首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Oxidative damage to DNA in mammalian chromatin.   总被引:18,自引:0,他引:18  
M Dizdaroglu 《Mutation research》1992,275(3-6):331-342
Efforts have been made to characterize and measure DNA modifications produced in mammalian chromatin in vitro and in vivo by a variety of free radical-producing systems. Methodologies incorporating the technique of gas chromatography/mass spectrometry have been used for this purpose. A number of products from all four DNA bases and several DNA-protein cross-links in isolated chromatin have been identified and quantitated. Product formation has been shown to depend on the free radical-producing system and the presence or absence of oxygen. A similar pattern of DNA modifications has also been observed in chromatin of cultured mammalian cells treated with ionizing radiation or H2O2 and in chromatin of organs of animals treated with carcinogenic metal salts.  相似文献   

4.
5.
6.
In response to DNA double-strand breaks(DSBs),DNA damage repair factors are recruited to DNA lesions and form nuclear foci.However,the underlying molecular mech...  相似文献   

7.
A key host response to limit microbial spread is the induction of cell death when foreign nucleic acids are sensed within infected cells. In mouse macrophages, transfected DNA or infection with modified vaccinia virus Ankara (MVA) can trigger cell death via the absent in melanoma 2 (AIM2) inflammasome. In this article, we show that nonmyeloid human cell types lacking a functional AIM2 inflammasome still die in response to cytosolic delivery of different DNAs or infection with MVA. This cell death induced by foreign DNA is independent of caspase-8 and carries features of mitochondrial apoptosis: dependence on BAX, APAF-1, and caspase-9. Although it does not require the IFN pathway known to be triggered by infection with MVA or transfected DNA via polymerase III and retinoid acid-induced gene I-like helicases, it shows a strong dependence on components of the DNA damage signaling pathway: cytosolic delivery of DNA or infection with MVA leads to phosphorylation of p53 (serines 15 and 46) and autophosphorylation of ataxia telangiectasia mutated (ATM); depleting p53 or ATM with small interfering RNA or inhibiting the ATM/ATM-related kinase family by caffeine strongly reduces apoptosis. Taken together, our findings suggest that a pathway activating DNA damage signaling plays an important independent role in detecting intracellular foreign DNA, thereby complementing the induction of IFN and activation of the AIM2 inflammasome.  相似文献   

8.
Liu S  Tao Y  Chen X  Cao Y 《Molecular biology reports》2012,39(5):6179-6185
The dynamic interplay in polycomb group (PcG) and trithorax group (TrxG) proteins in response to DNA damage directly involves in the DNA double strand breaks (DSBs) sites and potentially function in both homologous recombination (HR) and nonhomologous end joining (NHEJ) pathways. The process includes chromatin remodeling that is a major mechanism used by cells to relax chromatin in DNA damage response (DDR) and repair. PcGs show resistance ability to the process while, some tumor suppressor genes involves in the DDR and repair by interacting with TrxGs. Understanding how the dynamic interplay in PcGs and TrxGs impacts on DDR will shed light on the mechanisms of carcinogenesis and develop a new target from anti-DDR related drugs.  相似文献   

9.
Recently, it has become apparent that mitochondrial DNA (mtDNA) damage can rapidly initiate apoptosis independent of mutations, although the mechanism involved remains unclear. To elucidate this mechanism, angiotensin II-mediated apoptosis was studied in cells that were transduced with a lentiviral vector to overexpress the DNA repair enzyme 8-oxoguanine glycosylase or were treated with inhibitors known to block angiotensin II-induced mtDNA damage. Cells exhibiting angiotensin II-induced mtDNA damage showed two phases of superoxide generation, the first derived from NAD(P)H oxidase and the second of mitochondrial origin, whereas cells prevented from experiencing mtDNA damage importantly exhibited only the first phase. Furthermore, cells with mtDNA damage demonstrated impairments in mitochondrial protein expression, cellular respiration, and complex 1 activity before the onset of the second phase of oxidation. After the second phase, the mitochondrial membrane potential collapsed, cytochrome c was released, and the cells underwent apoptosis, all of which were prevented by disrupting mtDNA damage. Collectively, these data reveal a novel mechanism of apoptosis that is initiated when mtDNA damage triggers mitochondrial superoxide generation and ultimately the activation of the mitochondrial permeability transition. This novel mechanism may play an important pathological role. angiotensin II; mitochondrial permeability transition pore; NADPH oxidase  相似文献   

10.
Cells are constantly exposed to genotoxic events that can damage DNA. To counter this, cells have evolved a series of highly conserved DNA repair pathways to maintain genomic integrity. The ATM protein kinase is a master regulator of the DNA double-strand break (DSB) repair pathway. DSBs activate ATM’s kinase activity, promoting the phosphorylation of proteins involved in both checkpoint activation and DNA repair. Recent work has revealed that two DNA damage response proteins, the Tip60 acetyltransferase and the mre11-rad50-nbs1 (MRN) complex, co-operate in the activation of ATM in response to DSBs. MRN functions to target ATM and the Tip60 acetyltransferase to DSBs. Tip60’s chromodomain then interacts with histone H3 trimethylated on lysine 9, activating Tip60’s acetyltransferase activity and stimulating the subsequent acetylation and activation of ATM’s kinase activity. These results underscore the importance of chromatin structure in regulating DNA damage signaling and emphasize how histone modifications co-ordinate DNA repair. In addition, human tumors frequently exhibit altered patterns of histone methylation. This rewriting of the histone methylation code in tumor cells may impact the efficiency of DSB repair, increasing genomic instability and contributing to the initiation and progression of cancer.  相似文献   

11.
12.
Greenberg RA 《FEBS letters》2011,585(18):2883-2890
Considerable energetic investment is devoted to altering large stretches of chromatin adjacent to DNA double strand breaks (DSBs). Immediately ensuing DSB formation, a myriad of histone modifications are elicited to create a platform for inducible and modular assembly of DNA repair protein complexes in the vicinity of the DNA lesion. This complex signaling network is critical to repair DNA damage and communicate with cellular processes that occur in cis and in trans to the genomic lesion. Failure to properly execute DNA damage inducible chromatin changes is associated with developmental abnormalities, immunodeficiency, and malignancy in humans and in genetically engineered mouse models. This review will discuss current knowledge of DNA damage responsive histone changes that occur in mammalian cells, highlighting their involvement in the maintenance of genome integrity.  相似文献   

13.
In response to DNA double-stranded breaks (DSBs) cells activate a signaling cascade known as the DNA damage response (DDR) whose main function is to promote the repair of the lesions while it delays cell cycle progression until repair is completed. Whereas most cells respond alike to an equivalent dose of DNA damage, certain degree of heterogeneity exists in the strength of the DDR that is assembled in each individual cell. This variability might be accounted for by erratic changes that aggregate into the inherent noise of biological systems. However, we have recently found that the overall degree of chromatin compaction impinges a direct constrain on the activation of the DDR, providing a simple chromatin-based model to explain the cell-to-cell variability observed in cell populations. We here provide an overview of the available data, including our own, that would be supportive of such a model and discuss how this perspective might be used to explain previous observations  相似文献   

14.
Dynamics of DNA repair and recruitment of repair factors to damaged DNA can be studied by live cell microscopy. DNA damage is usually inflicted by a laser beam illuminating a DNA-interacting photosensitizer in a small area of the nucleus. We demonstrate that a focused beam of visible low intensity light alone can inflict local DNA damage and permit studies of DNA repair, thus avoiding potential artifacts caused by exogenous photosensitizers.  相似文献   

15.
16.
17.
The nonenzymatic reaction between reducing sugars and amino groups of long-lived macromolecules results in an array of chemical modifications that may account for several physiological complications. The characteristics of the reaction are directly related to the type of the reducing sugars involved, whether aldoses or ketoses, phosphorylated or non-phosphorylated, and these in turn determine the consequences of the induced modifications. So far, most studies have been focused on the nonenzymatic reaction between glucose and proteins, while the reaction with fructose, a faster glycating agent, attracted only a minor attention. We have recently demonstrated that long-term fructose consumption induces age-related changes in collagen from skin and cortical bones faster than glucose. In the present study we provide evidence that fructose and its phosphate metabolites can modify DNA faster than glucose and its phosphate metabolites under in vitro conditions. Incubating the plasmid pBR322 with fructose and glucose phosphate metabolites induced DNA modifications and damage that were verified by gel electrophoresis and transformation capacity of the plasmid into an Escherichia coli host. The intensity of the tested sugars to modified and damage DNA after incubation for 15 days increased significantly in the following order: glucose 1-phosphate < glucose < glucose 6-phosphate < fructose 1-phosphate < fructose < fructose 6-phosphate. The data suggest that fructose should deserve more attention as a factor that may influence glycation and induce physiological complications.  相似文献   

18.
Retrovirus RNA trafficking: from chromatin to invasive genomes   总被引:3,自引:1,他引:2  
Full-length retroviral RNA has three well-established functions: it constitutes the genomic RNA that is packaged into virions and is transmitted to target cells by infection, it is the messenger RNA (mRNA) template for viral Gag and Pol protein synthesis and it serves as the pre-mRNA for the production of subgenomic spliced mRNAs that encode additional viral proteins such as Env. More recent work indicates that these full-length RNAs also play important roles in the assembly of virus particles, not only as a structural scaffold that facilitates viral core formation but also as a potential regulator of the assembly process itself. Here, we discuss how these assorted activities may be coupled with each other, paying particular attention to the importance of RNA trafficking and subcellular localization in the cytoplasm, possible points of regulation, and the role(s) played by cellular RNA-binding proteins.  相似文献   

19.
20.
R-loops, the byproduct of DNA–RNA hybridization and the displaced single-stranded DNA (ssDNA), have been identified in bacteria, yeasts, and other eukaryotic organisms. The persistent presence of R-loops contributes to defects in DNA replication and repair, gene expression, and genomic integrity. R-loops have not been detected at centromeric (CEN) chromatin in wild-type budding yeast. Here we used an hpr1∆ strain that accumulates R-loops to investigate the consequences of R-loops at CEN chromatin and chromosome segregation. We show that Hpr1 interacts with the CEN-histone H3 variant, Cse4, and prevents the accumulation of R-loops at CEN chromatin for chromosomal stability. DNA–RNA immunoprecipitation (DRIP) analysis showed an accumulation of R-loops at CEN chromatin that was reduced by overexpression of RNH1 in hpr1∆ strains. Increased levels of ssDNA, reduced levels of Cse4 and its assembly factor Scm3, and mislocalization of histone H3 at CEN chromatin were observed in hpr1∆ strains. We determined that accumulation of R-loops at CEN chromatin contributes to defects in kinetochore biorientation and chromosomal instability (CIN) and these phenotypes are suppressed by RNH1 overexpression in hpr1∆ strains. In summary, our studies provide mechanistic insights into how accumulation of R-loops at CEN contributes to defects in kinetochore integrity and CIN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号