首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phosphatidic acid (PA) is a lipid second messenger and is believed to be involved in cell proliferation and survival. PA is mainly produced by phospholipase D (PLD) and diacylglycerol kinase (DGK). Elevated PLD activity is believed to suppress apoptosis via activation of the mammalian target of rapamycin (mTOR). On the other hand, DGK inhibition has been demonstrated to induce apoptosis, but it is unclear whether DGK can regulate mTOR. Here, we investigated whether DGK inhibition can induce apoptosis and autophagy in neuronal cells, since mTOR is a key mediator of autophagy and the simultaneous activation of apoptosis and autophagy has been detected. A DGK inhibitor, R59022 induced autophagy and apoptosis without serum in NG108-15 cells. Autophagy preceded apoptosis, and apoptosis inhibition did not affect R59022-induced autophagy. R59022-induced autophagy was inhibited by exogenous PA, and protein kinase C activation and increases in intracellular Ca2+ levels, which are assumed to be caused by diacylglycerol accumulation, did not appear to be involved in R59022-induced autophagy. We also investigated the effects of R59022 on mTOR signaling pathway, and found that the pathway was not inhibited by R59022. These results imply that DGK plays an important role in cell survival via mTOR-independent mechanism.  相似文献   

2.
The protein known as mammalian target of rapamycin (mTOR) regulates cell growth by integrating different stimuli, such as available nutrients and mitogenic factors. The lipid messenger phosphatidic acid (PA) binds and positively regulates the mitogenic response of mTOR. PA generator enzymes are consequently potential regulators of mTOR. Here we explored the contribution to this pathway of the enzyme diacylglycerol kinase (DGK), which produces PA through phosphorylation of diacylglycerol. We found that overexpression of the DGKzeta, but not of the alpha isoform, in serum-deprived HEK293 cells induced mTOR-dependent phosphorylation of p70S6 kinase (p70S6K). After serum addition, p70S6K phosphorylation was higher and more resistant to rapamycin treatment in cells overexpressing DGKzeta. The effect of this DGK isoform on p70S6K hyperphosphorylation required the mTOR PA binding region. Down-regulation of endogenous DGKzeta by small interfering RNA in HEK293 cells diminished serum-induced p70S6K phosphorylation, highlighting the role of this isoform in the mTOR pathway. Our results confirm a role for PA in mTOR regulation and describe a novel pathway in which DGKzeta-derived PA acts as a mediator of mTOR signaling.  相似文献   

3.
Nitric oxide (NO) and the lipid second messenger phosphatidic acid (PA) are involved in plant defense responses during plant-pathogen interactions. NO has been shown to be involved in the induction of PA production in response to the pathogen associated molecular pattern (PAMP) xylanase in tomato cells. It was shown that NO is critical for PA production induced via phospholipase C (PLC) in concerted action with diacylglycerol kinase (DGK) but not for the xylanase-induced PA via phospholipase D (PLD). In order to study whether this is a general phenomenon during PAMP perception or if it is particular for xylanase, we studied the effect of the PAMP chitosan in tomato cell suspensions. We observed a rapid NO production in tomato cells treated with chitosan. Chitosan induced the formation of PA by activating both PLD and PLC/DGK. The activation of either phospholipase-mediated signaling pathway was inhibited in cells treated with the NO scavenger cPTIO. This indicates that NO is required for PA generation via both the PLD and PLC/DGK pathway during plant defense response in chitosan elicited cells. Responses downstream PA were studied. PLC inhibitors neomycin and U73122 inhibited chitosan-induced ROS production. Differences between xylanase and chitosan-induced phospholipid signaling pathways are discussed.  相似文献   

4.
AMP-activated protein kinase (AMPK), a critical sensor of energy sufficiency, acts as central metabolic switch in cell metabolism. Once activated by low energy status, AMPK phosphorylates key regulatory substrates and turns off anabolic biosynthetic pathways. In contrast, the mammalian/mechanistic target of rapamycin (mTOR) is active when there are sufficient nutrients for anabolic reactions. A critical factor regulating mTOR is phosphatidic acid (PA), a central metabolite of membrane lipid biosynthesis and the product of the phospholipase D (PLD)-catalyzed hydrolysis of phosphatidylcholine. PLD is a downstream target of the GTPase Rheb, which is turned off in response to AMPK via the tuberous sclerosis complex. Although many studies have linked AMPK with mTOR, very little is known about the connection between AMPK and PLD. In this report, we provide evidence for reciprocal regulation of PLD by AMPK and regulation of AMPK by PLD and PA. Suppression of AMPK activity led to an increase in PLD activity, and conversely, activation of AMPK suppressed PLD activity. Suppression of PLD activity resulted in elevated AMPK activity. Exogenously supplied PA abolished the inhibitory effects of elevated AMPK activity on mTOR signaling. In contrast, exogenously supplied PA could not overcome the effect AMPK activation if either mTOR or Raptor was suppressed, indicating that the inhibitory effects of PLD and PA on AMPK activity are mediated by mTOR. These data suggest a reciprocal feedback mechanism involving AMPK and the PLD/mTOR signaling node in cancer cells with therapeutic implications.  相似文献   

5.
In response to various environmental stress conditions, plants rapidly form the intracellular lipid second messenger phosphatidic acid (PA). It can be generated by two independent signalling pathways via phospholipase D (PLD) and via phospholipase C (PLC) in combination with diacylglycerol kinase (DGK). In the green alga Chlamydomonas, the phospholipid substrates for these pathways are characterized by specific fatty acid compositions. This allowed us to establish: (i) PLD's in vivo substrate preference; and (ii) PLD's contribution to PA formation during stress signalling. Accordingly, G-protein activation (1 micro m mastoparan), hyperosmotic stress (150 mm NaCl) and membrane depolarization (50 mm KCl) were used to stimulate PLD, as monitored by the accumulation in 5 min of its unique transphosphatidylation product phosphatidylbutanol (PBut). In each case, PBut's fatty acid composition specifically matched that of phosphatidylethanolamine (PE), identifying this lipid as PLD's favoured substrate. This conclusion was substantiated by analysing the molecular species by electrospray ionization-mass spectrometry (ESI-MS/MS), which revealed that PE and NaCl-induced PBut share a unique (18 : 1)2-structure. The fatty acid composition of PA was much more complex, reflecting the different contributions from the PLC/DGK and PLD pathways. During KCl-induced stress, the PA rise was largely accounted for by PLD activity. In contrast, PLD's contribution to hyperosmotic stress-induced PA was less, being approximately 63% of the total increase. This was because the PLC/DGK pathway was activated as well, resulting in phosphoinositide-specific fatty acids and molecular species in PA.  相似文献   

6.
Phosphatidic acid (PA), the primary metabolite of the phospholipase D (PLD)-mediated hydrolysis of phosphatidylcholine, has been shown to act as a tumor promoting second messenger in many cancer cell lines. A key target of PA is the mammalian target of rapamycin (mTOR), a serine-threonine kinase that has been widely implicated in cancer cell survival signals. In agreement with its ability to relay survival signals, it has been reported that both PLD and mTOR are required for the stabilization of the p53 E3 ubiquitin ligase human double minute 2 (HDM2) protein. Thus, by stabilizing HDM2, PLD and mTOR are able to counter the pro-apoptotic signaling mediated by p53 and promote survival. mTOR exists in at least two distinct complexes—mTORC1 and mTORC2—that are both dependent on PLD-generated PA. Although PLD and its metabolite PA are clearly implicated in the transduction of survival signals to mTOR, it is not yet apparent which of the two mTOR complexes is critical for the stabilization of HDM2. We report here that the PLD/mTOR-dependent stabilization of HDM2 involves mTORC2 and the AGC family kinase serum- and glucocorticoid-inducible kinase 1 (SGK1). This study reveals that mTORC2 is a critical target of PLD-mediated survival signals and identifies SGK1 as a downstream target of mTORC2 for the stabilization of HDM2.  相似文献   

7.
During the past decade elevated phospholipase D (PLD) activity has been reported in virtually all cancers where it has been examined. PLD catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger phosphatidic acid (PA). While many targets of PA signaling have been identified, the most critical target of PA in cancer cells is likely to be mTOR — the mammalian target of rapamycin. mTOR has been widely implicated in signals that suppress apoptotic programs in cancer cells — frequently referred to as survival signals. mTOR exists as two multi-component complexes known as mTORC1 and mTORC2. Recent data has revealed that PA is required for the stability of both mTORC1 and mTORC2 complexes — and therefore also required for the kinase activity of both mTORC1 and mTORC2. PA interacts with mTOR in a manner that is competitive with rapamycin, and as a consequence, elevated PLD activity confers rapamycin resistance — a point that has been largely overlooked in clinical trials involving rapamycin-based strategies. The earliest genetic changes occurring in an emerging tumor are generally ones that suppress default apoptotic programs that likely represent the first line of defense of cancer. Targeting survival signals in human cancers represents a rational anti-cancer therapeutic strategy. Therefore, understanding the signals that regulate PA levels and how PA impacts upon mTOR could be important for developing strategies to de-repress the survival signals that suppress apoptosis. This review summarizes the role of PA in regulating the mTOR-mediated signals that promote cancer cell survival.  相似文献   

8.
The mammalian target of rapamycin (mTOR) is a critical sensor of nutritional sufficiency. Although much is known about the regulation of mTOR in response to growth factors, much less is known about the regulation of mTOR in response to nutrients. Amino acids have no impact on the signals that regulate Rheb, a GTPase required for the activation of mTOR complex 1 (mTORC1). Phospholipase D (PLD) generates a metabolite, phosphatidic acid, that facilitates association between mTOR and the mTORC1 co-factor Raptor. We report here that elevated PLD activity in human cancer cells is dependent on both amino acids and glucose and that amino acid- and glucose-induced increases in mTORC1 activity are dependent on PLD. Amino acid- and glucose-induced PLD and mTORC1 activity were also dependent on the GTPases RalA and ARF6 and the type III phosphatidylinositol-3-kinase hVps34. Thus, a key stimulatory event for mTORC1 activation in response to nutrients is the generation of phosphatidic acid by PLD.  相似文献   

9.
The mammalian target of rapamycin (mTOR) assembles a signaling network that transduces nutrient signals and various other stimuli to regulate a wide range of cellular functions. Of the two distinct mTOR complexes, mTORC1 is under the control of the TSC-Rheb pathway, which serves as an integrator of multiple upstream signals. A lipid signaling cascade involving phospholipase D (PLD) and phosphatidic acid (PA) has also been known to mediate mitogenic signals upstream of mTORC1. A new study now reveals a direct connection between these two regulatory pathways and demonstrates that PLD1 is an effector of Rheb in the activation of mTORC1. A novel role of PLD as a nutrient sensor has also been suggested. In this extra-view, we discuss the emerging importance of PA and PLD in the mTORC1 signaling network and the biological processes it governs. We also consider the implications from several recent findings and propose mechanistic models of PLD-mTOR signaling to be tested in the near future.  相似文献   

10.
The unicellular green alga Chlamydomonas has frequently been used as a eukaryotic model system to study intracellular phospholipid signaling pathways in response to environmental stresses. Earlier, we found that hypersalinity induced a rapid increase in the putative lipid second messenger, phosphatidic acid (PA), which was suggested to be generated via activation of a phospholipase D (PLD) pathway and the combined action of a phospholipase C/diacylglycerol kinase (PLC/DGK) pathway. Lysophosphatidic acid (LPA) was also increased and was suggested to reflect a phospholipase A2 (PLA2) activity based on pharmacological evidence. The question of PA''s and LPA''s origin is, however, more complicated, especially as both function as precursors in the biosynthesis of phospho- and galactolipids. To address this complexity, a combination of fatty acid-molecular species analysis and in vivo 32P-radiolabeling was performed. Evidence is provided that LPA is formed from a distinct pool of PA characterized by a high α-linolenic acid (18:3n-3) content. This molecular species was highly enriched in the polyphosphoinositide fraction, which is the substrate for PLC to form diacylglycerol. Together with differential 32P-radiolabeling studies and earlier PLD-transphosphatidylation and PLA2-inhibitor assays, the data were consistent with the hypothesis that the salt-induced LPA response is primarily generated through PLA2-mediated hydrolysis of DGK-generated PA and that PLD or de novo synthesis [via endoplasmic reticulum - or plastid-localized routes] is not a major contributor.  相似文献   

11.
磷脂酸(PA)是应答多种生理过程的第二信使, 其作为一个脂质信号快速积累从而响应多种环境。PA主要通过磷脂酶D (PLD)和磷脂酶C/甘油二酯激酶(PLC/DGK)途径产生。基于PLDs的生化特性、激活机制以及在不同类型胁迫下被激活的特定同种型的差异, 不同类型胁迫下会产生特定分子种组成的PA。PA在多种环境下起信号转导作用, 在调节气孔运动中, PA的作用模式主要是通过与多种蛋白结合, 激活或抑制这些蛋白的活性, 进而执行其信使功能。该文主要综述PA的生化特性以及信号途径中PA互作蛋白的研究进展, 并提出PA研究中亟待解决的问题及今后的重点研究方向。  相似文献   

12.
Phosphatidic acid (PA) has been increasingly recognized as an important signaling lipid regulating cell growth and proliferation, membrane trafficking, and cytoskeletal reorganization. Recent studies indicate that the signaling PA generated from phospholipase D (PLD) and diacylglycerol kinase (DGK) plays critical roles in regulating the activity of some members of Ras superfamily of small guanosine triphosphatases (GTPases), such as Ras, Rac and Arf. Change of PA levels regulates the activity of small GTPases by modulating membrane localization and activity of small GTPase regulatory proteins, guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). In addition, PA also targets some small GTPases to membranes by direct binding. This review summarizes the roles of PLD and DGK in regulating the activity of several Ras superfamily members and cellular processes they control. Some future directions and the implication of PA regulation of Ras small GTPases in pathology are also discussed.  相似文献   

13.
The Ras-extracellular signal-regulated kinase (ERK) cascade is an important signaling module in cells. One regulator of the Ras-ERK cascade is phosphatidic acid (PA) generated by phospholipase D (PLD) and diacylglycerol kinase (DGK). Using a newly developed PA biosensor, PASS (phosphatidic acid biosensor with superior sensitivity), we found that PA was generated sequentially by PLD and DGK in epidermal growth factor (EGF)-stimulated HCC1806 breast cancer cells. Inhibition of PLD2, one of the two PLD members, was sufficient to eliminate most of the PA production, whereas inhibition of DGK decreased PA production only at the later stages of EGF stimulation, suggesting that PLD2 precedes DGK activation. The temporal production of PA by PLD2 is important for the nuclear activation of ERK. While inhibition of both PLD and DGK had no effect on the overall ERK activity, inhibition of PLD2 but not PLD1 or DGK blocked the nuclear ERK activity in several cancer cell lines. The decrease of active ERK in the nucleus inhibited the activation of Elk1, c-fos, and Fra1, the ERK nuclear targets, leading to decreased proliferation of HCC1806 cells. Together, these findings reveal that PA production by PLD2 determines the output of ERK in cancer cell growth factor signaling.  相似文献   

14.
Ha SH  Kim DH  Kim IS  Kim JH  Lee MN  Lee HJ  Kim JH  Jang SK  Suh PG  Ryu SH 《Cellular signalling》2006,18(12):2283-2291
Mammalian target-of-rapamycin (mTOR), which is a master controller of cell growth, senses a mitogenic signal in part through the lipid second messenger phosphatidic acid (PA), generated by phospholipase D (PLD). To understand further which isozymes of PLD are involved in this process, we compared the effect of PLD isozymes on mTOR activation. We found that PLD2 has an essential role in mitogen-induced mTOR activation as the siRNA-mediated knockdown of PLD2, not of PLD1, profoundly reduced the phosphorylations of S6K1 and 4EBP1, well-known mTOR effectors. Furthermore, exogenous PA-induced mTOR activation was abrogated by PLD2 knockdown, but not by PLD1 knockdown. This abrogation was found to be the result of complex formation between PLD2 and mTOR/raptor. PLD2 possesses a TOS-like motif (Phe-Glu-Val-Gln-Val, a.a. 265–269), through which it interacts with raptor independently of the other TOS motif-containing proteins, S6K1 and 4EBP1. PLD2-dependent mTOR activation appears to require PLD2 binding to mTOR/raptor with lipase activity, since lipase-inactive PLD2 cannot trigger mTOR activation despite its ability to interact with mTOR/raptor. Abrogation of mitogen-dependent mTOR activation by PLD2 knockdown was rescued only by wild type PLD2, but not by raptor binding-deficient and lipase-inactive PLD2. Our results demonstrate the importance of localized PA generation for the mitogen-induced activation of mTOR, which is achieved by a specific interaction between PLD2 and mTOR/raptor.  相似文献   

15.
Phosphatidic acid (PA) is a lipid second messenger located at the intersection of several lipid metabolism and cell signaling events including membrane trafficking, survival, and proliferation. Generation of signaling PA has long been primarily attributed to the activation of phospholipase D (PLD). PLD catalyzes the hydrolysis of phosphatidylcholine into PA. A variety of both receptor-tyrosine kinase and G-protein-coupled receptor stimulations have been shown to lead to PLD activation and PA generation. This study focuses on profiling the PA pool upon P2Y6 receptor signaling manipulation to determine the major PA producing enzymes. Here we show that PLD, although highly active, is not responsible for the majority of stable PA being produced upon UDP stimulation of the P2Y6 receptor and that PA levels are tightly regulated. By following PA flux in the cell we show that PLD is involved in an initial increase in PA upon receptor stimulation; however, when PLD is blocked, the cell compensates by increasing PA production from other sources. We further delineate the P2Y6 signaling pathway showing that phospholipase Cβ3 (PLCβ3), PLCδ1, DGKζ and PLD are all downstream of receptor activation. We also show that DGKζ is a novel negative regulator of PLD activity in this system that occurs through an inhibitory mechanism with PKCα. These results further define the downstream events resulting in PA production in the P2Y6 receptor signaling pathway.  相似文献   

16.
We have previously reported the participation of mitogen-activated protein, Rho, and phosphoinositide-3 (PI3) kinases in separate pathways in serotonin (5-HT)-induced proliferation of pulmonary artery smooth muscle cells (SMCs). In this study, we investigated the possible participation of phospholipase D (PLD) and phosphatidic acid (PA) in this growth process. 5-HT stimulated a time-dependent increase in [(3)H]phosphatidylbutanol and PA generation. Exposure of SMCs to 1-butanol or overexpression of an inactive mutant of human PLD1R898R blocked 5-HT-induced proliferation. Furthermore, 1-butanol inhibited 5-HT activation of S6K1 and S6 protein, downstream effectors of mammalian target of rapamycin (mTOR), by 80 and 72%, respectively, and partially blocked activation of extracellular signal-regulated kinase (ERK) by 30% but had no effect on other associated signaling pathways. Exogenous PA caused cellular proliferation and revitalized cyclin D1 expression by 5-HT of the 1-butanol-treated cells. PA also reproduced activations by 5-HT of mTOR, S6K1, and ERK. Transfection with inactive human PLD1 reduced 5-HT-induced activation of S6K1 by approximately 50%. Inhibition of 5-HT receptor 2A (R 2A) with ketaserin blocked PLD activation by 5-HT. Inhibition with PI3-kinase inhibitor failed to block either activation of PLD by 5-HT or PA-dependent S6K1 phosphorylation. Taken together, these results indicate that ligation of the 5-HTR 2A by 5-HT initiates PLD activation in SMCs, and that its product, PA, is an early signaling molecule in 5-HT-induced pulmonary artery SMC proliferation. Signaling by PA produces its downstream effects primarily through the mTOR/S6K1 pathway and to a lesser extent through the ERK pathway. Hydrolysis of cell membrane lipid may be important in vascular effects of 5-HT.  相似文献   

17.
PLD1 regulates mTOR signaling and mediates Cdc42 activation of S6K1   总被引:5,自引:0,他引:5  
BACKGROUND: The mammalian target of rapamycin (mTOR) regulates cell growth and proliferation via the downstream targets ribosomal S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1). We have identified phosphatidic acid (PA) as a mediator of mitogenic activation of mTOR signaling. In this study, we set out to test the hypotheses that phospholipase D 1 (PLD1) is an upstream regulator of mTOR and that the previously reported S6K1 activation by Cdc42 is mediated by PLD1. RESULTS: Overexpression of wild-type PLD1 increased S6K1 activity in serum-stimulated cells, whereas a catalytically inactive PLD1 exerted a dominant-negative effect on S6K1. More importantly, eliminating endogenous PLD1 by RNAi led to drastic inhibition of serum-stimulated S6K1 activation and 4E-BP1 hyperphosphorylation in both HEK293 and COS-7 cells. Knockdown of PLD1 also resulted in reduced cell size, suggesting a critical role for PLD1 in cell growth control. Using a rapamycin-resistant S6K1 mutant, Cdc42's action was demonstrated to be through the mTOR pathway. When Cdc42 was mutated in a region specifically required for PLD1 activation, its ability to activate S6K1 in the presence of serum was hindered. However, when exogenous PA was used as a stimulus, the PLD1-inactive Cdc42 mutant behaved similarly to the wild-type protein. CONCLUSIONS: Our observations reveal the involvement of PLD1 in mTOR signaling and cell size control, and provide a molecular mechanism for Cdc42 activation of S6K1. A new cascade is proposed to connect mitogenic signals to mTOR through Cdc42, PLD1, and PA.  相似文献   

18.
Stomatal closure is regulated by a complex network of signalling events involving numerous intermediates, among them nitric oxide (NO). Little is known about the signalling events occurring downstream of NO. Previous studies have shown that NO modulates cytosolic calcium concentration and the activation of plasma membrane ion channels. Here we provide evidence that supports the involvement of the lipid second messenger phosphatidic acid (PA) in NO signalling during stomatal closure. PA levels in Vicia faba epidermal peels increased upon NO treatment to maximum levels within 30 min, subsequently decreasing to control levels at 60 min. PA can be generated via phospholipase D (PLD) or via phospholipase C (PLC) in concerted action with diacylglycerol kinase (DGK). Our results showed that NO-induced PA is produced via the activation of both pathways. NO-induced stomatal closure was blocked either when PLC or PLD activity was inhibited. We have shown that PLC- and PLD-derived PA represents a downstream component of NO signalling cascade during stomatal closure.  相似文献   

19.
In acid soils, aluminium (Al) toxicity and phosphate (Pi) deficiency are the most significant constraints on plant growth. Al inhibits cell growth and disrupts signal transduction processes, thus interfering with metabolism of phospholipase C (PLC), an enzyme involved in second messenger production in the cell. Using a Coffea arabica suspension cell model, we demonstrate that cell growth inhibition by Al toxicity is mitigated at a high Pi concentration. Aluminium-induced cell growth inhibition may be due to culture medium Pi deficiency, since Pi forms complexes with Al, reducing Pi availability to cells. Phosphate does not mitigate inhibition of PLC activity by Al toxicity. Other enzymes of the phosphoinositide signal transduction pathway were also evaluated. Aluminium disrupts production of second messengers such as inositol 1,4,5-trisphosphate (IP3) and phosphatidic acid (PA) by blocking PLC activity; however, phospholipase D (PLD) and diacylglycerol kinase (DGK) activities are stimulated by Al, a response probably aimed at counteracting Al effects on PA formation. Phosphate deprivation also induces PLC and DGK activity. These results suggest that Al-induced cell growth inhibition is not linked to PLC activity inhibition.  相似文献   

20.
Phospholipase D (PLD) catalyzes the conversion of the membrane phospholipid phosphatidylcholine to choline and phosphatidic acid (PA). PLD's mission in the cell is two-fold: phospholipid turnover with maintenance of the structural integrity of cellular/intracellular membranes and cell signaling through PA and its metabolites. Precisely, through its product of the reaction, PA, PLD has been implicated in a variety of physiological cellular functions, such as intracellular protein trafficking, cytoskeletal dynamics, chemotaxis of leukocytes and cell proliferation. The catalytic (HKD) and regulatory (PH and PX) domains were studied in detail in the PLD1 isoform, but PLD2 was traditionally studied in lesser detail and much less was known about its regulation. Our laboratory has been focusing on the study of PLD2 regulation in mammalian cells. Over the past few years, we have reported, in regards to the catalytic action of PLD, that PA is a chemoattractant agent that binds to and signals inside the cell through the ribosomal S6 kinases (S6K). Regarding the regulatory domains of PLD2, we have reported the discovery of the PLD2 interaction with Grb2 via Y169 in the PX domain, and further association to Sos, which results in an increase of de novo DNA synthesis and an interaction (also with Grb2) via the adjacent residue Y179, leading to the regulation of cell ruffling, chemotaxis and phagocytosis of leukocytes. We also present the complex regulation by tyrosine phosphorylation by epidermal growth factor receptor (EGF-R), Janus Kinase 3 (JAK3) and Src and the role of phosphatases. Recently, there is evidence supporting a new level of regulation of PLD2 at the PH domain, by the discovery of CRIB domains and a Rac2-PLD2 interaction that leads to a dual (positive and negative) effect on its enzymatic activity. Lastly, we review the surprising finding of PLD2 acting as a GEF. A phospholipase such as PLD that exists already in the cell membrane that acts directly on Rac allows a quick response of the cell without intermediary signaling molecules. This provides only the latest level of PLD2 regulation in a field that promises newer and exciting advances in the next few years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号