple 5-h light pulses (1000 lux). Single pulses lead to type 1 PRCs with larger phase shifts for weak coupling. Triple pulses generally evoked type 1 PRCs with the exception of weak coupling, where a type 0 PRC was observed.  相似文献   

4.
In mammals, circadian rhythms are driven by a pacemaker located in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The firing rate of neurons within the SCN exhibits a circadian rhythm. There is evidence that individual neurons within the SCN act as circadian oscillators. Rhythm generation in the SCN was therefore modeled by a system of self-sustained oscillators. The model is composed of up to 10000 oscillatory elements arranged in a square array. Each oscillator has its own (randomly determined) intrinsic period reflecting the widely dispersed periods observed in the SCN. The model behavior was investigated mainly in the absence of synchronizing zeitgebers. Due to local coupling the oscillators synchronized and an overall rhythm emerged. This indicates that a locally coupled system is capable of integrating the output of individual clock cells with widely dispersed periods. The period of the global output (average of all oscillators) corresponded to the average of the intrinsic periods and was stable even for small amplitudes and during transients. Noise, reflecting biological fluctuations at the cellular level, distorted the global rhythm in small arrays. The period of the rhythm could be stabilized by increasing the array size, which thus increased the robustness against noise. Since different regions of the SCN have separate output pathways, the array of oscillators was subdivided into four quadrants. Sudden deviations of periodicity sometimes appeared in one quadrant, while the periods of the other quadrants were largely unaffected. This result could represent a model for splitting, which has been observed in animal experiments. In summary, the multi-oscillator model of the SCN showed a broad repertoire of dynamic patterns, revealed a stable period (even during transients) with robustness against noise, and was able to account for such a complex physiological behavior as splitting.  相似文献   

5.
Jin Y  Meng Y 《Bio Systems》2011,103(1):38-44
The relationship between robustness and evolvability (easiness to evolve), and the evolutionary emergence of robust genetic circuits in biology have attracted much attention in systems biology. This paper investigates in silico the influence of the cis-regulation logic and the coupling of feedback loops on the evolvability and robustness of gene regulatory motifs that can generate sustained oscillation. Our simulation results indicate that both evolvability and robustness of the considered regulatory motifs depend on the cis-regulation logic and the way in which positive and negative feedback loops are coupled. Most interestingly, our findings suggest that robust regulatory motifs can emerge from evolution without an explicit selection pressure on robustness and adding noise in the parameters during the evolution is likely to promote the evolution of sustained oscillation.  相似文献   

6.
Cells have evolved oscillators with different frequencies to coordinate periodic processes. Here we studied the interaction of two oscillators, the cell division cycle (CDC) and the yeast metabolic cycle (YMC), in budding yeast. Previous work suggested that the CDC and YMC interact to separate high oxygen consumption (HOC) from DNA replication to prevent genetic damage. To test this hypothesis, we grew diverse strains in chemostat and measured DNA replication and oxygen consumption with high temporal resolution at different growth rates. Our data showed that HOC is not strictly separated from DNA replication; rather, cell cycle Start is coupled with the initiation of HOC and catabolism of storage carbohydrates. The logic of this YMC–CDC coupling may be to ensure that DNA replication and cell division occur only when sufficient cellular energy reserves have accumulated. Our results also uncovered a quantitative relationship between CDC period and YMC period across different strains. More generally, our approach shows how studies in genetically diverse strains efficiently identify robust phenotypes and steer the experimentalist away from strain-specific idiosyncrasies.  相似文献   

7.
8.
Weakly coupled phase oscillators and strongly coupled relaxation oscillators have different mechanisms for creating stable phase lags. Many oscillations in central pattern generators combine features of each type of coupling: local networks composed of strongly coupled relaxation oscillators are weakly coupled to similar local networks. This paper analyzes the phase lags produced by this combination of mechanisms and shows how the parameters of a local network, such as the decay time of inhibition, can affect the phase lags between the local networks. The analysis is motivated by the crayfish central pattern generator used for swimming, and uses techniques from geometrical singular perturbation theory.  相似文献   

9.
We study collective behaviors of diffusively coupled oscillators which exhibit out-of-phase synchrony for the case of weakly interacting two oscillators. In large populations of such oscillators interacting via one-dimensionally nearest neighbor couplings, there appear various collective behaviors depending on the coupling strength, regardless of the number of oscillators. Among others, we focus on an intermittent behavior consisting of the all-synchronized state, a weakly chaotic state and some sorts of metachronal waves. Here, a metachronal wave means a wave with orderly phase shifts of oscillations. Such phase shifts are produced by the dephasing interaction which produces the out-of-phase synchronized states in two coupled oscillators. We also show that the abovementioned intermittent behavior can be interpreted as in-out intermittency where two saddles on an invariant subspace, the all-synchronized state and one of the metachronal waves play an important role.  相似文献   

10.
Understanding how different cellular subsystems are coupled to each other is a fundamental question in the quest for reliably predicting the dynamic state of a cell. Coupling of oscillatory subsystems is especially interesting as dynamic interactions play an important role in cell physiology. Here we review recent efforts that investigate and quantify the coupling between the circadian and cell cycle clocks in cyanobacteria as a model system. We discuss studies that quantify the coupling from a systems point of view in which the oscillators are described in abstract terms. We also emphasize recent developments aimed at uncovering the molecular details underlying the coupling between these systems. Finally we review recent studies that describe a potentially more overarching regulation scheme through global circadian regulation of DNA packing and gene expression.  相似文献   

11.
MOTIVATION: It is widely accepted that cell signaling networks have been evolved to be robust against perturbations. To investigate the topological characteristics resulting in such robustness, we have examined large-scale signaling networks and found that a number of feedback loops are present mostly in coupled structures. In particular, the coupling was made in a coherent way implying that same types of feedback loops are interlinked together. RESULTS: We have investigated the role of such coherently coupled feedback loops through extensive Boolean network simulations and found that a high proportion of coherent couplings can enhance the robustness of a network against its state perturbations. Moreover, we found that the robustness achieved by coherently coupled feedback loops can be kept evolutionarily stable. All these results imply that the coherent coupling of feedback loops might be a design principle of cell signaling networks devised to achieve the robustness.  相似文献   

12.
The interaction among coupled oscillators is governed by oscillator properties (intrinsic frequency and amplitude) and coupling mechanisms. This study considers another oscillator property, the intrinsic resting level, and evaluates its role in governing oscillator interactions. The results of computer experiments on a chain of either three or five bidirectionally coupled nonlinear oscillators, suggest that an intrinsic resting level gradient, if present, is one of the factors governing the interaction between coupled oscillators. If there is no intrinsic frequency gradient, then an intrinsic resting level gradient is sufficient to produce many features of interaction among coupled oscillators. If both intrinsic frequency and intrinsic resting level gradients are present, then both of them determine the manner in which the coupled oscillators interact with each other.  相似文献   

13.
We hypothesize that ultradian oscillators are coupled to yield a composite circadian clock in Drosophila. In such a system, period would be a function of the tightness of coupling of these oscillators, increasing as coupling loosens. Ultradian oscillations would become apparent under weak coupling or in the absence of coupling. A new technique for calculating signal-to-noise ratio (SNR) for biological rhythms to characterize their precision has yielded support for this hypothesis. SNR of rhythms of the allelic series of mutations at the period (per) locus of Drosophila melanogaster were compared. Per(o) was the noisiest, grading through perL, per+, and pers, the least noisy. SNR decreases significantly with increasing period in pers, per+, and perL; per(o) typically has multiple ultradian oscillations and the lowest SNR. At least 70% of perL individuals also exhibit ultradian periodicities.  相似文献   

14.
The behaviour of similar coupled non-linear oscillators of the type \(\dot x\) =f(x, y, µ \(\dot y\) =g(x, y, µ is to be investigated. The oscillators are assumed to be coupled by diffusion gradients. If some conditions on the magnitude of the diffusion coefficients are satisfied, it is proved that: 1) if the oscillators have the same period (identical value of the parameter μ) and different phases before coupling, after coupling they tend to synchronize the phases; 2) if the periods of the oscillators are not too different (in terms of the values of the parameter μ) before coupling, after coupling they tend to oscillate with the same period. It is suggested the possible role of diffusion as a synchronizing mechanism in some biological phenomena.  相似文献   

15.
Limit cycle oscillators that are coupled in a pulsatile manner are referred to as pulse coupled oscillators. In these oscillators, the interactions take the form of brief pulses such that the effect of one input dies out before the next is received. A phase resetting curve (PRC) keeps track of how much an input advances or delays the next spike in an oscillatory neuron depending upon where in the cycle the input is applied. PRCs can be used to predict phase locking in networks of pulse coupled oscillators. In some studies of pulse coupled oscillators, a specific form is assumed for the interactions between oscillators, but a more general approach is to formulate the problem assuming a PRC that is generated using a perturbation that approximates the input received in the real biological network. In general, this approach requires that circuit architecture and a specific firing pattern be assumed. This allows the construction of discrete maps from one event to the next. The fixed points of these maps correspond to periodic firing modes and are easier to locate and analyze for stability compared to locating and analyzing periodic modes in the original network directly. Alternatively, maps based on the PRC have been constructed that do not presuppose a firing order. Specific circuits that have been analyzed under the assumption of pulsatile coupling include one to one lockings in a periodically forced oscillator or an oscillator forced at a fixed delay after a threshold event, two bidirectionally coupled oscillators with and without delays, a unidirectional N-ring of oscillators, and N all-to-all networks.  相似文献   

16.
We consider two electrically coupled oscillators described by modified Fitzhugh-Nagumo equations. We study the relative influence of the individual cellular characteristics and the electrical coupling on the behavior of the coupled system. We show that, for similar oscillators, the load effect of the slow oscillator increases with the coupling strength. We prove that an asymmetry between the uncoupled bursters can accelerate the system with respect to the free cells, this effect depending on the characteristics of the coupling.On leave from Centre de Physique Théoruique (UPR A0014 CNRS), Palaiseau, France  相似文献   

17.
Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time‐lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode‐locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev‐Erbα‐YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer.  相似文献   

18.
The mechanisms underlying the emergence of seizures are one of the most important unresolved issues in epilepsy research. In this paper, we study how perturbations, exogenous or endogenous, may promote or delay seizure emergence. To this aim, due to the increasingly adopted view of epileptic dynamics in terms of slow-fast systems, we perform a theoretical analysis of the phase response of a generic relaxation oscillator. As relaxation oscillators are effectively bistable systems at the fast time scale, it is intuitive that perturbations of the non-seizing state with a suitable direction and amplitude may cause an immediate transition to seizure. By contrast, and perhaps less intuitively, smaller amplitude perturbations have been found to delay the spontaneous seizure initiation. By studying the isochrons of relaxation oscillators, we show that this is a generic phenomenon, with the size of such delay depending on the slow flow component. Therefore, depending on perturbation amplitudes, frequency and timing, a train of perturbations causes an occurrence increase, decrease or complete suppression of seizures. This dependence lends itself to analysis and mechanistic understanding through methods outlined in this paper. We illustrate this methodology by computing the isochrons, phase response curves and the response to perturbations in several epileptic models possessing different slow vector fields. While our theoretical results are applicable to any planar relaxation oscillator, in the motivating context of epilepsy they elucidate mechanisms of triggering and abating seizures, thus suggesting stimulation strategies with effects ranging from mere delaying to full suppression of seizures.  相似文献   

19.
A commonly accepted mathematical model for the slow wave electrical activity of the gastro-intestinal tract of humans and animals comprises a set of interconnected relaxation oscillators. The method of harmonic balance is used here to obtain analytical results for the entrained frequencies and amplitudes of two oscillators coupled with a parallelRLC network. By perturbations and linearisation about these values the conditions for stable limit-cycles are found and regions in theRLC parameter space which give one or two stable limit-cycle conditions are derived. These analytical results are compared with simulated results and found to creelate well for a waveshape factor of ε=0.1 and fairly well for ε=1.0. The single limit-cycle region corresponds to the requirement for a single mode having a frequency higher than the uncoupled value in small-intestinal data, while the double limit-cycle region corresponds to the two rhythms found in human large-intestinal activity.  相似文献   

20.
Synchronization properties of locally coupled neural oscillators were investigated analytically and by computer simulation. When coupled in a manner that mimics excitatory chemical synapses, oscillators having more than one time scale (relaxation oscillators) are shown to approach synchrony using mechanisms very different from that of oscillators with a more sinusoidal waveform. The relaxation oscillators make critical use of fast modulations of their thresholds, leading to a rate of synchronization relatively independent of coupling strength within some basin of attraction; this rate is faster for oscillators that have conductance-based features than for neural caricatures such as the FitzHugh-Nagumo equations that lack such features. Computer simulations of one-dimensional arrays show that oscillators in the relaxation regime synchronize much more rapidly than oscillators with the same equations whose parameters have been modulated to yield a more sinusoidal waveform. We present a heuristic explanation of this effect based on properties of the coupling mechanisms that can affect the way the synchronization scales with array length. These results suggest that the emergent synchronization behavior of oscillating neural networks can be dramatically influenced by the intrinsic properties of the network components. Possible implications for perceptual feature binding and attention are discussed.Supported in part by NASA (NGT-50497)Supported in part by NSF (DMS-8901913), and NIMH-47150 Present address and address for correspondence: Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, E25-618, Cambridge, MA 02139, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号