首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.

Background

Despite the widely accepted health benefits of regular physical activity, only a small percentage of the population meets the current recommendations. The reasons include a wide use of technology and a lack of enjoyment while exercising. The purpose of this study was to compare the physiological, perceptual and enjoyment responses between a single bout of (I) conventional cycling and (II) interactive cycling video game at a matched workload.

Methods

A cross-sectional study in 34 healthy participants was performed. Initially, participants completed an incremental maximal cycling test to measure peak oxygen uptake and to determine ventilatory threshold. In random order, participants carried out a 30 min interactive cycling trial and a 30 min conventional cycling trial at 55% of peak power output. During the trials, oxygen uptake and energy expenditure were measured by open-circuit spirometry and heart rate was measured by radiotelemetry. RPE and enjoyment were measured every 10 minutes with Borg scale and a modified PACES scale.

Results

Interactive cycling resulted in a significantly greater %V̇O2Reserve (68.2% ± 9.2% vs 64.7% ± 8.1%), rate of energy expenditure (505.8±75.2 vs 487.4±81.2 j·kg-1·min-1), and enjoyment (63.4% ± 17 vs 42% ± 13.6), P<0.05. Participants were working at a higher intensity in relation to the individual’s ventilatory threshold during the interactive cycling video game trial (M = 11.86, SE = 3.08) than during the Conventional cycling trial (M = 7.55, SE = 3.16, t(33) = -2.69, P<0.05, r = .42). No significant differences were found for heart rate reserve (72.5 ± 10.4 vs 71.4±10.1%) and RPE (13.1 ± 1.8 vs 13.2 ± 1.7).

Conclusion

Interactive cycling games can be a valid alternative to conventional exercise as they result in a higher exercise intensity than conventional cycling and a distraction from aversive cognitive and physiological states at and above the ventilatory threshold.  相似文献   

2.

Objectives

Competitive endurance athletes commonly undertake periods of overload training in the weeks prior to major competitions. This investigation examined the effects of two seven-day high-intensity overload training regimes (HIT) on performance and physiological characteristics of competitive cyclists.

Design

The study was a matched groups, controlled trial.

Methods

Twenty-eight male cyclists (mean ± SD, Age: 33±10 years, Mass 74±7 kg, VO2 peak 4.7±0.5 L·min−1) were assigned to a control group or one of two training groups for seven consecutive days of HIT. Before and after training cyclists completed an ergometer based incremental exercise test and a 20-km time-trial. The HIT sessions were ∼120 minutes in duration and consisted of matched volumes of 5, 10 and 20 second (short) or 15, 30 and 45 second (long) maximal intensity efforts.

Results

Both the short and long HIT regimes led to significant (p<0.05) gains in time trial performance compared to the control group. Relative to the control group, the mean changes (±90% confidence limits) in time-trial power were 8.2%±3.8% and 10.4%±4.3% for the short and long HIT regimes respectively; corresponding increases in peak power in the incremental test were 5.5%±2.7% and 9.5%±2.5%. Both HIT (short vs long) interventions led to non-significant (p>0.05) increases (mean ± SD) in VO2 peak (2.3%±4.7% vs 3.5%±6.2%), lactate threshold power (3.6%±3.5% vs 2.9%±5.3%) and gross efficiency (3.2%±2.4% vs 5.1%±3.9%) with only small differences between HIT regimes.

Conclusions

Seven days of overload HIT induces substantial enhancements in time-trial performance despite non-significant increases in physiological measures with competitive cyclists.  相似文献   

3.

Introduction

The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial.

Methods

Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cell configuration in cardiomyocytes of wild-type (WT) and UCP2-/- mice.

Results

Isolated mitochondria showed a Ru360 sensitive mCa2+-uptake, which was significantly decreased in UCP2-/- (229.4±30.8 FU vs. 146.3±23.4 FU, P<0.05). Single-channel registrations confirmed a Ru360 sensitive voltage-gated Ca2+-channel in mitoplasts, i.e. mCa1, showing a reduced single-channel activity in UCP2-/- (Po,total: 0.34±0.05% vs. 0.07±0.01%, P<0.05). In UCP2-/- cardiomyocytes (Ca2+)m was decreased (0.050±0.009 FU vs. 0.021±0.005 FU, P<0.05) while (Ca2+)c was unchanged (0.032±0.002 FU vs. 0.028±0.004 FU, P>0.05) and transsarcolemmal Ca2+-influx was inhibited suggesting a possible compensatory mechanism. Additionally, we observed an inhibitory effect of ATP on mCa2+-uptake in WT mitoplasts and (Ca2+)m of cardiomyocytes leading to an increase of (Ca2+)c while no ATP dependent effect was observed in UCP2-/-.

Conclusion

Our results indicate regulatory effects of UCP2 on mCa2+-uptake. Furthermore, we propose, that previously described inhibitory effects on MCU by ATP may be mediated via UCP2 resulting in changes of excitation contraction coupling.  相似文献   

4.

Background

To assess regional systolic function and global contractile function in patients with WPW Syndrome.

Method

Eleven cases with manifest Wolff-Parkinson-White (WPW) syndrome in sinus rhythm were compared to 11 age matched controls. 2D strain analysis was performed and peak segmental radial strain (pRS) values obtained from basal ventricular parasternal short-axis images (70 ± 5 frames/sec) using a dedicated software package. Heterogeneity of radial strain pattern in six circumferential basal left ventricular segments was measured in terms of standard deviations of peak RS (SDpRS) or range (difference between maximum and minimum peak RS i.e. RangepRS). Spectral Doppler (continuous wave) measurements were acquired through the left ventricular outflow tract to determine Pre Ejection Period (PEP), Left Ventricular Ejection Time (LVET) and measures of left ventricular systolic performance.

Results

LV segmental radial strain was profoundly heterogeneous in WPW cases in contrast to fairly homogenous strain pattern in normal subjects. Wide SDpRS values 17.5 ± 8.9 vs 3.3 ± 1.4, p<0.001 and RangepRS 42.7 ± 20.8 vs.8.5 ± 3.6 , p<0.001 were observed among WPW and healthy subjects respectively. PEP (132.4 ± 14.7 vs 4.7 ± 0.5ms, p<0.001) and corrected PEP (76.1 ± 8.0 vs 2.7 ± 0.4ms, p<0.001) were significantly longer in WPW patients compared to controls. The PEP/LVET ratio was also significantly greater in WPW cohort (0.49 ± 0.04 vs. 0.28 ± 0.05, p <0.001) suggesting global systolic dysfunction.

Conclusions

Patients with manifest preexcitation (predominantly those with right-sided pathways) have regional and global contractile dysfunction resulting from aberrant impulse propagation inherent to the preexcited state.  相似文献   

5.

Purpose

To determine the effect of intravenous iron supplementation on performance, fatigue and overall mood in runners without clinical iron deficiency.

Methods

Fourteen distance runners with serum ferritin 30–100 µg·L−1 were randomly assigned to receive three blinded injections of intravenous ferric-carboxymaltose (2 ml, 100 mg, IRON) or normal saline (PLACEBO) over four weeks (weeks 0, 2, 4). Athletes performed a 3,000 m time trial and 10×400 m monitored training session on consecutive days at week 0 and again following each injection. Hemoglobin mass (Hbmass) was assessed via carbon monoxide rebreathing at weeks 0 and 6. Fatigue and mood were determined bi-weekly until week 6 via Total Fatigue Score (TFS) and Total Mood Disturbance (TMD) using the Brief Fatigue Inventory and Brunel Mood Scale. Data were analyzed using magnitude-based inferences, based on the unequal variances t-statistic and Cohen''s Effect sizes (ES).

Results

Serum ferritin increased in IRON only (Week 0: 62.8±21.9, Week 4: 128.1±46.6 µg·L−1; p = 0.002) and remained elevated two weeks after the final injection (127.0±66.3 µg·L−1, p = 0.01), without significant changes in Hbmass. Supplementation had a moderate effect on TMD of IRON (ES -0.77) with scores at week 6 lower than PLACEBO (ES -1.58, p = 0.02). Similarly, at week 6, TFS was significantly improved in IRON vs. PLACEBO (ES –1.54, p = 0.05). There were no significant improvements in 3,000 m time in either group (Week 0 vs. Week 4; Iron: 625.6±55.5 s vs. 625.4±52.7 s; PLACEBO: 624.8±47.2 s vs. 639.1±59.7 s); but IRON reduced their average time for the 10×400 m training session at week 2 (Week 0: 78.0±6.6 s, Week 2: 77.2±6.3; ES–0.20, p = 0.004).

Conclusion

During 6 weeks of training, intravenous iron supplementation improved perceived fatigue and mood of trained athletes with no clinical iron deficiency, without concurrent improvements in oxygen transport capacity or performance.  相似文献   

6.

Purpose

We aimed to characterize the cardiovascular, lactate and perceived exertion responses in relation to performance during competition in junior and senior elite synchronized swimmers.

Methods

34 high level senior (21.4±3.6 years) and junior (15.9±1.0) synchronized swimmers were monitored while performing a total of 96 routines during an official national championship in the technical and free solo, duet and team competitive programs. Heart rate was continuously monitored. Peak blood lactate was obtained from serial capillary samples during recovery. Post-exercise rate of perceived exertion was assessed using the Borg CR-10 scale. Total competition scores were obtained from official records.

Results

Data collection was complete in 54 cases. Pre-exercise mean heart rate (beats·min−1) was 129.1±13.1, and quickly increased during the exercise to attain mean peak values of 191.7±8.7, with interspersed bradycardic events down to 88.8±28.5. Mean peak blood lactate (mmol·L−1) was highest in the free solo (8.5±1.8) and free duet (7.6±1.8) and lowest at the free team (6.2±1.9). Mean RPE (0–10+) was higher in juniors (7.8±0.9) than in seniors (7.1±1.4). Multivariate analysis revealed that heart rate before and minimum heart rate during the routine predicted 26% of variability in final total score.

Conclusions

Cardiovascular responses during competition are characterized by intense anticipatory pre-activation and rapidly developing tachycardia up to maximal levels with interspersed periods of marked bradycardia during the exercise bouts performed in apnea. Moderate blood lactate accumulation suggests an adaptive metabolic response as a result of the specific training adaptations attributed to influence of the diving response in synchronized swimmers. Competitive routines are perceived as very to extremely intense, particularly in the free solo and duets. The magnitude of anticipatory heart rate activation and bradycardic response appear to be related to performance variability.  相似文献   

7.

Background

Protein turnover in skeletal muscle tissue is highly responsive to nutrient intake in healthy adults.

Objective

To provide a comprehensive overview of post-prandial protein handling, ranging from dietary protein digestion and amino acid absorption, the uptake of dietary protein derived amino acids over the leg, the post-prandial stimulation of muscle protein synthesis rates, to the incorporation of dietary protein derived amino acids in de novo muscle protein.

Design

12 healthy young males ingested 20 g intrinsically [1-13C]-phenylalanine labeled protein. In addition, primed continuous L-[ring-2H5]-phenylalanine, L-[ring-2H2]-tyrosine, and L-[1-13C]-leucine infusions were applied, with frequent collection of arterial and venous blood samples, and muscle biopsies throughout a 5 h post-prandial period. Dietary protein digestion, amino acid absorption, splanchnic amino acid extraction, amino acid uptake over the leg, and subsequent muscle protein synthesis were measured within a single in vivo human experiment.

Results

55.3±2.7% of the protein-derived phenylalanine was released in the circulation during the 5 h post-prandial period. The post-prandial rise in plasma essential amino acid availability improved leg muscle protein balance (from -291±72 to 103±66 μM·min-1·100 mL leg volume-1; P<0.001). Muscle protein synthesis rates increased significantly following protein ingestion (0.029±0.002 vs 0.044±0.004%·h-1 based upon the muscle protein bound L-[ring-2H5]-phenylalanine enrichments (P<0.01)), with substantial incorporation of dietary protein derived L-[1-13C]-phenylalanine into de novo muscle protein (from 0 to 0.0201±0.0025 MPE).

Conclusion

Ingestion of a single meal-like amount of protein allows ~55% of the protein derived amino acids to become available in the circulation, thereby improving whole-body and leg protein balance. About 20% of the dietary protein derived amino acids released in the circulation are taken up in skeletal muscle tissue following protein ingestion, thereby stimulating muscle protein synthesis rates and providing precursors for de novo muscle protein synthesis.

Trial Registration

trialregister.nl 3638  相似文献   

8.

Background

Since hypohydration commonly occurs in sports, studies on anaerobic exercise performance under this condition have been extensively carried out. When describing anaerobic performance, authors usually refer to a drop in anaerobic performance as fatigue index (FI) which is conventionally calculated using peak and low power data points. Meanwhile, another possible method in explaining anaerobic fatigue is using the rate constant which is derived from the exponential decline of power output known as fatigue rate (FR). Few studies have demonstrated that there was no change in anaerobic performance under mild hypohydrations.

Purpose

This study aimed to compare the kinetics of power output using FI and FR of an anaerobic performance (Wingate test) under 2, 3 and 4% state of hypohydrations.

Method

Thirty two collegiate cyclists (age  = 22±2 years; body weight  = 71.45±3.43 kg; height  = 173.23±0.04 cm) were matched using their baseline anaerobic peak power (APP) then randomly divided into 4 groups of EU (euhydrated), 2H, 3H and 4H respectively.

Results

As expected the, FI, APP, anaerobic lower power (ALP) and rating of perceived exertion (RPE) did not show significant differences between and within the groups. However, the FR in 3H (0.018±0.005s−1) and 4H (0.019±0.010s−1) were significantly lower than EU (0.033±0.012s−1). Post-test FR also showed significant reduction in 3H and 4H compared to their pre-test values (p<0.05).

Conclusion

Despite the lack of changes in APP and RPE, subjects in 3H and 4H showed evidence of lower reduction of power output over time. The findings support earlier reports which showed no change in anaerobic performance under mild hypohydrations. The relatively lower FR suggests higher drive in maintaining power output under hypohydrations of 3 and 4% body weight.  相似文献   

9.

Background

Protein supplementation has been shown to reduce the increases in intrahepatic triglyceride (IHTG) content induced by acute hypercaloric high-fat and high-fructose diets in humans.

Objective

To assess the effect of a 12-wk iso-energetic high protein-low carbohydrate (HPLC) diet compared with an iso-energetic high carbohydrate-low protein (HCLP) diet on IHTG content in healthy non-obese subjects, at a constant body weight.

Design

Seven men and nine women [mean ± SD age: 24±5 y; BMI: 22.9±2.1 kg/m2] were randomly allocated to a HPLC [30/35/35% of energy (En%) from protein/carbohydrate/fat] or a HCLP (5/60/35 En%) diet by stratification on sex, age and BMI. Dietary guidelines were prescribed based on individual daily energy requirements. IHTG content was measured by 1H-magnetic resonance spectroscopy before and after the dietary intervention.

Results

IHTG content changed in different directions with the HPLC (CH2H2O: 0.23±0.17 to 0.20±0.10; IHTG%: 0.25±0.20% to 0.22±0.11%) compared with the HCLP diet (CH2H2O: 0.34±0.20 vs. 0.38±0.21; IHTG%: 0.38±0.22% vs. 0.43±0.24%), which resulted in a lower IHTG content in the HPLC compared with the HCLP diet group after 12 weeks, which almost reached statistical significance (P = 0.055).

Conclusions

A HPLC vs. a HCLP diet has the potential to preserve vs. enlarge IHTG content in healthy non-obese subjects at a constant body weight.

Trial Registration

Clinicaltrials.gov NCT01551238  相似文献   

10.
The aim of the present study was to evaluate the effects of two different formats of small-sided games (SSGs; 2 vs. 2 and 3 vs. 3) on physiological parameters in youth volleyball players. Twelve youth volleyball players (17.2 ± 7.44 years, 1.89 ± 0.6 m, 72.83 ± 8.57 kg) completed three different games formats (regular game (RG): 6 vs. 6, SSG3: 3 vs. 3 and SSG2: 2 vs. 2). associated with two pitch dimensions (i.e., 2 vs. 2 and 3 vs. 3 on 18 × 4.5 m; 6 vs. 6 on 18 × 9 m). Each player performed 4 × 5 min SSG with a recovery period of 1 min between bouts. All players were members of the same youth team and played in a professional league. They had at least 6 years of volleyball training and no current injuries. This study was carried out during the competitive period. Heart rate (HR), blood lactate ([La]), and rating of perceived exertion (RPE) were measured. Compared to RG, physiological (i.e., HR and [La]) and RPE responses were significantly higher during SSG3 and SSG2 (all p < 0.05; ƞp2 = 0.77, ƞp2 = 0.65, ƞp2 = 0.30, respectively). Moreover, HR and RPE were significantly higher in SSG2 compared to SSG3. In contrast, no significant differences were observed in [La] between SSG2 and SSG3. These results suggest that the number of players influences the exercise intensity in small-sided volleyball games in youth players. Therefore, coaches could benefit from incorporating SSGs to manipulate the exercise intensity in youth volleyball players.  相似文献   

11.

Objectivs

Cytokine-dependent activation of fibroblasts to myofibroblasts, a key event in fibrosis, is accompanied by phenotypic changes with increased secretory and contractile properties dependent on increased energy utilization, yet changes in the energetic profile of these cells are not fully described. We hypothesize that the TGF-β1-mediated transformation of myofibroblasts is associated with an increase in mitochondrial content and function when compared to naive fibroblasts.

Methods

Cultured NIH/3T3 mouse fibroblasts treated with TGF-β1, a profibrotic cytokine, or vehicle were assessed for transformation to myofibroblasts (appearance of α-smooth muscle actin [α-SMA] stress fibers) and associated changes in mitochondrial content and functions using laser confocal microscopy, Seahorse respirometry, multi-well plate reader and biochemical protocols. Expression of mitochondrial-specific proteins was determined using western blotting, and the mitochondrial DNA quantified using Mitochondrial DNA isolation kit.

Results

Treatment with TGF-β1 (5 ng/mL) induced transformation of naive fibroblasts into myofibroblasts with a threefold increase in the expression of α-SMA (6.85 ± 0.27 RU) compared to cells not treated with TGF-β1 (2.52 ± 0.11 RU). TGF-β1 exposure increased the number of mitochondria in the cells, as monitored by membrane potential sensitive dye tetramethylrhodamine, and expression of mitochondria-specific proteins; voltage-dependent anion channels (0.54 ± 0.05 vs. 0.23 ± 0.05 RU) and adenine nucleotide transporter (0.61 ± 0.11 vs. 0.22 ± 0.05 RU), as well as mitochondrial DNA content (530 ± 12 μg DNA/106 cells vs. 307 ± 9 μg DNA/106 cells in control). TGF-β1 treatment was associated with an increase in mitochondrial function with a twofold increase in baseline oxygen consumption rate (2.25 ± 0.03 vs. 1.13 ± 0.1 nmol O2/min/106 cells) and FCCP-induced mitochondrial respiration (2.87 ± 0.03 vs. 1.46 ± 0.15 nmol O2/min/106 cells).

Conclusions

TGF-β1 induced differentiation of fibroblasts is accompanied by energetic remodeling of myofibroblasts with an increase in mitochondrial respiration and mitochondrial content.  相似文献   

12.

Background

Assessment of ventricular dyssynchrony in patients with heart failure is used for selecting candidates for cardiac resynchronization therapy (CRT). The patterns of regional distribution of dyssynchrony in a population with LBBB with and without heart failure have not been well delineated. This aspect forms the object of the study.

Methods

Tissue Doppler Imaging (TDI) data of consecutive patients with heart failure and LBBB (Group A) was compared with those with LBBB and normal LV function (Group B). All patients had standard 2D-echocardigraphic examination and TDI. Tissue velocity curves obtained by placing sample volumes in opposing basal and mid segments of septal, lateral, inferior, anterior and posterior walls were analyzed. Inter ventricular dyssynchrony (IVD) was assessed by the difference between aortic and pulmonary pre ejection intervals. LV dyssynchrony (LVD) was assessed by the difference in times to peak velocity. A delay of ≥ 40 msec was considered significant for presence of IVD and LVD.

Results

There were 103 patients in Group A and 25 in Group B. The mean QRS duration and PR intervals respectively were 146 ± 25 vs. 152±20 msec and 182± 47 vs. 165±36 msec. (p=NS) LVEF in the 2 groups were (32 ± 6 % vs. 61± 11%; p< 0.01). Prevalence of dyssynchrony in the HF group compared to Group B was 72% vs. 16%, (P< 0.01). Lateral wall dyssynchrony in the 2 groups was 37% vs. 0% (p< 0.01) while septal dyssynchrony was 16% vs. 16% (p- NS).

Conclusions

72% of heart failure patients with LBBB have documented dyssynchrony on TDI, which has a heterogeneous regional distribution. Dyssynchrony may be seen in LBBB and normal hearts but it is does not involve the lateral wall. Septal dyssynchrony in heart failure patients may not have the same significance as lateral wall delay.  相似文献   

13.

Introduction

Risk factors for life-threatening cardiovascular events were evaluated in an experimental model of epilepsy, the Wistar Audiogenic Rat (WAR) strain.

Methods

We used long-term ECG recordings in conscious, one year old, WAR and Wistar control counterparts to evaluate spontaneous arrhythmias and heart rate variability, a tool to assess autonomic cardiac control. Ventricular function was also evaluated using the pressure-volume conductance system in anesthetized rats.

Results

Basal RR interval (RRi) was similar between WAR and Wistar rats (188±5 vs 199±6 ms). RRi variability strongly suggests that WAR present an autonomic imbalance with sympathetic overactivity, which is an isolated risk factor for cardiovascular events. Anesthetized WAR showed lower arterial pressure (92±3 vs 115±5 mmHg) and exhibited indices of systolic dysfunction, such as higher ventricle end-diastolic pressure (9.2±0.6 vs 5.6±1 mmHg) and volume (137±9 vs 68±9 μL) as well as lower rate of increase in ventricular pressure (5266±602 vs 7320±538 mmHg.s-1). Indices of diastolic cardiac function, such as lower rate of decrease in ventricular pressure (-5014±780 vs -7766±998 mmHg.s-1) and a higher slope of the linear relationship between end-diastolic pressure and volume (0.078±0.011 vs 0.036±0.011 mmHg.μL), were also found in WAR as compared to Wistar control rats. Moreover, Wistar rats had 3 to 6 ventricular ectopic beats, whereas WAR showed 15 to 30 ectopic beats out of the 20,000 beats analyzed in each rat.

Conclusions

The autonomic imbalance observed previously at younger age is also present in aged WAR and, additionally, a cardiac dysfunction was also observed in the rats. These findings make this experimental model of epilepsy a valuable tool to study risk factors for cardiovascular events in epilepsy.  相似文献   

14.

Objective

To study the mechanism of the no-reflow phenomenon using coronary angiography (CAG) and intravascular ultrasound (IVUS).

Methods

A total of 120 patients with acute myocardial infarction (AMI) who successfully underwent indwelling intracoronary stent placement by percutaneous coronary intervention (PCI). All patients underwent pre- and post-PCI CAG and pre-IVUS. No-reflow was defined as post-PCI thrombolysis in myocardial infarction (TIMI) grade 0, 1, or 2 flow in the absence of mechanical obstruction. Normal reflow was defined as TIMI grade 3 flow. The pre-operation reference vascular area, minimal luminal cross-sectional area, plaque cross-sectional area, lesion length, plaque volume and plaque traits were measured by IVUS.

Results

The no-reflow group was observed in 14 cases (11.6%) and normal blood-flow group in 106 cases (89.4%) based on CAG results. There was no statistically significant difference in the patients’ medical history, reference vascular area (no-flow vs. normal-flow; 15.5 ± 3.2 vs. 16.2 ± 3.3, p> 0.05) and lesion length (21.9 ± 5.1 vs. 19.5 ± 4.8, p> 0.05) between the two groups. No-reflow patients had a longer symptom onset to reperfusion time compared to normal blood-flow group [(6.6 ± 3.1) h vs (4.3 ± 2.7) h; p< 0.05] and higher incidence of TIMI flow grade< 3 (71.4% vs 49.0%, p< 0.05). By IVUS examination, the no-reflow group had a significantly increased coronary plaque area and plaque volume compared to normal blood-flow group [(13.7 ± 3.0) mm2 vs (10.2 ± 2.9) mm2; (285.4 ± 99.8) mm3 vs (189.7 ± 86.4) mm3; p< 0.01]. The presence of IVUS-detected soft plaque (57.1% vs. 24.0%, p< 0.01), eccentric plaque (64.2% vs. 33.7%, p< 0.05), plaque rupture (50.0% vs. 21.2%, p< 0.01), and thrombosis (42.8% vs. 15.3%) were significantly more common in no-reflow group.

Conclusion

There was no obvious relationship between the coronary risk factors and no-reflow phenomenon. The symptom onset to reperfusion time, TIMI flow grade before stent deployment, plaque area, soft plaques, eccentric plaques, plaque rupture and thrombosis may be risk factors for the no-reflow phenomenon after PCI.  相似文献   

15.

Purpose

Aiming to gain a detailed insight into the physiological mechanisms involved under extreme conditions, a group of experienced ultra-marathon runners, performing the mountain Tor des Géants® ultra-marathon: 330 km trail-run in Valle d’Aosta, 24000 m of positive and negative elevation changes, was monitored. ROS production rate, antioxidant capacity, oxidative damage and inflammation markers were assessed, adopting micro-invasive analytic techniques.

Methods

Forty-six male athletes (45.04±8.75 yr, 72.6±8.4 kg, 1.76±0.05 m) were tested. Capillary blood and urine were collected before (Pre-), in the middle (Middle-) and immediately after (Post-) Race. Samples were analyzed for: Reactive Oxygen Species (ROS) production by Electron Paramagnetic Resonance; Antioxidant Capacity by Electrochemistry; oxidative damage (8-hydroxy-2-deoxy Guanosine: 8-OH-dG; 8-isoprostane: 8-isoPGF2α) and nitric oxide metabolites by enzymatic assays; inflammatory biomarkers (plasma and urine interleukin-6: IL-6-P and IL-6-U) by enzyme-linked immunosorbent assays (ELISA); Creatinine and Neopterin by HPLC, hematologic (lactate, glucose and hematocrit) and urine parameters by standard analyses.

Results

Twenty-five athletes finished the race, while twenty-one dropped out of it. A significant increase (Post-Race vs Pre) of the ROS production rate (2.20±0.27 vs 1.65±0.22 μmol.min-1), oxidative damage biomarkers (8-OH-dG: 6.32±2.38 vs 4.16±1.25 ng.mg-1 Creatinine and 8-isoPGF2α: 1404.0±518.30 vs 822.51±448.91 pg.mg-1Creatinine), inflammatory state (IL-6-P: 66.42±36.92 vs 1.29±0.54 pg.mL-1 and IL-6-U: 1.33±0.56 vs 0.71±0.17 pg.mL1) and lactate production (+190%), associated with a decrease of both antioxidant capacity (-7%) and renal function (i.e. Creatinine level +76%) was found.

Conclusions

The used micro-invasive analytic methods allowed us to perform most of them before, during and immediately after the race directly in the field, by passing the need of storing and transporting samples for further analysis. Considered altogether the investigated variables showed up that exhaustive and prolonged exercise not only promotes the generation of ROS but also induces oxidative stress, transient renal impairment and inflammation.  相似文献   

16.

Purpose

To describe training variations across the annual cycle in Olympic and World Champion endurance athletes, and determine whether these athletes used tapering strategies in line with recommendations in the literature.

Methods

Eleven elite XC skiers and biathletes (4 male; 28±1 yr, 85±5 mL. min−1. kg−1 , 7 female, 25±4 yr, 73±3 mL. min−1. kg−1 ) reported one year of day-to-day training leading up to the most successful competition of their career. Training data were divided into periodization and peaking phases and distributed into training forms, intensity zones and endurance activity forms.

Results

Athletes trained ∼800 h/500 sessions.year−1, including ∼500 h. year−1 of sport-specific training. Ninety-four percent of all training was executed as aerobic endurance training. Of this, ∼90% was low intensity training (LIT, below the first lactate threshold) and 10% high intensity training (HIT, above the first lactate threshold) by time. Categorically, 23% of training sessions were characterized as HIT with primary portions executed at or above the first lactate turn point. Training volume and specificity distribution conformed to a traditional periodization model, but absolute volume of HIT remained stable across phases. However, HIT training patterns tended to become more polarized in the competition phase. Training volume, frequency and intensity remained unchanged from pre-peaking to peaking period, but there was a 32±15% (P<.01) volume reduction from the preparation period to peaking phase.

Conclusions

The annual training data for these Olympic and World champion XC skiers and biathletes conforms to previously reported training patterns of elite endurance athletes. During the competition phase, training became more sport-specific, with 92% performed as XC skiing. However, they did not follow suggested tapering practice derived from short-term experimental studies. Only three out of 11 athletes took a rest day during the final 5 days prior to their most successful competition.  相似文献   

17.

Background

Adenosine is a powerful trigger for ischemic preconditioning (IPC). Myocardial ischemia induces intracellular and extracellular ATP degradation to adenosine, which then activates adenosine receptors and elicits cardioprotection. Conventionally extracellular adenosine formation by ecto-5’-nucleotidase (CD73) during ischemia was thought to be negligible compared to the massive intracellular production, but controversial reports in the past demand further evaluation. In this study we evaluated the relevance of ecto-5’-nucleotidase (CD73) for infarct size reduction by ischemic preconditioning in in vitro and in vivo mouse models of myocardial infarction, comparing CD73-/- and wild type (WT) mice.

Methods and Results

3x5 minutes of IPC induced equal cardioprotection in isolated saline perfused hearts of wild type (WT) and CD73-/- mice, reducing control infarct sizes after 20 minutes of ischemia and 90 minutes of reperfusion from 46 ± 6.3% (WT) and 56.1 ± 7.6% (CD73-/-) to 26.8 ± 4.7% (WT) and 25.6 ± 4.7% (CD73-/-). Coronary venous adenosine levels measured after IPC stimuli by high-pressure liquid chromatography showed no differences between WT and CD73-/- hearts. Pharmacological preconditioning of WT hearts with adenosine, given at the measured venous concentration, was evenly cardioprotective as conventional IPC. In vivo, 4x5 minutes of IPC reduced control infarct sizes of 45.3 ± 8.9% (WT) and 40.5 ± 8% (CD73-/-) to 26.3 ± 8% (WT) and 22.6 ± 6.6% (CD73-/-) respectively, eliciting again equal cardioprotection. The extent of IPC-induced cardioprotection in male and female mice was identical.

Conclusion

The infarct size limiting effects of IPC in the mouse heart in vitro and in vivo are not significantly affected by genetic inactivation of CD73. The ecto-5’-nucleotidase derived extracellular formation of adenosine does not contribute substantially to adenosine’s well known cardioprotective effect in early phase ischemic preconditioning.  相似文献   

18.

Background

The cardiovascular impact of cocaine use in otherwise healthy individuals who consider themselves ‘social’ users is not well established.

Methods/Results

Twenty regular cocaine users and 20 control subjects were recruited by word-of-mouth. Cardiovascular magnetic resonance was performed to assess cardiac and vascular structure and function. Cocaine users had higher systolic blood pressure compared to non-users (134±11 vs 126±11 mmHg, p = 0.036), a finding independent of age, body surface area, smoking and alcohol consumption. Cocaine use was associated with increased arterial stiffness - reflected by reduced aortic compliance (1.3±0.2 vs 1.7±0.5 cm2×10−2.mmHg−1, p = 0.004), decreased distensibility (3.8±0.9 vs 5.1±1.4 mmHg−1.10−3, p = 0.001), increased stiffness index (2.6±0.6 vs 2.1±0.6, p = 0.005), and higher pulse wave velocity (5.1±0.6 vs 4.4±0.6 m.s−1, p = 0.001). This change in aortic stiffness was independent of vessel wall thickness. Left ventricular mass was 18% higher in cocaine users (124±25 vs 105±16 g, p = 0.01), a finding that was independent of body surface area, and left atrial diameter was larger in the user group than controls (3.8±0.6 vs 3.5±0.3 cm, p = 0.04). The increased left ventricular mass, systolic blood pressure and vascular stiffness measures were all associated with duration and/or frequency of cocaine use. No late gadolinium enhancement or segmental wall motion abnormalities were seen in any of the subjects.

Conclusions

Compared with the non-user control cohort, cocaine users had increased aortic stiffness and systolic blood pressure, associated with greater left ventricular mass. These measures are all well known risk factors for premature cardiovascular events, highlighting the dangers of cocaine use, even in a ‘social’ setting, and have important public health implications.  相似文献   

19.

OBJECTIVES:

The objective of this study is to determine the inheritance pattern of type-2 diabetes and make stratification for the general population risk.

MATERIALS AND METHODS:

A questionnaire was developed for o btaining the family history. Analysis of the data was carried out by using student and Chi-square tests and for stratification; the guidelines of Scheuner et al. were followed.

RESULTS:

The pattern of inheritance is the male sex specific (χ² =13.44). The mean age of onset of diabetes in parents was 58.61 ± 2.94 and in offspring 46.75 ± 2.54. In all 47.22 ± 11.53% families were found in high risk and 31.94 ± 10.77% in the moderate risk category. In female diabetics, the onset was in the age range of 41-60 years.

CONCLUSION:

We found a high-risk of diabetes and familial clustering in successive generations of Brahmins with prominent male sex specificity. In females onset of diabetes was coinciding with the period around menopause.  相似文献   

20.

Background

Insulin-resistance is commonly found in adrenal incidentaloma (AI) patients. However, little is known about beta-cell secretion in AI, because comparisons are difficult, since beta–cell-function varies with altered insulin-sensitivity.

Objectives

To retrospectively analyze beta–cell function in non-diabetic AI, compared to healthy controls (CON).

Methods

AI (n=217, 34%males, 57±1years, body-mass-index:27.7±0.3kg/m2) and CON [n=25, 32%males, 56±1years, 26.7±0.8kg/m2] with comparable anthropometry (p≥0.31) underwent oral-glucose-tolerance-tests (OGTTs) with glucose, insulin, and C–peptide measurements. 1mg-dexamethasone-suppression-tests were performed in AI. AI were divided according to post–dexamethasone-suppression–test cortisol-thresholds of 1.8 and 5µg/dL into 3subgroups: pDexa<1.8µg/dL, pDexa1.8-5µg/dL and pDexa>5µg/dL. Using mathematical modeling, whole-body insulin-sensitivity [Clamp-like-Index (CLIX)], insulinogenic Index, Disposition Index, Adaptation Index, and hepatic insulin extraction were calculated.

Results

CLIX was lower in AI combined (4.9±0.2mg·kg-1·min-1), pDexa<1.8µg/dL (4.9±0.3) and pDexa1.8-5µg/dL (4.7±0.3, p<0.04 vs.CON:6.7±0.4). Insulinogenic and Disposition Indexes were 35%–97% higher in AI and each subgroup (p<0.008 vs.CON), whereas C–peptide–derived Adaptation Index, compensating for insulin-resistance, was comparable between AI, subgroups, and CON. Mathematical estimation of insulin–derived (insulinogenic and Disposition) Indexes from associations to insulin-sensitivity in CON revealed that AI-subgroups had ~19%-32% higher insulin-secretion than expectable. These insulin-secretion-index differences negatively (r=-0.45, p<0.001) correlated with hepatic insulin extraction, which was 13-16% lower in AI and subgroups (p<0.003 vs.CON).

Conclusions

AI-patients show insulin-resistance, but adequately adapted insulin secretion with higher insulin concentrations during an OGTT, because of decreased hepatic insulin extraction; this finding affects all AI-patients, regardless of dexamethasone-suppression-test outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号