首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we investigated the genetic variants, including SNPs and indels (short insertions or deletions, less than 50 bp in length), in the genomes and genetic structures of five pig populations (in the northern Taihu Lake region, Jiangsu Province) using the genotyping by genome reducing and sequencing (GGRS) approach. A total of 581 million good reads with an average depth of 11× and an average coverage of 2.16% were used to call variants. In general, 202 106 SNPs and 34 415 indels were obtained, of which 2690 SNPs and 224 indels were capable of inducing protein‐coding changes. The genes containing these variants were extracted for functional annotation. The results of gene enrichment analysis revealed that the SNPs under investigation may be associated with reproduction, disease resistance, meat quality and adipose tissue traits, whereas the indels were associated mainly with adipose tissue and disease. Analysis of the genetic structure showed that each population displayed comparable, large differentiations from the others, indicating their uniqueness. In conclusion, the results of our study provide the first genomic overview of the genetic variants and population structures of five Chinese indigenous pig populations.  相似文献   

2.

Background

Several genomes have now been sequenced, with millions of genetic variants annotated. While significant progress has been made in mapping single nucleotide polymorphisms (SNPs) and small (<10 bp) insertion/deletions (indels), the annotation of larger structural variants has been less comprehensive. It is still unclear to what extent a typical genome differs from the reference assembly, and the analysis of the genomes sequenced to date have shown varying results for copy number variation (CNV) and inversions.

Results

We have combined computational re-analysis of existing whole genome sequence data with novel microarray-based analysis, and detect 12,178 structural variants covering 40.6 Mb that were not reported in the initial sequencing of the first published personal genome. We estimate a total non-SNP variation content of 48.8 Mb in a single genome. Our results indicate that this genome differs from the consensus reference sequence by approximately 1.2% when considering indels/CNVs, 0.1% by SNPs and approximately 0.3% by inversions. The structural variants impact 4,867 genes, and >24% of structural variants would not be imputed by SNP-association.

Conclusions

Our results indicate that a large number of structural variants have been unreported in the individual genomes published to date. This significant extent and complexity of structural variants, as well as the growing recognition of their medical relevance, necessitate they be actively studied in health-related analyses of personal genomes. The new catalogue of structural variants generated for this genome provides a crucial resource for future comparison studies.  相似文献   

3.
Characterisation of microsporidian species and differentiation among genetic variants of the same species has typically relied on ribosomal RNA (rRNA) gene sequences. We characterised the entire rRNA gene of a microsporidium from 11 isolates representing eight different European bumblebee (Bombus) species. We demonstrate that the microsporidium Nosema bombi infected all hosts that originated from a wide geographic area. A total of 16 variable sites (all single nucleotid polymorphisms (SNPs)) was detected in the small subunit (SSU) rRNA gene and 42 (39 SNPs and 3 indels) in the large subunit (LSU) rRNA sequence. Direct sequencing of PCR-amplified DNA products of the internal transcribed spacer (ITS) region revealed identical sequences in all isolates. In contrast, ITS fragment length determined by PAGE and sequencing of cloned amplicons gave better resolution of sequences and revealed multiple SNPs across isolates and two fragment sizes in each isolate (six short and seven long amplicon variants). Genetic variants were not unique to individual host species. Moreover, two or more sequence variants were obtained from individual bumblebee hosts, suggesting the existence of multiple, variable copies of rRNA in the same microsporidium, and contrary to that expected for a class of multi-gene family under concerted evolution theory. Our data on within-genome rRNA variability call into question the usefulness of rRNA sequences to characterise intraspecific genetic variants in the Microsporidia and other groups of unicellular organisms.  相似文献   

4.
In the present study, we describe the deep sequencing and structural analysis of the Holstein breed bull genome. Our aim was to receive a high-quality Holstein bull genome reference sequence and to describe different types of variations in its genome compared to Hereford breed as a reference. We generated four mate-paired libraries and one fragment library from 30 μg of genomic DNA. Colour space fasta were mapped and paired to the reference cow (Bos taurus) genome assembly from Oct. 2011 (Baylor 4.6.1/bosTau7). Initial sequencing resulted in the 4,864,054,296 of 50-bp reads. Average mapping efficiency was 71.7 % and altogether 3,494,534,136 reads and 157,928,163,086 bp were successfully mapped, resulting in 60 × coverage. This is the highest coverage for bovine genome published so far. Tertiary analysis found 6,362,988 SNPs in the bull’s genome, 4,045,889 heterozygous and 2,317,099 homozygous variants. Annotation revealed that 4,330,337 of all discovered SNPs were annotated in the dbSNP database (build 137) and therefore 2,032,651 SNPs were novel. Large indel variations accounted for the 245,947,845 bp of the variation in entire genome and their number was 312,879. We also found that small indels (number was 633,310) accounted for the total variation of 2,542,552 nucleotides in the genome. Only 106,768 small indels were listed in the dbSNP. Finally, we identified 2,758 inversions in the genome of the bull covering in total 23,099,054 bp of genome’s variation. The largest inversion was 87,440 bp in size. In conclusion, the present study discovered different types of novel variants in bull’s genome after high-coverage sequencing. Better knowledge of the functions of these variations is needed.  相似文献   

5.
Whole genome sequencing studies are essential to obtain a comprehensive understanding of the vast pattern of human genomic variations. Here we report the results of a high-coverage whole genome sequencing study for 44 unrelated healthy Caucasian adults, each sequenced to over 50-fold coverage (averaging 65.8×). We identified approximately 11 million single nucleotide polymorphisms (SNPs), 2.8 million short insertions and deletions, and over 500,000 block substitutions. We showed that, although previous studies, including the 1000 Genomes Project Phase 1 study, have catalogued the vast majority of common SNPs, many of the low-frequency and rare variants remain undiscovered. For instance, approximately 1.4 million SNPs and 1.3 million short indels that we found were novel to both the dbSNP and the 1000 Genomes Project Phase 1 data sets, and the majority of which (∼96%) have a minor allele frequency less than 5%. On average, each individual genome carried ∼3.3 million SNPs and ∼492,000 indels/block substitutions, including approximately 179 variants that were predicted to cause loss of function of the gene products. Moreover, each individual genome carried an average of 44 such loss-of-function variants in a homozygous state, which would completely “knock out” the corresponding genes. Across all the 44 genomes, a total of 182 genes were “knocked-out” in at least one individual genome, among which 46 genes were “knocked out” in over 30% of our samples, suggesting that a number of genes are commonly “knocked-out” in general populations. Gene ontology analysis suggested that these commonly “knocked-out” genes are enriched in biological process related to antigen processing and immune response. Our results contribute towards a comprehensive characterization of human genomic variation, especially for less-common and rare variants, and provide an invaluable resource for future genetic studies of human variation and diseases.  相似文献   

6.

Background

The 1000 Genome project paved the way for sequencing diverse human populations. New genome projects are being established to sequence underrepresented populations helping in understanding human genetic diversity. The Kuwait Genome Project an initiative to sequence individual genomes from the three subgroups of Kuwaiti population namely, Saudi Arabian tribe; “tent-dwelling” Bedouin; and Persian, attributing their ancestry to different regions in Arabian Peninsula and to modern-day Iran (West Asia). These subgroups were in line with settlement history and are confirmed by genetic studies. In this work, we report whole genome sequence of a Kuwaiti native from Persian subgroup at >37X coverage.

Results

We document 3,573,824 SNPs, 404,090 insertions/deletions, and 11,138 structural variations. Out of the reported SNPs and indels, 85,939 are novel. We identify 295 ‘loss-of-function’ and 2,314 ’deleterious’ coding variants, some of which carry homozygous genotypes in the sequenced genome; the associated phenotypes include pharmacogenomic traits such as greater triglyceride lowering ability with fenofibrate treatment, and requirement of high warfarin dosage to elicit anticoagulation response. 6,328 non-coding SNPs associate with 811 phenotype traits: in congruence with medical history of the participant for Type 2 diabetes and β-Thalassemia, and of participant’s family for migraine, 72 (of 159 known) Type 2 diabetes, 3 (of 4) β-Thalassemia, and 76 (of 169) migraine variants are seen in the genome. Intergenome comparisons based on shared disease-causing variants, positions the sequenced genome between Asian and European genomes in congruence with geographical location of the region. On comparison, bead arrays perform better than sequencing platforms in correctly calling genotypes in low-coverage sequenced genome regions however in the event of novel SNP or indel near genotype calling position can lead to false calls using bead arrays.

Conclusions

We report, for the first time, reference genome resource for the population of Persian ancestry. The resource provides a starting point for designing large-scale genetic studies in Peninsula including Kuwait, and Persian population. Such efforts on populations under-represented in global genome variation surveys help augment current knowledge on human genome diversity.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1233-x) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

High density genotyping data are indispensable for genomic analyses of complex traits in animal and crop species. Maize is one of the most important crop plants worldwide, however a high density SNP genotyping array for analysis of its large and highly dynamic genome was not available so far.

Results

We developed a high density maize SNP array composed of 616,201 variants (SNPs and small indels). Initially, 57 M variants were discovered by sequencing 30 representative temperate maize lines and then stringently filtered for sequence quality scores and predicted conversion performance on the array resulting in the selection of 1.2 M polymorphic variants assayed on two screening arrays. To identify high-confidence variants, 285 DNA samples from a broad genetic diversity panel of worldwide maize lines including the samples used for sequencing, important founder lines for European maize breeding, hybrids, and proprietary samples with European, US, semi-tropical, and tropical origin were used for experimental validation. We selected 616 k variants according to their performance during validation, support of genotype calls through sequencing data, and physical distribution for further analysis and for the design of the commercially available Affymetrix® Axiom® Maize Genotyping Array. This array is composed of 609,442 SNPs and 6,759 indels. Among these are 116,224 variants in coding regions and 45,655 SNPs of the Illumina® MaizeSNP50 BeadChip for study comparison. In a subset of 45,974 variants, apart from the target SNP additional off-target variants are detected, which show only a minor bias towards intermediate allele frequencies. We performed principal coordinate and admixture analyses to determine the ability of the array to detect and resolve population structure and investigated the extent of LD within a worldwide validation panel.

Conclusions

The high density Affymetrix® Axiom® Maize Genotyping Array is optimized for European and American temperate maize and was developed based on a diverse sample panel by applying stringent quality filter criteria to ensure its suitability for a broad range of applications. With 600 k variants it is the largest currently publically available genotyping array in crop species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-823) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.

Background

Major population movements, social structure, and caste endogamy have influenced the genetic structure of Indian populations. An understanding of these influences is increasingly important as gene mapping and case-control studies are initiated in South Indian populations.

Results

We report new data on 155 individuals from four Tamil caste populations of South India and perform comparative analyses with caste populations from the neighboring state of Andhra Pradesh. Genetic differentiation among Tamil castes is low (RST = 0.96% for 45 autosomal short tandem repeat (STR) markers), reflecting a largely common origin. Nonetheless, caste- and continent-specific patterns are evident. For 32 lineage-defining Y-chromosome SNPs, Tamil castes show higher affinity to Europeans than to eastern Asians, and genetic distance estimates to the Europeans are ordered by caste rank. For 32 lineage-defining mitochondrial SNPs and hypervariable sequence (HVS) 1, Tamil castes have higher affinity to eastern Asians than to Europeans. For 45 autosomal STRs, upper and middle rank castes show higher affinity to Europeans than do lower rank castes from either Tamil Nadu or Andhra Pradesh. Local between-caste variation (Tamil Nadu RST = 0.96%, Andhra Pradesh RST = 0.77%) exceeds the estimate of variation between these geographically separated groups (RST = 0.12%). Low, but statistically significant, correlations between caste rank distance and genetic distance are demonstrated for Tamil castes using Y-chromosome, mtDNA, and autosomal data.

Conclusion

Genetic data from Y-chromosome, mtDNA, and autosomal STRs are in accord with historical accounts of northwest to southeast population movements in India. The influence of ancient and historical population movements and caste social structure can be detected and replicated in South Indian caste populations from two different geographic regions.  相似文献   

10.
The diploid genome sequence of an individual human   总被引:4,自引:1,他引:3  
Presented here is a genome sequence of an individual human. It was produced from ∼32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb) of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel) included 3,213,401 single nucleotide polymorphisms (SNPs), 53,823 block substitutions (2–206 bp), 292,102 heterozygous insertion/deletion events (indels)(1–571 bp), 559,473 homozygous indels (1–82,711 bp), 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.  相似文献   

11.
Recent studies have highlighted an important role of structural variation (SV) in ecological and evolutionary processes, but few have studied nonmodel species in the wild. As part of our long‐term research programme on the nonmodel teleost fish Australasian snapper (Chrysophrys auratus), we aim to build one of the first catalogues of genomic variants (SNPs and indels, and deletions, duplications and inversions) in fishes and evaluate overlap of genomic variants with regions under putative selection (Tajima's D and π), and coding sequences (genes). For this, we analysed six males and six females from three locations in New Zealand and generated a high‐resolution genomic variation catalogue. We characterized 20,385 SVs and found they intersected with almost a third of all annotated genes. Together with small indels, SVs account for three times more variation in the genome in terms of bases affected compared to SNPs. We found that a sizeable portion of detected SVs was in the upper and lower genomic regions of Tajima's D and π, indicating that some of these have an effect on the phenotype. Together, these results shed light on the often neglected genomic variation that is produced by SVs and highlights the need to go beyond the mere measure of SNPs when investigating evolutionary processes, such as species diversification and adaptation.  相似文献   

12.
13.
14.
Next Generation Sequencing Technology has revolutionized our ability to study the contribution of rare genetic variation to heritable traits. However, existing single-marker association tests are underpowered for detecting rare risk variants. A more powerful approach involves pooling methods that combine multiple rare variants from the same gene into a single test statistic. Proposed pooling methods can be limited because they generally assume high-quality genotypes derived from deep-coverage sequencing, which may not be available. In this paper, we consider an intuitive and computationally efficient pooling statistic, the cumulative minor-allele test (CMAT). We assess the performance of the CMAT and other pooling methods on datasets simulated with population genetic models to contain realistic levels of neutral variation. We consider study designs ranging from exon-only to whole-gene analyses that contain noncoding variants. For all study designs, the CMAT achieves power comparable to that of previously proposed methods. We then extend the CMAT to probabilistic genotypes and describe application to low-coverage sequencing and imputation data. We show that augmenting sequence data with imputed samples is a practical method for increasing the power of rare-variant studies. We also provide a method of controlling for confounding variables such as population stratification. Finally, we demonstrate that our method makes it possible to use external imputation templates to analyze rare variants imputed into existing GWAS datasets. As proof of principle, we performed a CMAT analysis of more than 8 million SNPs that we imputed into the GAIN psoriasis dataset by using haplotypes from the 1000 Genomes Project.  相似文献   

15.

Background

In recent years, capabilities for genotyping large sets of single nucleotide polymorphisms (SNPs) has increased considerably with the ability to genotype over 1 million SNP markers across the genome. This advancement in technology has led to an increase in the number of genome-wide association studies (GWAS) for various complex traits. These GWAS have resulted in the implication of over 1500 SNPs associated with disease traits. However, the SNPs identified from these GWAS are not necessarily the functional variants. Therefore, the next phase in GWAS will involve the refining of these putative loci.

Methodology

A next step for GWAS would be to catalog all variants, especially rarer variants, within the detected loci, followed by the association analysis of the detected variants with the disease trait. However, sequencing a locus in a large number of subjects is still relatively expensive. A more cost effective approach would be to sequence a portion of the individuals, followed by the application of genotype imputation methods for imputing markers in the remaining individuals. A potentially attractive alternative option would be to impute based on the 1000 Genomes Project; however, this has the drawbacks of using a reference population that does not necessarily match the disease status and LD pattern of the study population. We explored a variety of approaches for carrying out the imputation using a reference panel consisting of sequence data for a fraction of the study participants using data from both a candidate gene sequencing study and the 1000 Genomes Project.

Conclusions

Imputation of genetic variation based on a proportion of sequenced samples is feasible. Our results indicate the following sequencing study design guidelines which take advantage of the recent advances in genotype imputation methodology: Select the largest and most diverse reference panel for sequencing and genotype as many “anchor” markers as possible.  相似文献   

16.
BackgroundThe Meta-Analysis of Glucose and Insulin related traits Consortium (MAGIC) recently identified 16 loci robustly associated with fasting glucose, some of which were also associated with type 2 diabetes. The purpose of our study was to explore the role of these variants in South Asian populations of Punjabi ancestry, originating predominantly from the District of Mirpur, Pakistan.Conclusions/SignificanceAlthough only the SLC30A8 rs11558471 SNP was nominally associated with fasting glucose in our study, the finding that 12 out of 16 SNPs displayed a direction of effect consistent with European studies suggests that a number of these variants may contribute to fasting glucose variation in individuals of South Asian ancestry. We also provide evidence for the first time in South Asians that alleles of SNPs in GLIS3 and ADCY5 may confer risk of type 2 diabetes.  相似文献   

17.

Background

Domestication has shaped the horse and lead to a group of many different types. Some have been under strong human selection while others developed in close relationship with nature. The aim of our study was to perform next generation sequencing of breed and non-breed horses to provide an insight into genetic influences on selective forces.

Results

Whole genome sequencing of five horses of four different populations revealed 10,193,421 single nucleotide polymorphisms (SNPs) and 1,361,948 insertion/deletion polymorphisms (indels). In comparison to horse variant databases and previous reports, we were able to identify 3,394,883 novel SNPs and 868,525 novel indels. We analyzed the distribution of individual variants and found significant enrichment of private mutations in coding regions of genes involved in primary metabolic processes, anatomical structures, morphogenesis and cellular components in non-breed horses and in contrast to that private mutations in genes affecting cell communication, lipid metabolic process, neurological system process, muscle contraction, ion transport, developmental processes of the nervous system and ectoderm in breed horses.

Conclusions

Our next generation sequencing data constitute an important first step for the characterization of non-breed in comparison to breed horses and provide a large number of novel variants for future analyses. Functional annotations suggest specific variants that could play a role for the characterization of breed or non-breed horses.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-562) contains supplementary material, which is available to authorized users.  相似文献   

18.
Single-nucleotide polymorphisms (SNPs) are the most frequent variations in the genome of any organism. SNP discovery approaches such as resequencing or data mining enable the identification of insertion deletion (indel) polymorphisms. These indels can be treated as biallelic markers and can be utilized for genetic mapping and diagnostics. In this study 655 indels have been identified by resequencing 502 maize (Zea mays) loci across 8 maize inbreds (selected for their high allelic variation). Of these 502 loci, 433 were polymorphic, with indels identified in 215 loci. Of the 655 indels identified, single-nucleotide indels accounted for more than half (54.8%) followed by two- and three-nucleotide indels. A high frequency of 6-base (3.4%) and 8-base (2.3%) indels were also observed. When analysis is restricted to the B73 and Mo17 genotypes, 53% of the loci analyzed contained indels, with 42% having an amplicon size difference. Three novel miniature inverted-repeat transposable element (MITE)-like sequences were identified as insertions near genes. The utility of indels as genetic markers was demonstrated by using indel polymorphisms to map 22 loci in a B73 × Mo17 recombinant inbred population. This paper clearly demonstrates that the resequencing of 3 EST sequence and the discovery and mapping of indel markers will position corresponding expressed genes on the genetic map.  相似文献   

19.
A low level of genetic variation has limited the application of molecular markers for characterizing important traits in cultivated tomato. To detect polymorphisms in tomato conserved ortholog sets (COS), expressed sequence tags (ESTs) were searched against tomato and Arabidopsis genomic sequences to define the positions of introns. Introns were amplified from 12 different accessions of tomato by polymerase chain reaction and nucleotide sequences were determined by sequencing. Results indicated that there was a possibility of 71% to amplify introns from tomato genomic DNA through this approach. A total of 201 introns were sequenced from 86 COS unigenes. The intron positions and numbers were conserved between tomato and Arabidopsis, but average intron length was three times longer in tomato than in Arabidopsis. A total of 307 single nucleotide polymorphisms (SNPs) and 75 indels were detected in introns of 57 COS unigenes among 12 tomato lines. Within cultivated tomato germplasm 172 SNPs and 47 indels were detected in introns of 33 COS unigenes. In addition, 41 SNPs were identified in the exons of 27 COS unigenes. The frequency of SNPs was 2.4 times higher in introns than in exons in the 22 COS unigenes having both intronic and exonic polymorphisms. These results indicate that intronic regions may contain sufficient variation to develop sufficient marker resources for genome-wide analysis in cultivated tomato.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号