首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In Förster resonance energy transfer (FRET) experiments, extracting accurate structural information about macromolecules depends on knowing the positions and orientations of donor and acceptor fluorophores. Several approaches have been employed to reduce uncertainties in quantitative FRET distance measurements. Fluorophore-position distributions can be estimated by surface accessibility (SA) calculations, which compute the region of space explored by the fluorophore within a static macromolecular structure. However, SA models generally do not take fluorophore shape, dye transition-moment orientation, or dye-specific chemical interactions into account. We present a detailed molecular-dynamics (MD) treatment of fluorophore dynamics for an ATTO donor/acceptor dye pair and specifically consider as case studies dye-labeled protein-DNA intermediates in Cre site-specific recombination. We carried out MD simulations in both an aqueous solution and glycerol/water mixtures to assess the effects of experimental solvent systems on dye dynamics. Our results unequivocally show that MD simulations capture solvent effects and dye-dye interactions that can dramatically affect energy transfer efficiency. We also show that results from SA models and MD simulations strongly diverge in cases where donor and acceptor fluorophores are in close proximity. Although atomistic simulations are computationally more expensive than SA models, explicit MD studies are likely to give more realistic results in both homogeneous and mixed solvents. Our study underscores the model-dependent nature of FRET analyses, but also provides a starting point to develop more realistic in silico approaches for obtaining experimental ensemble and single-molecule FRET data.  相似文献   

2.
It has long been known that solvation plays an important role in protein-protein interactions. Here, we use a minimalistic solvation-based model for predicting protein binding energy to estimate quantitatively the contribution of the solvation factor in protein binding. The factor is described by a simple linear combination of buried surface areas according to amino-acid types. Even without structural optimization, our minimalistic model demonstrates a predictive power comparable to more complex methods, making the proposed approach the basis for high throughput applications. Application of the model to a proteomic database shows that receptor-substrate complexes involved in signaling have lower affinities than enzyme-inhibitor and antibody-antigen complexes, and they differ by chemical compositions on interfaces. Also, we found that protein complexes with components that come from the same genes generally have lower affinities than complexes formed by proteins from different genes, but in this case the difference originates from different interface areas. The model was implemented in the software PYTHON, and the source code can be found on the Shakhnovich group webpage: http://faculty.chemistry.harvard.edu/shakhnovich/software.  相似文献   

3.
4.
Abstract

Hydrogen bonds have been accredited with a major role historically, in the formation and stabilization of biomolecular structures. The formation of hydrogen bonds at protein-DNA interfaces in aqueous medium involves not only favorable interactions of the donor and acceptor functional groups but also a loss of interactions between these groups with the solvent water. We have investigated the energetics of about 500 potential hydrogen bonds occuring at protein-DNA interfaces incorporating some recent improvements in biomolecular force fields and solvation treatments. We present here results of our assessment of hydrogen bond contributions to the overall standard free energy of formation of protein-DNA complexes obtained with the generalized Born model and finite difference Poisson- Boltzmann methodology for solvation in conjunction with AMBER force field. Our results support the emerging view on the role of electrostatics in general and that of hydrogen bonds in particular which is that hydrogen bonds do not drive protein-DNA complex formation by virtue of the unfavourable cost of the electrostatics of desolvation. They however, act to stabilize the complex once it is formed.  相似文献   

5.
A theoretical model is proposed for the apparent efficiency of fluorescence (Förster) resonance energy transfer (FRET) in mixtures of free monomers and homo-oligomeric protein complexes of uniform size. The model takes into account possible pathways for transfer of optical excitations from single donors to multiple acceptors and from multiple donors (non-simultaneously) to single acceptors. This necessary departure from the standard theory has been suggested in the literature, but it has only been successfully implemented for a few particular cases, such as for particular geometries of the oligomers. The predictions of the present theoretical model differ significantly from those of the standard theory, with the exception of the case of dimers, for which agreement is observed. This model therefore provides new insights into the FRET behavior of oligomers comprising more than two monomers, and also suggests means for determining the size of oligomeric protein complexes as well as the proportion of associated and unassociated monomers.  相似文献   

6.
We have performed thermal diffusion measurements of nanofluid containing gold and rhodamine 6G dye in various ratios. At certain concentrations, gold is nearly four times more efficient than water in dissipating small temperature fluctuations in a medium, and therefore it will find applications as heat transfer fluids. We have employed dual-beam mode-matched thermal lens technique for the present investigation. It is a sensitive technique in measuring photothermal parameters because of the use of a low-power, stabilized laser source as the probe. We also present the results of fluorescence measurements of the dye in the nanogold environment.  相似文献   

7.
Li  Ye  Zhang  Jianping  Zhao  Jingquan  Jiang  Lijing 《Photosynthetica》2001,39(2):227-232
Regulation mechanism of excitation energy transfer between phycobilisomes (PBS) and the photosynthetic reaction centres was studied by the state transition techniques in PBS-thylakoid membrane complexes. DCMU, betaine, and N-ethylmaleimide were applied to search for the details of energy transfer properties based on the steady fluorescence measurement and individual deconvolution spectra at state 2 or state 1. The closure of photosystem (PS) 2 did not influence on fluorescence yields of PS1, i.e., energy could not spill to PS1 from PS2. When the energy transfer pathway from PBS to PS1 was disturbed, the relative fluorescence yield of PS2 was almost the same as that of PS2 in complexes without treatment. If PBSs were fixed by betaine, the state transition process was restrained. Hence PBS may detach from PS2 and become associated to PS1 at state 2. Our results contradict the proposed "spill-over" or "PBS detachment" models and support the mobile "PBS model".  相似文献   

8.
9.
The resonance energy transfer from donors embedded in the membrane of erythrocytes to the cytosol hemoglobin has been measured by comparing the donors' fluorescence decay in ghosts and in intact cells. A series of n - (9-anthroyloxy) stearic acids (n-AS) (n = 2, 6, 9, 12) and similar probes were used as donors, and their locations within the outer leaflet of the phospholipid bilayer were determined from their average efficiency of energy transfer, <T>. The energy transfer data for several membrane probes were analyzed according to a simple semiempirical model, in which the heme acceptors are assumed to form a semiinfinite continuum beyond a plane, whose normal distance (d) from particular donors may be determined if the heme density in the cytosol boundary layer is known. The hemoglobin concentration in the erythrocytes was varied by suspending the cells in buffers of different ionic strengths. This made it possible to study the ionic strength dependence of the heme concentration averaged over the cell (hc), as well as that in the boundary layer (hb). Both level off above approximately 600 mosM, as does the ratio hb/hc. By using the maximum heme concentration that can be obtained in osmotically shrunken cells as a limiting value, hb is estimated to be 17 mM or less, under physiological conditions; and from the measured <T> for various probes, the distance d was found to range from 40 Å for 2-AS to 31 Å for 12-AS and 26 Å for 9-vinyl anthracene (9-VA). It is concluded that the hydrophobic probe 9-VA is located near the center of the phospholipid bilayer and that the cytosol hemoglobin is in contact with the inner membrane surface, or nearly so. This conclusion is valid for oxy- and deoxy-hemoglobin, and is shown to be independent of several systematic errors that might arise from the simple assumptions of the model used. The steady-state fluorescence anisotropy of the probes was found to decrease as they approach the bilayer's central plane. The methodology developed here may be used to extend studies of cytosol membrane interactions in ghost systems to intact cells, and is useful in the investigation of the morphology of normal and pathological intact erythrocytes.  相似文献   

10.
The excited-state relaxation within bacteriochlorophyll (BChl) e and a in chlorosomes of Chlorobium phaeobacteroides has been studied by femtosecond transient absorption spectroscopy at room temperature. Singlet-singlet annihilation was observed to strongly influence both the isotropic and anisotropic decays. Pump intensities in the order of 1011 photons × pulse−1 × cm−2 were required to obtain annihilation-free conditions. The most important consequence of applied very low excitation doses is an observation of a subpicosecond process within the BChl e manifold (~200–500 fs), manifesting itself as a rise in the red part of the Qy absorption band of the BChl e aggregates. The subsequent decay of the kinetics measured in the BChl e region and the corresponding rise in the baseplate BChl a is not single-exponential, and at least two components are necessary to fit the data, corresponding to several BChl e→BChl a transfer steps. Under annihilation-free conditions, the anisotropic kinetics show a generally slow decay within the BChl e band (10–20 ps) whereas it decays more rapidly in the BChl a region (~1 ps). Analysis of the experimental data gives a detailed picture of the overall time evolution of the energy relaxation and energy transfer processes within the chlorosome. The results are interpreted within an exciton model based on the proposed structure.  相似文献   

11.
12.
Applications of two free energy calculation approaches are presented to study drug-biomolecule complexes. The first method, the free energy perturbation (FEP) method and molecular dynamics simulations has been applied to study the JG-365 inhibitor bound to the HIV-aspartic protease. The FEP method has been applied to predict the consequence of replacing each of the seven peptide bonds in the JG-365 by trans-ethylene or fluoroethylene units. The necessary initial conformations of the inhibitor for "in water" perturbations have been found using neural network clustering approach applied to the long molecular dynamics trajectory of the inhibitor in water solution. The second method is applied to study binding free energies of some DNA-drug complexes and is based on analysis of long molecular dynamics trajectories by continuum solvent approach (MM/PBSA).  相似文献   

13.
Fullerene, C60 was functionalized to possess one or two fluorophore entities. The fluorophore–fullerene dyads thus synthesized contain either a naphthalene, pyrene, or fluorene entity while the triads contain either a pyrene or fluorene entity in addition to a naphthalene entity. The redox behavior of these dyads and triads were probed by cyclic voltammetric technique, while the geometry and electronic structures were deduced from ab initio B3LYP/3-21G(*) method. Steady-state emission studies revealed the occurrence of energy transfer from the singlet excited fluorophore to the fullerene entity in the case of the dyads while the occurrence of step-by-step sequential energy transfer is envisioned in the case of the triads. A better ‘antenna-effect’ owing to the extended range of excitation wavelength to induce energy transfer to the appended fullerene has been achieved in the case of the triads.  相似文献   

14.
15.
Sardinia is a major Island in the Mediterranean with a high incidence of multiple sclerosis, a chronic autoimmune inflammatory disease of the central nervous system. Disease susceptibility in Sardinian population has been associated with five alleles of major histocompatibility complex (MHC) class II DRB1 gene. We performed 120 ns of molecular dynamics simulation on one predisposing and one protective alleles, unbound and in complex with the two relevant peptides: Myelin Basic Protein and Epstein Barr Virus derived peptide. In particular we focused on the MHC peptide binding groove dynamics. The predisposing allele was found to form a stable complex with both the peptides, while the protective allele displayed stability only when bound with myelin peptide. The local flexibility of the MHC was probed dividing the binding groove into four compartments covering the well known peptide anchoring pockets. The predisposing allele in the first half cleft exhibits a narrower and more rigid groove conformation in the presence of myelin peptide. The protective allele shows a similar behavior, while in the second half cleft it displays a narrower and more flexible groove conformation in the presence of viral peptide. We further characterized these dynamical differences by evaluating H-bonds, hydrophobic and stacking interaction networks, finding striking similarities with super-type patterns emerging in other autoimmune diseases. The protective allele shows a defined preferential binding to myelin peptide, as confirmed by binding free energy calculations. All together, we believe the presented molecular analysis could help to design experimental assays, supports the molecular mimicry hypothesis and suggests that propensity to multiple sclerosis in Sardinia could be partly linked to distinct peptide-MHC interaction and binding characteristics of the antigen presentation mechanism.  相似文献   

16.
Xie  Jie  Zhao  Jing-quan  Peng  Chenghang 《Photosynthetica》2002,40(2):251-257
Based on the crystal structure and spectral properties of C-phycocyanin (C-PC) from cyanobacteria, models for complexes with 2 and 3 C-PC hexamer disks were built and the energy transfer dynamic properties were studied by the use of stochastic computer simulation approach. In addition, an experimental parameter of 0.056 ps–1, corresponding to a time constant of 18 ps, derived from the previous time-resolved measurement, was used for simulation of the energy transfer process from the three terminal symmetrically equivalent 84 chromophores of the core-linked disk to an 84 chromophore of the allophycocyanin (APC) core. The simulation showed: (1) The disk-to-disk energy transfer can be as fast as several picoseconds. (2) The energy transfer efficiencies from the first disk to the core would depend on the length of the rod (i.e. the number of disks). Efficiencies of 0.95, 0.87, and 0.75 were found for the rods with 1, 2 and 3 hexamer disks, respectively. (3) The energy transfer along a rod in a native phycobilisome (PBS) is probably very close to the one-way manner. It is the core of PBS that makes the excitation energy be transferred fast in a nearly one-way manner.  相似文献   

17.
A multi-site, steady-state Förster resonance energy transfer (FRET) approach was used to quantify Ca2+-induced changes in proximity between donor loci on human cardiac troponin I (cTnI), and acceptor loci on human cardiac tropomyosin (cTm) and F-actin within functional thin filaments. A fluorescent donor probe was introduced to unique and key cysteine residues on the C- and N-termini of cTnI. A FRET acceptor probe was introduced to one of three sites located on the inner or outer domain of F-actin, namely Cys-374 and the phalloidin-binding site on F-actin, and Cys-190 of cTm. Unlike earlier FRET analyses of protein dynamics within the thin filament, this study considered the effects of non-random distribution of dipoles for the donor and acceptor probes. The major conclusion drawn from this study is that Ca2+ and myosin S1-binding to the thin filament results in movement of the C-terminal domain of cTnI from the outer domain of F-actin towards the inner domain, which is associated with the myosin-binding. A hinge-linkage model is used to best-describe the finding of a Ca2+-induced movement of the C-terminus of cTnI with a stationary N-terminus. This dynamic model of the activation of the thin filament is discussed in the context of other structural and biochemical studies on normal and mutant cTnI found in hypertrophic cardiomyopathies.  相似文献   

18.
Conformational changes of proteins and other biomolecules play a fundamental role in their functional mechanism. Single pair Förster resonance energy transfer (spFRET) offers the possibility to detect these conformational changes and dynamics, and to characterize their underlying kinetics. Using spFRET on microscopes with different modes of detection, dynamic timescales ranging from nanoseconds to seconds can be quantified. Confocal microscopy can be used as a means to analyze dynamics in the range of nanoseconds to milliseconds, while total internal reflection fluorescence (TIRF) microscopy offers information about conformational changes on timescales of milliseconds to seconds. While the existence of dynamics can be directly inferred from the FRET efficiency time trace or the correlation of FRET efficiency and fluorescence lifetime, additional computational approaches are required to extract the kinetic rates of these dynamics, a short overview of which is given in this review.
  相似文献   

19.
20.
The tumor suppressor protein p53 can lose its function upon DNA-contact mutations (R273C and R273H) in the core DNA-binding domain. The activity can be restored by second-site suppressor or rescue mutations (R273C_T284R, R273H_T284R, and R273H_S240R). In this paper, we elucidate the structural and functional consequence of p53 proteins upon DNA-contact mutations and rescue mutations and the underlying mechanisms at the atomic level by means of molecular dynamics simulations. Furthermore, we also apply the docking approach to investigate the binding phenomena between the p53 protein and DNA upon DNA-contact mutations and rescue mutations. This study clearly illustrates that, due to DNA-contact mutants, the p53 structure loses its stability and becomes more rigid than the native protein. This structural loss might affect the p53-DNA interaction and leads to inhibition of the cancer suppression. Rescue mutants (R273C_T284R, R273H_T284R and R273H_S240R) can restore the functional activity of the p53 protein upon DNA-contact mutations and show a good interaction between the p53 protein and a DNA molecule, which may lead to reactivate the cancer suppression function. Understanding the effects of p53 cancer and rescue mutations at the molecular level will be helpful for designing drugs for p53 associated cancer diseases. These drugs should be designed so that they can help to inhibit the abnormal function of the p53 protein and to reactivate the p53 function (cell apoptosis) to treat human cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号