首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sleep-wake disturbances are common in epilepsy, yet the potential adverse effect of seizures on sleep is not well characterized. Genetically epilepsy-prone rats (GEPRs) are a well-studied model of genetic susceptibility to audiogenic seizures. To assess their suitability for investigating relationships between seizures and disordered sleep, we characterized the sleep, activity, and tempera ture patterns of 2 GEPR strains (designated 3 and 9) and Sprague-Dawley (SD) rats in the basal state, after forced wakefulness, and after exposure to sound-induced seizures at light onset and dark onset. Because of observed differences in rapid-eye-movement sleep (REMS), we also assessed serum levels of prolactin, which is implicated in REMS regulation. The data reveal that under basal conditions, the GEPR3 strain shows less SWS and REMS, higher core temperatures, and higher serum prolactin concentrations than do GEPR9 and SD strains. All 3 strains respond similarly to enforced sleep loss. Seizures induced at light onset delay the onset of SWS in both GEPR strains. Seizures induced at dark onset do not significantly alter sleep. Genotype assessment indicates that although both GEPR strains are inbred (that is, homozygous at 107 genetic markers), they differ from each other at 74 of 107 loci. Differences in basal sleep, temperature, and prolactin between GEPR3 and GEPR9 strains suggest different homeostatic regulation of these functions. Our detection of concurrent alterations in sleep, temperature, and prolactin in these 2 GEPR strains implicates the hypothalamus as a likely site for anatomic or physiologic variation in the control of these homeostatic processes.  相似文献   

2.
A neural net model based in our previous studies with randomly interconnected neural nets is presented here capable of exhibiting epileptic features. These features can be explained in terms of the structural and dynamical properties of the model. In addition, apart from the fact that this model can imitate epileptic phenomena, it might also help to explain some poorly understood clinical phenomena from which general disturbances can produce focal seizures in the brain.  相似文献   

3.
Tetanus toxin as a tool for studying epilepsy   总被引:4,自引:0,他引:4  
The use of tetanus toxin, injected into the hippocampus of the rat, to produce an "animal model" of chronic limbic epilepsy is described. This model has yielded information complementary to that derived from other animal models and has several important advantages: while it involves spontaneous seizures, it occurs without gross damage to the brain ; it is eventually reversible in terms of fits and the overall reappearance of the EEG. It can therefore be used to look both at the effects of ongoing epilepsy and also at the long-term changes in brain function induced by previous epilepsy. Evidence is presented that the toxin probably remains localised at the site of injection. The information which has so far been obtained with this model on the relation between epilepsy and abnormal behaviour is summarised. In particular, it appears that the epilepsy produces long-term deficits in the animals' ability to learn and remember of a sort which suggest that an enduring malfunction has been induced in the hippocampus. The significance of the findings for clinical research and for future investigation of the nature of epilepsy are described. It is emphasised that the neurotoxins may be usefully exploited not only for investigating the molecular basis of neuronal mechanisms but also for inducing long-lasting plastic changes in integrated brain function.  相似文献   

4.
Based on recent findings indicating that metabolism might be governed by a limit on the rate at which cells can dissipate Gibbs energy, in this Perspective, we propose a new mechanism of how metabolic activity could globally regulate biomolecular processes in a cell. Specifically, we postulate that Gibbs energy released in metabolic reactions is used to perform work, allowing enzymes to self‐propel or to break free from supramolecular structures. This catalysis‐induced enzyme movement will result in increased intracellular motion, which in turn can compromise biomolecular functions. Once the increased intracellular motion has a detrimental effect on regulatory mechanisms, this will establish a feedback mechanism on metabolic activity, and result in the observed thermodynamic limit. While this proposed explanation for the identified upper rate limit on cellular Gibbs energy dissipation rate awaits experimental validation, it offers an intriguing perspective of how metabolic activity can globally affect biomolecular functions and will hopefully spark new research.  相似文献   

5.
Bayesian inference has emerged as a general framework that captures how organisms make decisions under uncertainty. Recent experimental findings reveal disparate mechanisms for how the brain generates behaviors predicted by normative Bayesian theories. Here, we identify two broad classes of neural implementations for Bayesian inference: a modular class, where each probabilistic component of Bayesian computation is independently encoded and a transform class, where uncertain measurements are converted to Bayesian estimates through latent processes. Many recent experimental neuroscience findings studying probabilistic inference broadly fall into these classes. We identify potential avenues for synthesis across these two classes and the disparities that, at present, cannot be reconciled. We conclude that to distinguish among implementation hypotheses for Bayesian inference, we require greater engagement among theoretical and experimental neuroscientists in an effort that spans different scales of analysis, circuits, tasks, and species.  相似文献   

6.
Understanding how seizures spread throughout the brain is an important problem in the treatment of epilepsy, especially for implantable devices that aim to avert focal seizures before they spread to, and overwhelm, the rest of the brain. This paper presents an analysis of the speed of propagation in a computational model of seizure-like activity in a 2-dimensional recurrent network of integrate-and-fire neurons containing both excitatory and inhibitory populations and having a difference of Gaussians connectivity structure, an approximation to that observed in cerebral cortex. In the same computational model network, alternative mechanisms are explored in order to simulate the range of seizure-like activity propagation speeds (0.1–100 mm/s) observed in two animal-slice-based models of epilepsy: (1) low extracellular , which creates excess excitation and (2) introduction of gamma-aminobutyric acid (GABA) antagonists, which reduce inhibition. Moreover, two alternative connection topologies are considered: excitation broader than inhibition, and inhibition broader than excitation. It was found that the empirically observed range of propagation velocities can be obtained for both connection topologies. For the case of the GABA antagonist model simulation, consistent with other studies, it was found that there is an effective threshold in the degree of inhibition below which waves begin to propagate. For the case of the low extracellular model simulation, it was found that activity-dependent reductions in inhibition provide a potential explanation for the emergence of slowly propagating waves. This was simulated as a depression of inhibitory synapses, but it may also be achieved by other mechanisms. This work provides a localised network understanding of the propagation of seizures in 2-dimensional centre-surround networks that can be tested empirically.  相似文献   

7.
Volman V  Perc M  Bazhenov M 《PloS one》2011,6(5):e20572
Electrical synapses (gap junctions) play a pivotal role in the synchronization of neuronal ensembles which also makes them likely agonists of pathological brain activity. Although large body of experimental data and theoretical considerations indicate that coupling neurons by electrical synapses promotes synchronous activity (and thus is potentially epileptogenic), some recent evidence questions the hypothesis of gap junctions being among purely epileptogenic factors. In particular, an expression of inter-neuronal gap junctions is often found to be higher after the experimentally induced seizures than before. Here we used a computational modeling approach to address the role of neuronal gap junctions in shaping the stability of a network to perturbations that are often associated with the onset of epileptic seizures. We show that under some circumstances, the addition of gap junctions can increase the dynamical stability of a network and thus suppress the collective electrical activity associated with seizures. This implies that the experimentally observed post-seizure additions of gap junctions could serve to prevent further escalations, suggesting furthermore that they are a consequence of an adaptive response of the neuronal network to the pathological activity. However, if the seizures are strong and persistent, our model predicts the existence of a critical tipping point after which additional gap junctions no longer suppress but strongly facilitate the escalation of epileptic seizures. Our results thus reveal a complex role of electrical coupling in relation to epileptiform events. Which dynamic scenario (seizure suppression or seizure escalation) is ultimately adopted by the network depends critically on the strength and duration of seizures, in turn emphasizing the importance of temporal and causal aspects when linking gap junctions with epilepsy.  相似文献   

8.
Obay BD  Tasdemir E  Tümer C  Bilgin HM  Sermet A 《Peptides》2007,28(6):1214-1219
It is well known that neuropeptide Y (NPY) and gamma-aminobutyric acid (GABA) exert antiepileptic effects in animal models. It has recently been shown that ghrelin neurons increase the activities of GABA and NPY in the brain. Therefore it can be said that ghrelin is an antiepileptic agent. In this study we aimed to investigate the antiepileptic effect of ghrelin in an acute experimental epilepsy model in pentylenetetrazole (PTZ) injected rats. Adult male Wistar albino rats were divided into a control group and four experimental groups with seven rats in each group. In order to generate epileptic seizures, PTZ (50mg/kg) was injected intraperitoneally. The experimental groups received intraperitoneal injections of ghrelin at doses of 20, 40, 60 and 80microg/kg 30min before PTZ injection. After PTZ injection, the latencies were separated into three components: first myoclonic jerk, generalized clonic seizures and tonic generalized extension. The injection of 50mg/kg PTZ-induced epileptic seizures in the control group. The onset times of the three characteristic behavioral changes were significantly delayed and the duration of tonic generalized extension was diminished by dose-dependent ghrelin administration. Our results demonstrated that ghrelin suppresses the onset time of PTZ-induced seizures. In the light of our current knowledge, it seems that ghrelin may be considered as an antiepileptic drug.  相似文献   

9.
Prolonged exposure to hyperoxia leads to acute lung injury. Alveolar type II cells are main target of hyperoxia‐induced lung injury. However, the cellular and molecular mechanisms remain unknown. Here, we aimed to investigate the role of placental growth factor (PLGF) in hyperoxia‐induced lung injury. Using experimental hyperoxia‐induced lung injury model of neonatal rat and mouse lung epithelial type II cells (MLE‐12), we examined the levels of PLGF in bronchoalveolar lavage fluid and in the supernatants of MLE‐12 cells. Our results revealed that exogenous PLGF induced hyperoxia‐induced lung injury. Furthermore, PLGF triggered a shift of vinculin from insoluble to soluble cell fraction, similar to the observation under hyperoxia stimulation. Moreover, we observed significantly reduced phosphorylation of focal adhesion kinase and increased permeability in MLE‐12 cells treated with PLGF. These results suggest that PLGF triggers focal adhesion disassembly in alveolar type II cells via inhibiting the activation of focal adhesion kinase. Our findings reveal a novel role of PLGF in hyperoxia‐induced lung injury and provide a potential target for the management of hyperoxia‐induced acute lung injury. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
ObjectiveEpileptic seizures are defined as manifest of excessive and hyper-synchronous activity of neurons in the cerebral cortex that cause frequent malfunction of the human central nervous system. Therefore, finding precursors and predictors of epileptic seizure is of utmost clinical relevance to reduce the epileptic seizure induced nervous system malfunction consequences. Researchers for this purpose may even guide us to a deep understanding of the seizure generating mechanisms. The goal of this paper is to predict epileptic seizures in epileptic rats.MethodsSeizures were induced in rats using pentylenetetrazole (PTZ) model. EEG signals in interictal, preictal, ictal and postictal periods were then recorded and analyzed to predict epileptic seizures. Epileptic seizures were predicted by calculating an index in consecutive windows of EEG signal and comparing the index with a threshold. In this work, a newly proposed dissimilarity index called Bhattacharyya Based Dissimilarity Index (BBDI), dynamical similarity index and fuzzy similarity index were investigated.ResultsBBDI, dynamical similarity index and fuzzy similarity index were examined on case and control groups and compared to each other. The results show that BBDI outperforms dynamical and fuzzy similarity indices. In order to improve the results, EEG sub-bands were also analyzed. The best result achieved when the proposed dissimilarity index was applied on Delta sub-band that predicts epileptic seizures in all rats with a mean of 299.5 s.ConclusionThe dissimilarity of neural network activity between reference window and present window of EEG signal has a significant increase prior to an epileptic seizure and the proposed dissimilarity index (BBDI) can reveal this variation to predict epileptic seizures. In addition, analyzing EEG sub-bands results in more accurate information about constituent neuronal activities underlying the EEG since certain changes in EEG signal may be amplified when each sub-band is analyzed separately.SignificanceThis paper presents application of a dissimilarity index (BBDI) on EEG signals and its sub-bands to predict PTZ-induced epileptic seizures in rats. Based on the results of this work, BBDI will predict epileptic seizures more accurately and more reliably compared to current indices that increases epileptic patient comfort and improves patient outcomes.  相似文献   

11.
How focal seizures initiate and evolve in human neocortex remains a fundamental problem in neuroscience. Here, we use biophysical neuronal network models of neocortical patches to study how the interaction between inhibition and extracellular potassium ([K +] o ) dynamics may contribute to different types of focal seizures. Three main types of propagated focal seizures observed in recent intracortical microelectrode recordings in humans were modelled: seizures characterized by sustained (~30?60 Hz) gamma local field potential (LFP) oscillations; seizures where the onset in the propagated site consisted of LFP spikes that later evolved into rhythmic (~2?3 Hz) spike-wave complexes (SWCs); and seizures where a brief stage of low-amplitude fast-oscillation (~10?20 Hz) LFPs preceded the SWC activity. Our findings are fourfold: (1) The interaction between elevated [K +] o (due to abnormal potassium buffering by glial cells) and the strength of synaptic inhibition plays a predominant role in shaping these three types of seizures. (2) Strengthening of inhibition leads to the onset of sustained narrowband gamma seizures. (3) Transition into SWC seizures is obtained either by the weakening of inhibitory synapses, or by a transient strengthening followed by an inhibitory breakdown (e.g. GABA depletion). This reduction or breakdown of inhibition among fast-spiking (FS) inhibitory interneurons increases their spiking activity and leads them eventually into depolarization block. Ictal spike-wave discharges in the model are then sustained solely by pyramidal neurons. (4) FS cell dynamics are also critical for seizures where the evolution into SWC activity is preceded by low-amplitude fast oscillations. Different levels of elevated [K +] o were important for transitions into and maintenance of sustained gamma oscillations and SWC discharges. Overall, our modelling study predicts that the interaction between inhibitory interneurons and [K +] o glial buffering under abnormal conditions may explain different types of ictal transitions and dynamics during propagated seizures in human focal epilepsy.  相似文献   

12.
13.
In the brain, seizures lead to release of large amounts of polyunsaturated fatty acids including arachidonic acid (ARA). ARA is a substrate for three major enzymatic routes of metabolism by cyclooxygenase, lipoxygenase and cytochrome P450 enzymes. These enzymes convert ARA to potent lipid mediators including prostanoids, leukotrienes and epoxyeicosatrienoic acids (EETs). The prostanoids and leukotrienes are largely pro-inflammatory molecules that sensitize neurons whereas EETs are anti-inflammatory and reduce the excitability of neurons. Recent evidence suggests a GABA-related mode of action potentially mediated by neurosteroids. Here we tested this hypothesis using models of chemically induced seizures. The level of EETs in the brain was modulated by inhibiting the soluble epoxide hydrolase (sEH), the major enzyme that metabolizes EETs to inactive molecules, by genetic deletion of sEH and by direct administration of EETs into the brain. All three approaches delayed onset of seizures instigated by GABA antagonists but not seizures through other mechanisms. Inhibition of neurosteroid synthesis by finasteride partially blocked the anticonvulsant effects of sEH inhibitors while the efficacy of an inactive dose of neurosteroid allopregnanolone was enhanced by sEH inhibition. Consistent with earlier findings, levels of prostanoids in the brain were elevated. In contrast, levels of bioactive EpFAs were decreased following seizures. Overall these results demonstrate that EETs are natural molecules which suppress the tonic component of seizure related excitability through modulating the GABA activity and that exploration of the EET mediated signaling in the brain could yield alternative approaches to treat convulsive disorders.  相似文献   

14.
In this paper we present a detailed theoretical analysis of the onset of spike-wave activity in a model of human electroencephalogram (EEG) activity, relating this to clinical recordings from patients with absence seizures. We present a complete explanation of the transition from inter-ictal activity to spike and wave using a combination of bifurcation theory, numerical continuation and techniques for detecting the occurrence of inflection points in systems of delay differential equations (DDEs). We demonstrate that the initial transition to oscillatory behaviour occurs as a result of a Hopf bifurcation, whereas the addition of spikes arises as a result of an inflection point of the vector field. Strikingly these findings are consistent with EEG data recorded from patients with absence seizures and we present a discussion of the clinical significance of these results, suggesting potential new techniques for detection and anticipation of seizures.  相似文献   

15.
Roles of prostaglandin synthesis in excitotoxic brain diseases   总被引:2,自引:0,他引:2  
Cyclooxygenase (COX) is a rate-limiting enzyme in prostaglandin synthesis. COX consists of two isoforms, constitutive COX-1 and inducible COX-2. We have first found that COX-2 expression in the brain is tightly regulated by neuronal activity under physiological conditions, and electroconvulsive seizure robustly induces COX-2 mRNA in the brain. Our recent in-depth studies reveal COX-2 expression is divided into two phases, early in neurons and late in non-neuronal cells, such as endothelial cells or astrocytes. In this review, we present that early synthesized COX-2 facilitates the recurrence of hippocampal seizures in rapid kindling model, and late induced COX-2 stimulates hippocampal neuron loss after kainic acid treatment. Hence, we consider the potential role of COX-2 inhibitors as a new therapeutic drug for a neuronal loss after seizure or focal cerebral ischemia. The short-term and sub-acute medication of selective COX-2 inhibitors that suppresses an elevation of prostaglandin E(2) (PGE(2)) may be an effective treatment to prevent neuronal loss after onset of neuronal excitatory diseases. This review also discusses a novel role of vascular endothelial cells in brain diseases. We found that these cells produce PGE(2) by synthesizing COX-2 and microsomal prostaglandin E synthase-1 (mPGES-1) in response to excitotoxicity and neuroinflammation. We also show a possible mechanisms of neuronal damage associated with seizure via astrocytes and endothelial cells. Further analysis of the interaction among neurons, astrocytes and endothelial cells may provide a better understanding of the processes of neuropathological disorders, as well as facilitating the development of new treatments.  相似文献   

16.
Airway obstruction at the level of the larynx causes respiratory insufficiency during experimental seizures in spontaneously breathing, anesthetized piglets (T. E. Terndrup and W. E. Fordyce, Pediatr. Res., 38: 61-66, 1995). To investigate further the neural mechanisms of this obstruction, the activities of the phrenic nerve (PH) and the recurrent laryngeal motor branches to the thyroarytenoid (TA) and posterior cricoarytenoid (PCA) muscles were analyzed in 11 anesthetized, vagotomized, paralyzed, and ventilated piglets. After a control recording period, seizures were induced by subcortical penicillin G injections. Compared with baseline conditions, nerve activities became irregular during seizures. Extraneous TA bursts during PH activation were evident in all piglets during seizures. During ictal phases of seizures, the peak integrated activities of the PH and the expiratory component of the PCA, but not TA or inspiratory PCA activities, were significantly decreased compared with interictal phases. During seizures, a significant delay in the onset of the inspiratory component of PCA activation with respect to the onset of the PH was observed. This study helps to explain respiratory impairment during cortical seizures by providing evidence of impaired timing of activation of laryngeal dilator mechanisms and coordination with those activating the diaphragm. Cyclical PH inhibition during high-intensity cortical discharges may provide a secondary mechanism producing respiratory insufficiency during seizures.  相似文献   

17.
There is a clear link between epilepsy and depression. Clinical data demonstrate a 30–35% lifetime prevalence of depression in patients with epilepsy, and patients diagnosed with depression have a three to sevenfold higher risk of developing epilepsy. Traditional epilepsy models partially replicate the clinical observations, with the demonstration of depressive traits in epileptic animals. Studies assessing pro-epileptogenic changes in models of depression, however, are more limited. Here, we examined whether a traditional rodent depression model—bilateral olfactory bulbectomy—predisposes the animals towards the development of epilepsy. Past studies have demonstrated increased neuronal excitability after bulbectomy, but continuous seizure monitoring had not been conducted. For the present study, we monitored control and bulbectomized animals by video-EEG 24/7 for approximately two weeks following the surgery to determine whether they develop spontaneous seizures. All seven bulbectomized mice exhibited seizures during the monitoring period. Seizures began about one week after surgery, and occurred in clusters with severity increasing over the monitoring period. These results suggest that olfactory bulbectomy could be a useful model of TBI-induced epilepsy, with advantages of relatively rapid seizure onset and a high number of individuals developing the disease. The model may also be useful for investigating the mechanisms underlying the bidirectional relationship between epilepsy and depression.  相似文献   

18.
Although purinergic receptor activity has lately been associated with epilepsy, little is known about the exact role of purines in epileptogenesis. We have used a rat model of temporal lobe epilepsy induced by pilocarpine to study the dynamics of purine metabolism in the hippocampus during different times of status epilepticus (SE) and the chronic phase. Concentrations of adenosine 5′-triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine in normal and epileptic rat hippocampus were determined by microdialysis in combination with high-performance liquid chromatography (HPLC). Extracellular ATP concentrations did not vary along 4 h of SE onset. However, AMP concentration was elevated during the second hour, whereas ADP and adenosine concentrations augmented during the third and fourth hour following SE. During chronic phase, extracellular ATP, ADP, AMP, and adenosine concentrations decreased, although these levels again increased significantly during spontaneous seizures. These results suggest that the increased turnover of ATP during the acute period is a compensatory mechanism able to reduce the excitatory role of ATP. Increased adenosine levels following 4 h of SE may contribute to block seizures. On the other hand, the reduction of purine levels in the hippocampus of chronic epileptic rats may result from metabolic changes and be part of the mechanisms involved in the onset of spontaneous seizures. This work provides further insights into purinergic signaling during establishment and chronic phase of epilepsy.  相似文献   

19.
Rheological behavior of living cells is timescale-dependent   总被引:2,自引:0,他引:2       下载免费PDF全文
The dynamic mechanical behavior of living cells has been proposed to result from timescale-invariant processes governed by the soft glass rheology theory derived from soft matter physics. But this theory is based on experimental measurements over timescales that are shorter than those most relevant for cell growth and function. Here we report results measured over a wider range of timescales which demonstrate that rheological behaviors of living cells are not timescale-invariant. These findings demonstrate that although soft glass rheology appears to accurately predict certain cell mechanical behaviors, it is not a unified model of cell rheology under biologically relevant conditions and thus, alternative mechanisms need to be considered.  相似文献   

20.
The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone) and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS), an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity) between coherent sources was investigated using the renormalized partial directed coherence (RPDC) method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号