首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
  1. According to the River Continuum Concept, headwater streams are richer in allochthonous (e.g. terrestrial leaves) than autochthonous (e.g. algae) sources of organic matter for consumers. However, compared to algae, leaf litter is of lower food quality, particularly ω-3 polyunsaturated fatty acids (n-3 PUFA), and would constrain the somatic growth, maintenance, and reproduction of stream invertebrates. It may be thus assumed that shredders, such as Gammarus, receive lower quality diets than grazers, e.g. Ecdyonurus, that typically feed on algae.
  2. The objective of this study was to assess the provision of dietary PUFA from leaf litter and algae to the shredder Gammarus and the grazer Ecdyonurus. Three different diets (algae, terrestrial leaves, and an algae–leaf litter mix) were supplied to these macroinvertebrates in a flume experiment for 2 weeks. To differentiate how diet sources were retained in these consumers, algae were isotopically labelled with 13C.
  3. Both consumers became enriched with 13C in all treatments, demonstrating that both assimilated algae. For Gammarus, n-3 PUFA increased, whereas n-6 PUFA stayed constant. By contrast, the n-3 PUFA content of Ecdyonurus decreased as a consequence of declining algal supply.
  4. Results from compound-specific stable isotope analysis provided evidence that the long-chain n-3 PUFA eicosapentaenoic acid (EPA) in both consumers was more enriched in 13C than the short-chain n-3 PUFA α-linolenic acid, suggesting that EPA was taken up directly from algae and not from heterotrophic biofilms on leaf litter. Both consumers depended on algae as their carbon and EPA source and retained their EPA from high-quality algae.
  相似文献   

2.
3.
Long chain n-3 PUFA docosahexaenoic acid (DHA) is important for heart and brain function. Investigations of biologically plausible mechanisms using animal models associate cardioprotection with DHA incorporation into myocardial membranes that are largely derived from supra-physiological fish oil (FO) intake. We measured the incorporation of DHA into myocardial membranes of rats from low dietary FO intake within human dietary range and quantitatively assessed the influence of dietary n-6 PUFA. With rats fed diets containing 0.16%–5% FO, equal to 0.12%–8.7% energy (%en) as eicosapentaenoic acid (EPA) and DHA (EPA+DHA), and either 1.5%en or 7.5%en n-6 PUFA (linoleic acid) for four weeks, dietary n-6:n-3 PUFA ratios ranged from 74 to 0.3. Myocardial DHA concentration increased in a log-linear fashion with a dietary threshold of 0.019%en as EPA+DHA and half maximal dietary [EPA+DHA] equal to 0.29%en (95% CI, 0.23–0.35). Dietary linoleic acid intake did not influence myocardial DHA. Myocardial membranes are sensitive to absolute dietary intake of long chain n-3 PUFA at low %en in the rat, equivalent to a human intake of one meal of fatty fish per week or less. The dietary ratio of n-6:n-3 PUFA has no influence on long chain n-3 PUFA cellular incorporation from dietary fish oil.  相似文献   

4.
5.
6.
2-arachidonoylglycerol (2-AG) is a putative endogenous ligand for cannabinoid receptors and was suggested to play an important role in both physiological and pathological events in the central nervous system (CNS) as well as in peripheral organs. The sequential hydrolysis of arachidonic acid (20:4n-6, AA)-containing phospholipids has been proposed as a major biosynthetic route of 2-AG. On the other hand, the manipulation of the dietary n-3 polyunsaturated fatty acid (PUFA) status changes the AA level in tissue phospholipids. We, therefore, conducted two separate experiments to confirm whether the dietary n-3 PUFA status influences the 2-AG level in the mouse brain. In the first experiment, we fed mice with n-3 PUFA-deficient diet, which resulted in a marked decrease in the docosahexaenoic acid (22:6n-3, DHA) levels without a change in the AA level in brain phospholipids as compared with the mice fed with an n-3 PUFA-sufficient diet. The brain 2-AG level in the n-3 PUFA-deficient group was significantly higher than in the n-3 PUFA sufficient group. In the second experiment, we found that short-term supplementation of DHA-rich fish oil reduced brain 2-AG level as compared with the supplementation with low n-3 PUFA. The decrease in the AA level and the increase in the DHA level in the major phospholipids occurred in the brains of the mice fed the fish oil diet compared with those fed the low n-3 PUFA diet. Our results indicate that the n-3 PUFA deficiency elevates and n-3 PUFA enrichment reduces the brain 2-AG level in mice, suggesting that physiological and pathological events mediated by 2-AG through cannabinoid receptor in the CNS could be modified by the manipulation of the dietary n-3 PUFA status.  相似文献   

7.
Tropical stream food webs are thought to be based primarily on terrestrial resources (leaf litter) in small forested headwater streams and algal resources in larger, wider streams. In tropical island streams, the dominant consumers are often omnivorous freshwater shrimps that consume algae, leaf litter, insects, and other shrimps. We used stable isotope analysis to examine (1) the relative importance of terrestrial and algal‐based food resources to shrimps and other consumers and determine (2) if the relative importance of these food resources changed along the stream continuum. We examined δ15N and δ13C signatures of leaves, algae, macrophytes, biofilm, insects, snails, fishes, and shrimps at three sites (300, 90, and 10 m elev.) along the Río Espíritu Santo, which drains the Caribbean National Forest, Puerto Rico. Isotope signatures of basal resources were distinct at all sites. Results of two‐source δ13C mixing models suggest that shrimps relied more on algal‐based carbon resources than terrestrially derived resources at all three sites along the continuum. This study supports other recent findings in tropical streams, demonstrating that algal‐based resources are very important to stream consumers, even in small forested headwater streams. This study also demonstrates the importance of doing assimilation‐based analysis (i.e., stable isotope or trophic basis of production) when studying food webs.  相似文献   

8.
Some terrestrial consumers may be limited by food quality, namely by contents of essential polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (20:5n−3, EPA) and docosahexaenoic acid (22:6n−3, DHA) in their food. Since EPA and DHA are mainly produced in aquatic ecosystems, for future estimating of the potential limitation by food quality in global scale, the water-land fluxes of these PUFA with the biomass of emergent aquatic insects in several biomes were calculated. The water /land area ratios for each biome were calculated by dividing the water area of each biome by its terrestrial area. Data on insect emergence from water bodies (g of dry mass m−2 year−1), were summarized and averaged for each biome. From available data, EPA and DHA contents (mg g−1dry mass), in the biomass of emergent aquatic insects were calculated first so that annual fluxes of PUFA to land area via aquatic insect emergence could be estimated for each biome. PUFA fluxes occurred between the biomes, ranging from 0.04 to 4.39 mg m−2 year−1. In this study, the aquatic PUFA supply to land area appeared to be significantly lower than estimated earlier. This suggests that terrestrial consumers may experience food quality limitations mediated by shortage of PUFA compounds.  相似文献   

9.
To date, the proximal molecular targets through which dietary n-3 polyunsaturated fatty acids (PUFA) suppress the inflammatory process have not been elucidated. Because cholesterol and sphingolipid-enriched rafts have been proposed as platforms for compartmentalizing dynamically regulated signaling assemblies at the plasma membrane, we determined the in vivo effects of fish oil and highly purified docosahexaenoic acid (DHA; 22:6n-3) on T cell microdomain lipid composition and the membrane subdomain distribution of signal-transducing molecules (protein kinase C (PKC)theta;, linker for activation of T cells, and Fas/CD95), before and after stimulation. Mice were fed diets containing 5 g/100 g corn oil (control), 4 g/100 g fish oil (contains a mixture of n-3 PUFA) plus 1 g/100 g corn oil, or 4 g/100 g corn oil plus 1 g/100 g DHA ethyl ester for 14 days. Dietary n-3 PUFA were incorporated into splenic T cell lipid raft and soluble membrane phospholipids, resulting in a 30% reduction in raft sphingomyelin content. In addition, polyclonal activation-induced colocalization of PKCtheta; with lipid rafts was reduced by n-3 PUFA feeding. With respect to PKCtheta; effector pathway signaling, both AP-1 and NF-kappaB activation, IL-2 secretion, and lymphoproliferation were inhibited by fish oil feeding. Similar results were obtained when purified DHA was fed. These data demonstrate for the first time that dietary DHA alters T cell membrane microdomain composition and suppresses the PKCtheta; signaling axis.  相似文献   

10.
Docosahexaenoic acid (DHA), a crucial nervous system n-3 PUFA, may be obtained in the diet or synthesized in vivo from dietary alpha-linolenic acid (LNA). We addressed whether DHA synthesis is regulated by the availability of dietary DHA in artificially reared rat pups, during p8 to p28 development. Over 20 days, one group of rat pups was continuously fed deuterium-labeled LNA (d5-LNA) and no other n-3 PUFA (d5-LNA diet), and a second group of rat pups was fed a d5-LNA diet with unlabeled DHA (d5-LNA + DHA diet). The rat pups were then euthanized, and the total amount of deuterium-labeled docosahexaenoic acid (d5-DHA) (synthesized DHA) as well as other n-3 fatty acids present in various body tissues, was quantified. In the d5-LNA + DHA group, the presence of dietary DHA led to a marked decrease (3- to 5-fold) in the total amount of d5-DHA that accumulated in all tissues that we examined, except in adipose. Overall, DHA accretion from d5-DHA was generally diminished by availability of dietary preformed DHA, inasmuch as this was found to be the predominant source of tissue DHA. When preformed DHA was unavailable, d5-DHA and unlabeled DHA were preferentially accreted in some tissues along with a net loss of unlabeled DHA from other organs.  相似文献   

11.
Ras proteins are critical regulators of cell function, including growth, differentiation, and apoptosis, with membrane localization of the protein being a prerequisite for malignant transformation. We have recently demonstrated that feeding fish oil, compared with corn oil, decreases colonic Ras membrane localization and reduces tumor formation in rats injected with a colon carcinogen. Because the biological activity of Ras is regulated by posttranslational lipid attachment and its interaction with stimulatory lipids, we investigated whether docosahexaenoic acid (DHA), found in fish oil, compared with linoleic acid (LA), found in corn oil, alters Ras posttranslational processing, activation, and effector protein function in young adult mouse colon cells overexpressing H-ras (YAMC-ras). We show here that the major n-3 polyunsaturated fatty acid (PUFA) constituent of fish oil, DHA, compared with LA (an n-6 PUFA), reduces Ras localization to the plasma membrane without affecting posttranslational lipidation and lowers GTP binding and downstream p42/44(ERK)-dependent signaling. In view of the central role of oncogenic Ras in the development of colon cancer, the finding that n-3 and n-6 PUFA differentially modulate Ras activation may partly explain why dietary fish oil protects against colon cancer development.  相似文献   

12.
Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A(2) (cPLA(2) -IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective calcium-independent phospholipase A(2) (iPLA(2) )-VIA expression. We hypothesized that these changes are accompanied by up-regulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA 'adequate' (31.4 wt% linoleic acid) or 'deficient' (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-(14) C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid n-3 (DPAn-3, 22:5n-3), and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid (EtnGpl). Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promotes neuroprotection and alters neurotransmission.  相似文献   

13.
14.
The purpose of this investigation was to determine whether diets supplemented with oils from three different marine sources, all of which contain high proportions of long-chain n-3 polyunsaturated fatty acids (PUFA), result in qualitatively distinct lipid and fatty acid profiles in guinea pig heart. Albino guinea pigs (14 days old) were fed standard, nonpurified guinea pig diets (NP) or NP supplemented with menhaden fish oil (MO), harp seal oil (SLO) or porbeagle shark liver oil (PLO) (10%, w/w) for 4-5 weeks. An n-6 PUFA control group was fed NP supplemented with corn oil (CO). All animals appeared healthy, with weight gains marginally lower in animals fed the marine oils. Comparison of relative organ weights indicated that only the livers responded to the diets, and that they were heavier only in the marine-oil fed guinea pigs. Heart total cholesterol levels were unaffected by supplementing NP with any of the oils, whereas all increased the triacylglycerol (TAG) content. The fatty-acid profiles of totalphospholipid (TPL), TAG and free fatty acid (FFA) fractions of heart lipids showed that feeding n-3 PUFA significantly altered the proportions of specific fatty-acid classes. For example, all marine-oil-rich diets were associated with increases in total monounsaturated fatty acids in TPL (p < 0.05), and with decreases in total saturates in TAG (p < 0.05). Predictably, the n-3 PUFA enriched regimens significantly increased the cardiac content of n-3 PUFA and decreased that of n-6 PUFA, although the extent varied among the diets. As a result, n-6/n-3 ratios were significantly lower in all myocardial lipid classes of marine-oil-fed guinea pigs. Analyses of the profiles of individual PUFA indicated that quantitatively, the fatty acids of the three marine oils were metabolized and/or incorporated into TPL, TAG and FFA in a diet-specific manner. In animals fed MO-enriched diets in which eicosapentaenoic acid (EPA) > docosahexacnoic acid (DHA), ratios of DHA /EPA in the hearts were 1.2, 2.2 and 1.5 in TPL, TAG and FFA, respectively. In SLO-fed guinea pigs in which dietary EPA DHA, ratios of DHA/EPA were 0.9, 3.4 and 2.1 in TPL, TAG and FFA, respectively. Feeding NP + PLO (DHA/EPA = 4.8), resulted in values for DHA/EPA in cardiac tissue of 2.1, 10.6 and 2.9 in TPL, TAG and FFA, respectively. In the TAG and FFA, proportions of n-3 docosapentaenoic acid (n-3 DPA) were equal to or higher than EPA in the SLO- and PLO-fed animals. The latter group exhibited the greatest difference between the DHA/n-3 DPA ratio in the diet and in cardiac TAG and FFA fractions (7, 3.4 and 3.1, respectively). Quantitative analysis indicated that 85% of the n-3 PUFA were in TPL, 7-11% were in TAG, and 2-6% were FFA. Specific patterns of distribution of EPA, DPA and DHA depended on the dietary oil. Both the qualitative and quantitative results of this study demonstrated that in guinea pigs, n-3 PUFA in different marine oils are metabolized and/or incorporated into cardiac lipids in distinct manners. In support of the concept that the diet-induced alterations reflect changes specifically in cardiomyocytes, we observed that direct supplementation of cultured guinea pig myocytes for 2-3 weeks with EPA or DHA produced changes in the PUFA profiles of their TPL that were qualitatively similar to those observed in tissue from the dietary study. The factors that regulate specific deposition of n-3 PUFA from either dietary oils or individual PUFA are not yet known, however the differences that we observed could in some manner be related to cardiac function and thus their relative potentials as health-promoting dietary fats.  相似文献   

15.
The cardiovascular consequences of eicosapentaenoic acid (EPA)- and docosahexaenoic acid (DHA)-specific intake were evaluated in vivo in a hyperinsulinemia (HI) model induced by dietary fructose intake. Wistar rats were fed a diet containing (or not for control) either EPA or DHA. The rise in blood pressure (BP), heart rate, and ECG were continuously monitored using an intra-abdominal telemetry system. The myocardial phospholipid fatty acid profile was significantly affected by DHA intake but less by EPA intake. The data indicated a reduced rise in BP in both DHA and EPA HI groups compared with controls. This result was confirmed by tail-cuff measurement after 5 wk [133.3 +/- 1.67 and 142.5 +/- 1.12 mmHg in n-3 polyunsaturated fatty acid (PUFA) and control groups, respectively], whereas n-3 PUFA did not affect BP in non-HI rats (116.3 +/- 3.33 mmHg). The heart rate was lower in the HI DHA group than in the other two dietary HI groups. Moreover, DHA induced a significantly shorter QT interval. It is concluded that the cardioactive component of fish oils is DHA through a mechanism that may involve the cardiac adrenergic system.  相似文献   

16.
17.
PY Kim  M Zhong  YS Kim  BM Sanborn  KG Allen 《PloS one》2012,7(7):e41708
Epidemiological studies and interventional clinical trials indicate that consumption of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) such as docosahexaenoic acid (DHA) lengthen gestational duration. Although the mechanisms are not well understood, prostaglandins (PG) of the 2-series are known to play a role in the initiation and progress of labor. In animal studies, modest DHA provision has been shown to reduce placental and uterine PGE(2) and PGF(2α), matrix metalloproteinase (MMP)-2 and MMP-9 expression, and placental collagenase activity. However, modulation of PG biosynthesis may not account for all the effects of LC n-3 PUFAs in labor. We investigated one potential PG-independent mechanism of LC PUFA action using cultured pregnant human myometrial smooth muscle cells. Our goal was to characterize the effect of LC PUFA treatment on oxytocin signaling, a potent uterotonic hormone involved in labor. The addition of 10 μM-100 μM DHA or arachidonic acid (AA) to the culture media for 48 h resulted in dose dependent enrichment of these fatty acids in membrane lipid. DHA and AA significantly inhibited phosphatidylinositol turnover and [Ca(2+)](i) mobilization with oxytocin stimulation compared to bovine serum albumin control and equimolar oleic acid. DHA and AA significantly reduced oxytocin receptor membrane concentration without altering binding affinity or rate of receptor internalization. These findings demonstrate a role for LC n-3 PUFAs in regulation of oxytocin signaling and provide new insight into additional mechanisms pertaining to reports of dietary fish and fish oil consumption prolonging gestation.  相似文献   

18.
Despite established anti-atherogenic action, previous reports have shown that fish oils or n-3 poly-unsaturated fatty acid (PUFA) increase plasma LDL-C in animals and humans. However, which component of n-3 PUFAs and what mechanisms contribute to this increase are unclear. We investigated the effects of the major components of n-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on plasma LDL-C in high fat diet-fed hamsters. While LDL-C increased significantly with n-3 PUFA oil and DHA, EPA had no effect on LDL-C. Interestingly, a positive correlation was found between plasma cholesterol ester transfer protein (CETP) activity and LDL-C. Only DHA increased plasma CETP activity and significantly decreased LDL receptor expression in the liver. Our data suggest that DHA, not EPA, is a major factor in the LDL-C increasing effect of n-3 PUFA oil. These differential effects on LDL-C may arise from differences in plasma CETP activity and LDL receptor expression.  相似文献   

19.
Yolk fat fatty acid (FA) concentrations, sensory quality and firmness of eggs and laying hen performance were evaluated with respect to the combined inclusion in the diet of conjugated linoleic acid (CLA), high n-3 oil sources and high-oleic sunflower oil (HOSO). Nine diets were arranged factorially, with three levels of n-3 FA supplementation (2.9, 3.7 and 4.5 g/kg) from three different sources (two fish oils highly concentrated in eicosapentanoic (EPA) or docosahexanoic acid (DHA) and one algae oil with a very high-DHA content) in diets added with fixed amounts of CLA (2.5 g/kg) and HOSO (30 g/kg). A commercial feed with no CLA, n-3 or HOSO added, and another one containing 4.5 g/kg of high-DHA fish oil but not CLA or HOSO were also formulated. An increase in n-3 FA supplementation had little effect on proportions of CLA, monounsaturated FA, saturated FA or total polyunsaturated FA in yolk fat, but increased (P<0.005) long-chain n-3 FA and decreased (P<0.001) long-chain n-6 FA. An increment of dietary n-3 FA also impaired linearly (P<0.001) egg acceptability by consumers. An increment in the proportion of DHA with respect to total n-3 FA from 0.28 to 0.96 increased yolk concentrations of DHA (P<0.001) and total n-3 FA (P<0.01), but decreased (P<0.001) concentrations of EPA and docosapentanoic acid FA. Current data indicate that addition of HOSO to diets supplemented with moderate amounts of CLA and n-3 FA allows the production of double enriched eggs while maintaining sensory quality for consumers at acceptable levels.  相似文献   

20.
Fat-1 transgenic mice endogenously convert n-6 to n-3 polyunsaturated fatty acids (PUFA). The aims of this study were to test whether a) fish oil feeding can attain similar brain n-3 PUFA levels as the fat-1 mouse, and b) fat-1 mouse brain docosahexaenoic acid (22:6n-3; DHA) levels can be potentiated by fish oil feeding. Fat-1 mice and their wildtype littermates consumed either a 10% safflower oil (SO) or a 2% fish oil and 8% safflower oil chow (FO). Brain total lipid and phospholipid fraction fatty acids were analyzed using GC-FID. Wildtype mice fed FO chow had similar brain levels of DHA as fat-1 mice fed SO chow. Fat-1 mice fed FO chow had similar brain n-3 PUFA levels as fat-1 mice fed SO chow. In conclusion, brain levels of DHA in the fat-1 mouse can be obtained by and were not further augmented with fish oil feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号