首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Constitutive heterochromatin represents a substantial portion of the eukaryote genome, and it is mainly composed of tandemly repeated DNA sequences, such as satellite DNAs, which are also enriched by other dispersed repeated elements, including transposons. Studies on the organization, structure, composition and in situ localization of satellite DNAs have led to consistent advances in the understanding of the genome evolution of species, with a particular focus on heterochromatic domains, the diversification of heteromorphic sex chromosomes and the origin and maintenance of B chromosomes. Satellite DNAs can be chromosome specific or species specific, or they can characterize different species from a genus, family or even representatives of a given order. In some cases, the presence of these repeated elements in members of a single clade has enabled inferences of a phylogenetic nature. Genomic DNA restriction, using specific enzymes, is the most frequently used method for isolating satellite DNAs. Recent methods such as C0t1 DNA and chromosome microdissection, however, have proven to be efficient alternatives for the study of this class of DNA. Neotropical ichthyofauna is extremely rich and diverse enabling multiple approaches with regard to the differentiation and evolution of the genome. Genome components of some species and genera have been isolated, mapped and correlated with possible functions and structures of the chromosomes. The 5SHindIII‐DNA satellite DNA, which is specific to Hoplias malabaricus of the Erythrinidae family, has an exclusively centromeric location. The As51 satellite DNA, which is closely correlated with the genome diversification of some species from the genus Astyanax, has also been used to infer relationships between species. In the Prochilodontidae family, two repetitive DNA sequences were mapped on the chromosomes, and the SATH 1 satellite DNA is associated with the origin of heterochromatic B chromosomes in Prochilodus lineatus. Among species of the genus Characidium and the Parodontidae family, amplifications of satellite DNAs have demonstrated that these sequences are related to the differentiation of heteromorphic sex chromosomes. The possible elimination of satellite DNA units could explain the genome compaction that occurs among some species of Neotropical Tetraodontiformes. These topics are discussed in the present review, showing the importance of satellite DNA analysis in the differentiation and karyotype evolution of Actinopterygii.  相似文献   

2.
William S. Modi 《Chromosoma》1993,102(7):484-490
A novel satellite DNA family (called MSAT-2570) was isolated and characterized from the rodent Microtus chrotorrhinus. With a length of 2,570 bp the repeat unit is among the largest yet reported in mammals and comprises a series of short direct and inverted repeats. These repeat motifs may prevent nucleosome formation or represent an endless source of genetic variation. Restriction enzyme digestion using the two pairs of isoschizomers HpaII/MspI and MboI/Sau3AI demonstrated tissue specific differences in satellite DNA methylation that may reflect variable chromatin conformation or differences in patterns of gene expression. The sex chromosomes of M. chrotorrhinus are unusually large in size among mammals, comprising 15%–20% of the karyotype and containing large blocks of heterochromatin. In situ hybridization of the satellite DNa revealed chromosomal localization predominantly to sex chromosome heterochromatin. A survey of related rodents including three congeneric species also with giant sized sex chromosomes demonstrated that MSAT-2570 is present only in the genome of M. chrotorrhinus. However, another previously reported satellite DNA also isolated from M. chrotorrhinus has been shown to reside on sex chromosome heterochromatin in one of the other three species, indicating that these giant blocks of heterochromatin are complex in structure and comprise multiple, unrelatined satellite DNA families.  相似文献   

3.
The two closely related species Apodemus sylvaticus and Apodemus flavicollis (Muridae) differ in the distribution of their heterochromatin. Two major repetitive sequences known to occur in both species were isolated from A. flavicollis after digestion of total nuclear DNA with the restriction enzymes HindIII and EcoRI respectively and characterized in both species by filter hybridisation and in situ hybridisation to metaphase chromosomes. The EcoRI clone detects a dispersed repetitive sequence family in the genome of both species. Southern blot hybridisation with the HindIII satellite DNA probe reveals major similarities and minor differences in the two species. In situ hybridisation with the HindIII probe labels all chromosomes of A. flavicollis exclusively in the centromeric heterochromatin, whereas in A. sylvaticus several autosomes are also labelled distally. The labelling patterns correspond to the distribution of heterochromatin in the two species. It is concluded that the additional distal heterochromatin of A. sylvaticus contains similar sequences to those of the centromeric heterochromatin of both species. The distal heterochromatin in A. sylvaticus most likely evolved by transposition and amplification of centromeric satellite DNA elements, after the separation of the two species.  相似文献   

4.
Two AT-rich satellite DNAs are present in the genome of Glyptotendipes barbipes. The two satellites have densities of 1.680 g/cm3 (=21% GC) and of 1.673 g/cm3 (=13% GC) in neutral CsCl-density gradients. The main band DNA has a density of 1.691 g/cm3 (=32% GC). This value is in agreement with the 33% GC-content of G. barbipes DNA calculated from thermal denaturation (TM=83° C). — In brain DNA as well as in salivary gland DNA the two satellite sequences together comprise 12–15% of the total G. barbipes DNA. Comparisons of the density profiles of DNA extracted from polytene and non-polytene larval tissue gave no hints for underreplication of the satellite DNAs during polytenization. — The two satellite DNAs have been isolated from total DNA by Hoechst 33258-CsCl density centrifugation and then localized in the polytene salivary gland chromosomes by in situ hybridization. Both satellite sequences hybridize to all heterochromatic centromere bands of all four chromosomes of G. barbipes. Satellite I (1.673 g/cm3) hybridizes mainly with the middle of the heterochromatin, satellite II (1.680 g/cm3) hybridizes with two bands at the margin of the heterochromatin. In situ hybridization with polytene chromosomes of Chironomus thummi revealed the presence of G. barbipes satellite sequences also in the Ch. thummi genome at various locations, mainly the centromere regions.  相似文献   

5.
Sex chromosome associated satellite DNA: Evolution and conservation   总被引:9,自引:1,他引:9  
Satellites visible in female but not in male DNA were isolated from the snakesElaphe radiata (satellite IV, p = 1.708 g · cm–3) andBungarus fasciatus (BK1 minor, p=1.709 g · cm–3). The satellites cross hybridize. Hybridization of3H labelled nick translated BK minor satellite DNA with the total male and female DNA and/or chromosomes in situ of different species of snakes revealed that its sequences are conserved throughout the snake group and are mainly concentrated on the W chromosome. Snakes lacking sex chromosomes do possess related sequences but there is no sex difference and visible related satellites are absent. The following conclusions have been reached on the basis of these results. 1. The W chromosome associated satellite DNA is related to similar sequences scattered in the genome. 2. The origin and increment in the number of the W satellite DNA sequence on the W chromosome is associated with the heterochromatinization of the W. 3. Satellite sequences have become distributed along the length of the W and resulted in morphological differentiation of sex chromosomes. 4. Evolutionary conservation of W satellite DNA strongly suggests that functional constraints may have limited sequence divergence.  相似文献   

6.
Pamela Dunsmuir 《Chromosoma》1976,56(2):111-125
Two distinct satellite DNAs, amounting to 25% of the total DNA, were isolated from the nuclei of the red-necked wallaby, Macropus rufogriseus. The physical properties of native, single-stranded and reassociated molecules were studied in buoyant-density gradient centrifugation. The homogeneity of each satellite fraction was examined using melting characteristics of native and reassociated DNA, and renaturation kinetics. These data suggest that sequence heterogeneity exists in both fractions. Each satellite fraction was found by in situ hybridization to be localized in heterochromatin of interphase nuclei and in the centromeric regions of metaphase chromosomes. The chromosomal distributions of the two satellite DNAs differentiate the sex chromosomes, which have sequences of only one satellite, from the autosomes which have sequences of both satellites in the centromeric heterochromatin. Giemsa C-banding techniques also showed a differentiation of the centromeric regions of sex chromosomes from those of the autosomes.  相似文献   

7.
He-T DNA is a complex set of repeated DNA sequences with sharply defined locations in the polytene chromosomes of Drosophila melanogaster. He-T sequences are found only in the chromocenter and in the terminal (telomere) band on each chromosome arm. Both of these regions appear to be heterochromatic and He-T sequences are never detected in the euchromatic arms of the chromosomes (Young et al. 1983). In the study reported here, in situ hybridization to metaphase chromosomes was used to study the association of He-T DNA with heterochromatic regions that are under-replicated in polytene chromosomes. Although the metaphase Y chromosome appears to be uniformly heterochromatic, He-T DNA hybridization is concentrated in the pericentric region of both normal and deleted Y chromosomes. He-T DNA hybridization is also concentrated in the pericentric regions of the autosomes. Much lower levels of He-T sequences were found in pericentric regions of normal X chromosomes; however compound X chromosomes, constructed by exchanges involving Y chromosomes, had large amounts of He-T DNA, presumably residual Y sequences. The apparent co-localization of He-T sequences with satellite DNAs in pericentric heterochromatin of metaphase chromosomes contrasts with the segregation of satellite DNA to alpha heterochromatin while He-T sequences hybridize to beta heterochromatin in polytene nuclei. This comparison suggests that satellite sequences do not exist as a single block within each chromosome but have interspersed regions of other sequences, including He-T DNA. If this is so, we assume that the satellite DNA blocks must associate during polytenization, leaving the interspersed sequences looped out to form beta heterochromatin. DNA from D. melanogaster has many restriction fragments with homology to He-T sequences. Some of these fragments are found only on the Y. Two of the repeated He-T family restriction fragments are found entirely on the short arm of the Y, predominantly in the pericentric region. Under conditions of moderate stringency, a subset of He-T DNA sequences cross-hybridizes with DNA from D. simulans and D. miranda. In each species, a large fraction of the cross-hybridizing sequences is on the Y chromosome.  相似文献   

8.
Homologous in situ hybridization with tritiated 4S, 5S and 18/25S RNA from root tip meristems of Vicia faba has been used to study the pattern of distribution of DNA sequences coding for these RNAs in the diploid nuclei. 5S RNA hybridizes to two regions of the satellites of the pair of satellited chromosomes. The sites differ in the level of in situ hybridization implicating different degrees of redundancy. 18/25S RNA hybridization is concentrated to the secondary constriction of these satellite chromosomes. Both, 5S and 18/25S ribosomal RNA gene sites are located on the same pair of chromosomes, but obviously the sequences are not contiguous. An association of 5S RNA cistrons with heterochromatin is assumed. Additional RNA gene sites as well as 4S RNA gene sites are not detectable.  相似文献   

9.
DNA from Plethodon cinereus cinereus separates into two fractions on centrifugation to equilibrium in neutral CsCl. The smaller of these fractions has been described as a high-density satellite. It represents about 2% of nuclear DNA from this species, and it has a density of 1.728 g/cm3. It is cytologically localized near the centromeres of all 14 chromosomes of the haploid set. In P. c. cinereus the heavy satellite DNA constitutes about 1/4 of the DNA in centromeric heterochromatin. The nature of the rest of the DNA in centromeric heterochromatin is unknown. The number of heavy satellite sequences clustered around the centromeres in a chromosome from P. c. cinereus is roughly proportional to the size of the chromosome, as determined by in situ hybridization with satellite-complementary RNA, and autoradiography. Likewise the amount of contromeric heterochromatin, as identified by its differential stainability with Giemsa, shows a clear relationship to chromosome size. — The heavy satellite sequences identified in DNA from P. c. cinereus are also present in smaller amounts in other closely related forms of Plethodon. Plethodon cinereus polycentratus and P. richmondi have approximately half as many of these sequences per haploid genome as P. c. cinereus. P. hoffmani and P. nettingi shenandoah have about 1/3 as many of these sequences as P. c. cinereus. P. c. cinereus, P. c. polycentratus, and P. richmondii all have detectable heavy satellites with densities of 1.728 g/cm3. Among these forms, satellite size as determined by optical density measurements, and number of satellite sequences as determined from hybridization studies, vary co-ordinately. P. c. cinereus heavy satellite sequences are not detectable in P. nettingi, P. n. hubrichti, or P. dorsalis. The latter species has a heavy satellite with a density of 1.718 g/cm3, representing about 8% of the genomic DNA, and two light satellites whose properties have not been investigated. The heavy satellite of P. dorsalis is cytologically localized in the centromeric heterochromatin of this species. — These observations are discussed in relation to the function and evolution of highly repetitive DNA sequences in the centromeric heterochromatin of salamanders and other organisms.  相似文献   

10.
It is shown by isopycnic density gradient centrifugation that the DNAs of the sibling species Drosophila hydei, Drosophila neohydei and Drosophila pseudoneohydei differ regarding the numbers and proportions of satellite DNA bands. An overwhelming proportion of all repetitive nucleotide sequences of the DNA is contained in these satellite fractions. The majority of the satellites are species specific despite the close phylogenetic and cytological relationship between the three species studied. — By in situ hybridization experiments it is demonstrated that the various satellite sequences occupy different positions within the chromosomes. All types of localization patterns, from a wide spread occurrence in all chromosomes to an apparent restriction to kinetochore regions of single chromosomes, have been observed. Main band DNA, on the other hand, in its hybridization behavior reflects the DNA distribution according to the banding pattern in giant chromosomes. Generally satellite sequences seem to be included in -heterochromatic chromosome regions but no relation to the heterochromatin of the Y-chromosome was found. — Renaturation studies support various evidence that satellite sequences occur in tandemly repetitious units. At least some of this repetitious material seems to be linked to non-satellite DNA sequences or to DNA of other satellites.  相似文献   

11.
Two satellite DNAs, designated CapA and CapB, were isolated from the neotropical primate,Cebus apella. The satellites exhibit nonoverlapping distributions onC. apella chromosomes. CapA is a major component of interstitial regions of constitutive heterochromatin, a very large block of heterochromatin comprising most of the long arm of chromosome 11, and some telomeres. The CapA monomer has a length of about 1500 bp and appears recently to have undergone an amplification episode in theC. apella genome. CapA-like sequences are probably present in members of the family Cebidae (to whichC. apella belongs), but not in members of the family Callitrichidae (marmosets). CapB sequences can be detected at the centromeres of manyC. apella chromosomes, and similar sequences are present in all neotropical primates. The 342 bp CapB monomer shares 60%–64% sequence identity with several alpha satellite sequences of human origin. Because of its structure, sequence, and location, it appears that CapB is the New World primate homolog of Old World primate alpha satellite DNA.  相似文献   

12.
A (G + C)-rich density satellite DNA ( = 1.713 gm/cc) has been purified from splenic DNA of Przewalski's horse, Equus przewalskii, by successive equilibrium density gradient centrifugations. The purified satellite, which may comprise as much as 29% of the total DNA, renatures rapidly; however, analyses of native, single-stranded, and reassociated molecules by analytical ultracentrifugation and melting properties suggests that some sequence heterogeniety exists in the 1.713 gm/cc satellite. Complementary RNA (cRNA) transcribed from the satellite DNA has been utilized for in situ hybridization studies with E. przewalskii metaphase chromosomes previously identified by quinacrine-banding. These studies establish that sequences complementary to the 1.713 g/cc satellite are greatly enriched in the centromeres of some, but not all, chromosomes. The differential distribution of satellite DNA sequences over heterochromatic regions allows discrimination of three classes of heterochromatin and serves to define three types of pericentromeric regions in the karyotype of this endangered equine species. Additionally, apparent polymorphism in concentrations of satellite DNA sequences between homologs in the same karyotype is noted.  相似文献   

13.
In vitro synthesized RNAs complementary to the three satellite DNAs of Drosophila virilis have been used in a series of in situ hybridization experiments with polytene chromosomes from virilis group species. Gall and Atherton (1974) demonstrated that each of the satellites of D. virilis is comprised of many repeats of a distinct, seven base pair long, simple sequence. With few exceptions, copies of each of these simple sequences are detected in the chromocenters of all virilis group species. This is true even in species which do not possess satellite DNAs at buoyant densities corresponding to those of the satellite DNAs of D. virilis. Small quantities of the three simple sequences are also detected in euchromatic arms of several different species. The same euchromatic location may contain detectable copies of one, two, or all three simple sequence DNAs. The amounts of simple sequences at each location in the euchromatin may vary between species, between different stocks of the same species, and even between individuals of the same stock. The simple sequences located in the euchromatin appear to undergo DNA replication during formation of polytene chromosomes unlike those in heterochromatin. The locations of the euchromatic sequences are not the results of single chromosomal inversion events involving heterochromatic and euchromatic breakpoints.  相似文献   

14.
A compilation of the diploid chromosome numbers and karyotype formulae of 30 species of the genus Pimelia from Morocco, Iberian Peninsula, Balearic and Canary Islands is presented. All species show a conservation of diploid numbers and karyotype formulae 2n = 18 (8 + Xyp) except for Pimelia cribra, Pimelia elevata, and Pimelia interjecta 2n = 20 (9 + Xyp) and Pimelia sparsa sparsa 2n = 18 (8 + neoXY). The ancestral state for the genus Pimelia is suggested to be 2n = 18 (8 + Xyp) in accordance with a previously described phylogeny of these species based on mitochondrial and nuclear DNA. The derived state 2n = 20 (9 + Xyp) is present in a monophyletic clade, which originated about 2.5–5 Mya. The male meiotic formula 8 + neoXY found in P. sparsa sparsa seems to have originated by the reorganization of the Xyp pair resulting in two homomorphic sexual chromosomes and the lost of most of the heterochromatin from the former X chromosome. In all chromosomes C‐banding revealed conspicuous pericentromeric heterochromatic blocks, except in the Y chromosome in most of the species, and in situ hybridization of satellite DNA probes revealed the correspondence between heterochromatin and satellite DNA. Finally, the possible role of heterochromatin and satellite DNA is discussed in relation to the uniformity of the Tenebrionidae α‐karyology.  相似文献   

15.
Satellite DNA profiles have been characterized in the congeneric species Palorus ratzeburgii, Palorus subdepressus, Palorus genalis, and Palorus ficicola (Coleoptera, Insecta), each of which contains a single, A + T-rich satellite DNA comprising a considerable portion of the genome (20%-40%). These satellites exhibit insignificant mutual sequence similarity. Using PCR assay, it has been shown that all four sequences are present in each of the tested Palorus species: one of them is amplified into a high copy number or a major satellite, while the three others are in the form of low-copy-number repeats estimated to make up approximately 0.05% of the genome. Each of the four satellites is interspecifically high conserved concerning the sequence, monomer length, and tandem repeat organization. Major, as well as low- copy-number, satellites are colocalized in the regions of pericentromeric heterochromatin on all chromosomes of the complement. The low-copy-number satellites are dispersed between the large arrays of the major satellite over the whole heterochromatic block. Our results explain satellite DNA evolution, confirming the hypothesis that related species share a "library" of conserved satellite sequences, some of which could be amplified into a major satellite. Due to the evolutionary dynamics of satellite DNAs, the content of the "library" is variable; the elimination of some sequences parallels the creation of the new ones. Quantitative changes in satellite DNAs, induced by occasional amplification of satellite repeat from the "library", could possibly occur in the course of the speciation process, thus forming a species-specific profile of satellite DNAs.   相似文献   

16.
The sex chromosomes of Microtus agrestis are extremely large due to the accumulation of constitutive heterochromatin. We have identified two prominent satellite bands of 2.0 and 2.8 kb in length after HaeIII and HinfI restriction enzyme digestion of genomic DNA, respectively. These satellites are located on the heterochromatic long arm of the X chromosome as shown using Microtus x mouse somatic cell hybrids. By in-gel hybridization with oligonucleotide probes, the organization of the two satellites was studied: among the many copies of the simple tandem tetranucleotide repeat GATA are interspersed rare single GACA tetramers. One of the satellites also harbours related GGAT simple tandem repeats. In situ hybridizations with plasmid-carried or oligonucleotide GA C T A probes show clustered silver grains on the long and short arm of the X chromosome. Interspersion of differently organized (GATA)n elements is also demonstrable in the autosomal complement and on the Y chromosome. These results are discussed in the context of the evolution of vertebrate sex chromosomes in relation to heterochromatin and simple repetitive DNA sequences.  相似文献   

17.
A novel highly abundant satellite DNA comprising 20% of the genome has been characterized in Palorus subdepressus (Insecta, Coleoptera). The 72-bp-long monomer sequence is composed of two copies of T2A5T octanucleotide alternating with 22-nucleotide-long elements of an inverted repeat. Phylogenetic analysis revealed clustering of monomer sequence variants into two clades. Two types of variants are prevalently organized in an alternating pattern, thus showing a tendency to generate a new complex repeating unit 144 bp in length. Fluorescent in situ hybridization revealed even distribution of the satellite in the region of pericentric heterochromatin of all 20 chromosomes. P. subdepressus satellite sequence is clearly species specific, lacking similarity even with the satellite from congeneric species P. ratzeburgii. However, on the basis of similarity in predicted tertiary structure induced by intrinsic DNA curvature and in repeat length, P. subdepressus satellite can be classified into the same group with satellites from related tenebrionid species P. ratzeburgii, Tenebrio molitor, and T. obscurus. It can be reasonably inferred that repetitive sequences of different origin evolve under constraints to adopt and conserve particular features. Obtained results suggest that the higher-order structure and repeat length, but not the nucleotide sequence itself, are maintained through evolution of these species. Received: 23 April 1997 / Accepted: 11 July 1997  相似文献   

18.
The heterochromatin of the chromosomes of Drosophila gunche consists mainly of a satellite DNA composed of multiple, tandemly arranged copies of a 290 b p basic sequence. Five clones containing one or two copies of the basic unit were sequenced. As expected from CsCl density centrifugation and AT specific staining of mitotic chromosomes the sequence is AT rich. The average nucleotid variability between the cloned sequences is 11.6%. In situ hybridization on the mitotic chromosomes revealed, that this satellite DNA is present in the centromeric regions of all chromosomes but the Y. The nucleotide variability between copies of different tandem clusters seems to be higher than between members of the same cluster. The copy number of the sequence in the haploid genome was estimated to be approximately 80000. The sequence is species specific and is not present in the genome of sibling species D. subobscura and D. madeiren-sis. The evolutionary origin of the satellite DNA and its possible role in species formation is discussed.  相似文献   

19.
A. R. Lohe  A. J. Hilliker    P. A. Roberts 《Genetics》1993,134(4):1149-1174
Heterochromatin in Drosophila has unusual genetic, cytological and molecular properties. Highly repeated DNA sequences (satellites) are the principal component of heterochromatin. Using probes from cloned satellites, we have constructed a chromosome map of 10 highly repeated, simple DNA sequences in heterochromatin of mitotic chromosomes of Drosophila melanogaster. Despite extensive sequence homology among some satellites, chromosomal locations could be distinguished by stringent in situ hybridizations for each satellite. Only two of the localizations previously determined using gradient-purified bulk satellite probes are correct. Eight new satellite localizations are presented, providing a megabase-level chromosome map of one-quarter of the genome. Five major satellites each exhibit a multichromosome distribution, and five minor satellites hybridize to single sites on the Y chromosome. Satellites closely related in sequence are often located near one another on the same chromosome. About 80% of Y chromosome DNA is composed of nine simple repeated sequences, in particular (AAGAC)(n) (8 Mb), (AAGAG)(n) (7 Mb) and (AATAT)(n) (6 Mb). Similarly, more than 70% of the DNA in chromosome 2 heterochromatin is composed of five simple repeated sequences. We have also generated a high resolution map of satellites in chromosome 2 heterochromatin, using a series of translocation chromosomes whose breakpoints in heterochromatin were ordered by N-banding. Finally, staining and banding patterns of heterochromatic regions are correlated with the locations of specific repeated DNA sequences. The basis for the cytochemical heterogeneity in banding appears to depend exclusively on the different satellite DNAs present in heterochromatin.  相似文献   

20.
In higher plants, the large‐scale structure of monocentric chromosomes consists of distinguishable eu‐ and heterochromatic regions, the proportions and organization of which depend on a species' genome size. To determine whether the same interplay is maintained for holocentric chromosomes, we investigated the distribution of repetitive sequences and epigenetic marks in the woodrush Luzula elegans (3.81 Gbp/1C). Sixty‐one per cent of the L. elegans genome is characterized by highly repetitive DNA, with over 30 distinct sequence families encoding an exceptionally high diversity of satellite repeats. Over 33% of the genome is composed of the Angela clade of Ty1/copia LTR retrotransposons, which are uniformly dispersed along the chromosomes, while the satellite repeats occur as bands whose distribution appears to be biased towards the chromosome termini. No satellite showed an almost chromosome‐wide distribution pattern as expected for a holocentric chromosome and no typical centromere‐associated LTR retrotransposons were found either. No distinguishable large‐scale patterns of eu‐ and heterochromatin‐typical epigenetic marks or early/late DNA replicating domains were found along mitotic chromosomes, although super‐high‐resolution light microscopy revealed distinguishable interspersed units of various chromatin types. Our data suggest a correlation between the centromere and overall genome organization in species with holocentric chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号