首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal stem cells (MSCs) play important roles in tissue repair and cancer progression. Our recent work suggests that some mesenchymal cells, notably myofibroblasts exhibit regulated exocytosis resembling that seen in neuroendocrine cells. We now report that MSCs also exhibit regulated exocytosis. Both a G-protein coupled receptor agonist, chemerin, and a receptor tyrosine kinase stimulant, IGF-II, evoked rapid increases in secretion of a marker protein, TGFβig-h3. The calcium ionophore, ionomycin, also rapidly increased secretion of TGFβig-h3 while inhibitors of translation (cycloheximide) or secretory protein transport (brefeldin A) had no effect, indicating secretion from preformed secretory vesicles. Inhibitors of the chemerin and IGF receptors specifically reduced the secretory response. Confocal microscopy of MSCs loaded with Fluo-4 revealed chemerin and IGF-II triggered intracellular Ca2+ oscillations requiring extracellular calcium. Immunocytochemistry showed co-localisation of TGFβig-h3 and MMP-2 to secretory vesicles, and transmission electron-microscopy showed dense-core secretory vesicles in proximity to the Golgi apparatus. Proteomic studies on the MSC secretome identified 64 proteins including TGFβig-h3 and MMP-2 that exhibited increased secretion in response to IGF-II treatment for 30min and western blot of selected proteins confirmed these data. Gene ontology analysis of proteins exhibiting regulated secretion indicated functions primarily associated with cell adhesion and in bioassays chemerin increased adhesion of MSCs and adhesion, proliferation and migration of myofibroblasts. Thus, MSCs exhibit regulated exocytosis that is compatible with an early role in tissue remodelling.  相似文献   

2.
Chemerin, a chemoattractant protein, is involved in endothelial dysfunction and vascular inflammation in pathological conditions. In a recent study, we observed the upregulation of chemerin in endothelial cells following in vitro treatment with Treponema pallidum. Here, we investigated the role of chemerin in endothelial cells activation induced by the T. pallidum predicted membrane protein Tp0965. Following stimulation of human umbilical vein endothelial cells (HUVECs) with Tp0965, chemerin and its receptor chemerin receptor 23 (ChemR23) were upregulated, companied with elevated expression of Toll-like receptor 2. Furthermore, chemerin from HUVECs activated endothelial cells via chemerin/ChemR23 signaling in an autocrine/paracrine manner, characterized by upregulated expression of intercellular adhesion molecule 1, E-selectin, and matrix metalloproteinase-2. Activation of endothelial cells depended on the mitogen-activated protein kinase signaling pathway. In addition, Tp0965-induced chemerin promoted THP-1-derived macrophages migration to endothelial cells, also via the chemerin/ChemR23 pathway. The RhoA/ROCK signaling pathway was also involved in THP-1-derived macrophages migration in response to chemerin/ChemR23. Our results highlight the role of Tp0965-induced chemerin in endothelial cells dysfunction, which contributes to the immunopathogenesis of vascular inflammation of syphilis.  相似文献   

3.
Viral diseases of the respiratory tract, which include influenza pandemic, children acute bronchiolitis, and viral pneumonia of the elderly, represent major health problems. Plasmacytoid dendritic cells play an important role in anti-viral immunity, and these cells were recently shown to express ChemR23, the receptor for the chemoattractant protein chemerin, which is expressed by epithelial cells in the lung. Our aim was to determine the role played by the chemerin/ChemR23 system in the physiopathology of viral pneumonia, using the pneumonia virus of mice (PVM) as a model. Wild-type and ChemR23 knock-out mice were infected by PVM and followed for functional and inflammatory parameters. ChemR23(-/-) mice displayed higher mortality/morbidity, alteration of lung function, delayed viral clearance and increased neutrophilic infiltration. We demonstrated in these mice a lower recruitment of plasmacytoid dendritic cells and a reduction in type I interferon production. The role of plasmacytoid dendritic cells was further addressed by performing depletion and adoptive transfer experiments as well as by the generation of chimeric mice, demonstrating two opposite effects of the chemerin/ChemR23 system. First, the ChemR23-dependent recruitment of plasmacytoid dendritic cells contributes to adaptive immune responses and viral clearance, but also enhances the inflammatory response. Second, increased morbidity/mortality in ChemR23(-/-) mice is not due to defective plasmacytoid dendritic cells recruitment, but rather to the loss of an anti-inflammatory pathway involving ChemR23 expressed by non-leukocytic cells. The chemerin/ChemR23 system plays important roles in the physiopathology of viral pneumonia, and might therefore be considered as a therapeutic target for anti-viral and anti-inflammatory therapies.  相似文献   

4.
Diabetic nephropathy (DN) is characterized by inflammation of renal tissue. Glomerular endothelial cells (GEnCs) play an important role in inflammation and protein leakage in urine in DN patients. Chemerin and its receptor ChemR23 are inducers of inflammation. The aim of this study was to investigate the function of chemerin/ChemR23 in GEnCs of DN patients. Immunohistochemical staining and qRT‐PCR were used to measure the expression of chemerin, ChemR23 and inflammatory factors in renal tissues of DN patients. Db/db mice were used as animal model. ChemR23 of DN mice was knocked down by injecting LV3‐shRNA into tail vein. Inflammation, physiological and pathological changes in each group was measured. GEnCs were cultured as an in vitro model to study potential signalling pathways. Results showed that expression of chemerin, ChemR23 and inflammatory factors increased in DN patients and mice. LV3‐shRNA alleviated renal damage and inflammation in DN mice. GEnCs stimulated by glucose showed increased chemerin, ChemR23 and inflammatory factors and decreased endothelial marker CD31. Both LV3‐shRNA and SB203580 (p38 MAPK inhibitor) attenuated chemerin‐induced inflammation and injury in GEnCs. Taken together, chemerin/ChemR23 axis played an important role in endothelial injury and inflammation in DN via the p38 MAPK signalling pathway. Suppression of ChemR23 alleviated DN damage.  相似文献   

5.
Chemerin是2007年新确认的一种脂肪因子,其主要功能受体为ChemR23。近期研究发现chemerin可能是联系肥胖、糖尿病及动脉粥样硬化的潜在因子,有望为糖尿病及其血管并发症的预防及治疗提供新的靶点。然而,chemerin及其受体ChemR23参与糖尿病及其大血管病变的具体机制尚不明确。本文将就目前研究中chemerin及其受体ChemR23与糖尿病及其大血管病变的关系作一综述,并从免疫及炎症反应、氧化应激、自噬、糖脂代谢和胰岛素抵抗等方面,分析chemerin分别对巨噬细胞、血管内皮细胞、脂肪细胞及骨骼肌细胞的影响,从而进一步阐述chemerin及其受体ChemR23参与糖尿病及其大血管病变的具体生物学机制。  相似文献   

6.
Chemerin was isolated as the natural ligand of the G protein-coupled receptor ChemR23. Chemerin acts as a chemotactic factor for leukocyte populations expressing ChemR23, particularly immature plasmacytoid dendritic cells, but also immature myeloid DCs, macrophages and natural killer cells. Chemerin is expressed by epithelial and non-epithelial cells as an inactive precursor, present at nanomolar concentrations in plasma. Processing of the precursor C-terminus is required for generating bioactive forms of chemerin. Various proteases mediate this processing, including neutrophil serine proteases and proteases from coagulation and fibrinolytic cascades. ChemR23-expressing cells are recruited in human inflammatory diseases, such as psoriasis and lupus. In animal models, both pro-inflammatory and anti-inflammatory roles of chemerin have been reported. Recently, two other receptors for chemerin were described, GPR1 and CCRL2, but their functional relevance is largely unknown. Both chemerin and ChemR23 are also expressed by adipocytes, and the emerging role of chemerin as an adipokine regulating lipid and carbohydrate metabolism is an area of intense research.  相似文献   

7.
Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.  相似文献   

8.

Introduction  

Chemerin is a chemotactic peptide which directs leukocytes expressing the chemokine-like receptor ChemR23 towards sites of inflammation. ChemR23 is a G protein-coupled receptor which binds several different ligands, and it is also expressed by other cell types such as adipocytes. In addition to chemotaxis, recent reports suggest that ChemR23 is capable of mediating either inflammatory or anti-inflammatory effects, depending on the type of ligand it binds. In the present study, we aimed to clarify whether human chondrocytes express ChemR23 and chemerin, and whether chemerin/ChemR23 signalling could affect secretion of inflammatory mediators.  相似文献   

9.
Chemerin is a chemokine that, through the engagement of its counter-receptor, ChemR23, attracts pro-inflammatory cells. However, chemerin has been shown to play other functions and a recent study by Berg and colleagues demonstrates that chemerin/ChemR23 is a system beyond chemokines. Human articular chondrocytes produce chemerin and express ChemR23, and upon stimulation with recombinant chemerin increase the production of pro-catabolic cytokines and metalloproteinases. The latter are up-regulated in osteoarthritic cartilage and cause extracellular matrix breakdown. Since an increase of chemerin in fat tissue and serum of obese patients has been reported, this new feature of chemerin may represent a functional link between obesity and osteoarthritis.  相似文献   

10.

Introduction

Chemerin is a chemotactic agonist identified as a ligand for ChemR23 that is expressed on macrophages and dendritic cells (DCs). In this study, we analyzed the expression of chemerin and ChemR23 in the synovium of rheumatoid arthritis (RA) patients and the stimulatory effects of chemerin on fibroblast-like synoviocytes (FLSs) from RA patients.

Methods

Chemerin and ChemR23 expression in the RA synovium was ascertained by immunohistochemistry and Western blot analysis. Chemerin expression on cultured FLSs was analyzed by ELISA. ChemR23 expression on FLSs was determined by immunocytochemistry and Western blot analysis. Cytokine production from FLSs was measured by ELISA. FLS cell motility was evaluated by utilizing a scrape motility assay. We also examined the stimulating effect of chemerin on the phosphorylation of mitogen-activated protein kinase (MAPK), p44/42 mitogen-activated protein kinase (ERK1/2), p38MAPK, c-Jun N-terminal kinase (JNK)1/2 and Akt, as well as on the degradation of regulator of NF-κB (IκBα) in FLSs, by Western blot analysis.

Results

Chemerin was expressed on endothelial cells and synovial lining and sublining cells. ChemR23 was expressed on macrophages, immature DCs and FLSs and a few mature DCs in the RA synovium. Chemerin and ChemR23 were highly expressed in the RA synovium compared with osteoarthritis. Chemerin and ChemR23 were expressed on unstimulated FLSs. TNF-α and IFN-γ upregulated chemerin production. Chemerin enhanced the production of IL-6, chemokine (C-C motif) ligand 2 and matrix metalloproteinase 3 by FLSs, as well as increasing FLS motility. The stimulatory effects of chemerin on FLSs were mediated by activation of ERK1/2, p38MAPK and Akt, but not by JNK1/2. Degradation of IκB in FLSs was not promoted by chemerin stimulation. Inhibition of the ERK1/2, p38MAPK and Akt signaling pathways significantly suppressed chemerin-induced IL-6 production. Moreover, blockade of the p38MAPK and Akt pathways, but not the ERK1/2 pathway, inhibited chemerin-enhanced cell motility.

Conclusions

The interaction of chemerin and ChemR23 may play an important role in the pathogenesis of RA through the activation of FLSs.  相似文献   

11.
《Cytotherapy》2022,24(7):699-710
Pancreatic cancer is a highly lethal cancer characterized by local invasiveness, early metastasis, recurrence and high resistance to current therapies. Extensive stroma or desmoplasia is a key histological feature of the disease, and interactions between cancer and stromal cells are critical for pancreatic cancer development and progression. Mesenchymal stromal cells [MSCs] exhibit preferential tropism to primary and metastatic tumor sites and may either suppress or support tumor growth. Although MSCs represent a potential source of pancreatic cancer stroma, their contribution to pancreatic tumor growth remains poorly known. Here, we show that bone marrow MSCs significantly contribute to pancreatic cancer growth in vitro and in vivo. Furthermore, MSCs create a pro-carcinogenic microenvironment through the release of key factors mediating growth and angiogenesis, including interleukin (IL)-6, IL-8, vascular endothelial growth factor and activation of STAT3 signaling in tumor cells. IL-6 released by MSCs was largely responsible for the pro-tumorigenic effects of MSCs. Knockdown of IL-6 expression in MSCs by small interfering RNA (siRNA) abolished the MSC growth-promoting effect in vitro, reducing tumor cell proliferation and clonogenic potential. In addition, in a heterotopic nude mouse model of human pancreatic tumor xenografts, blockade of IL-6 with the anti-IL-6 receptor antibody, tocilizumab, or of its downstream effector STAT3 with the small molecule STAT3 inhibitor S3I-201, abrogated MSC-mediated tumor promotion and delayed tumor formation significantly. Our data demonstrate that MSCs promote pancreatic cancer growth, with IL-6 produced by MSCs playing a pivotal role.  相似文献   

12.
Chemerin acting via its distinct G protein-coupled receptor CMKLR1 (ChemR23), is a novel adipokine, circulating levels of which are raised in inflammatory states. Chemerin shows strong correlation with various facets of the metabolic syndrome; these states are associated with an increased incidence of cardiovascular disease (CVD) and dysregulated angiogenesis. We therefore, investigated the regulation of ChemR23 by pro-inflammatory cytokines and assessed the angiogenic potential of chemerin in human endothelial cells (EC). We have demonstrated the novel presence of ChemR23 in human ECs and its significant up-regulation (< 0.001) by pro-inflammatory cytokines, TNF-α, IL-1β and IL-6. More importantly, chemerin was potently angiogenic, as assessed by conducting functional in-vitro angiogenic assays; chemerin also dose-dependently induced gelatinolytic (MMP-2 & MMP-9) activity of ECs (< 0.001). Furthermore, chemerin dose-dependently activated PI3K/Akt and MAPKs pathways (< 0.01), key angiogenic and cell survival cascades. Our data provide the first evidence of chemerin-induced endothelial angiogenesis and MMP production and activity.  相似文献   

13.
Macrophages constitute a major component of innate immunity and play an essential role in defense mechanisms against external aggressions and in inflammatory responses. Chemerin, a chemoattractant protein, is generated in inflammatory conditions, and recruits cells expressing the G protein-coupled receptor ChemR23, including macrophages. Chemerin was initially expected to behave as a pro-inflammatory agent. However, recent data described more complex activities that are either pro- or anti-inflammatory, according to the disease model investigated. In the present study, peritoneal macrophages were generated from WT or ChemR23(-/-) mice, stimulated with lipopolyssaccharide in combination or not with IFN-γ and the production of pro- (TNF-α, IL-1β and IL-6) and anti-inflammatory (IL-10) cytokines was evaluated using qRT-PCR and ELISA. Human macrophages generated from peripheral blood monocytes were also tested in parallel. Peritoneal macrophages from WT mice, recruited by thioglycolate or polyacrylamide beads, functionally expressed ChemR23, as assessed by flow cytometry, binding and chemotaxis assays. However, chemerin had no effect on the strong upregulation of cytokine release by these cells upon stimulation by LPS or LPS/IFN-γ, whatever the concentration tested. Similar data were obtained with human macrophages. In conclusion, our results rule out the direct anti-inflammatory effect of chemerin on macrophages ex vivo, described previously in the literature, despite the expression of a functional ChemR23 receptor in these cells.  相似文献   

14.
We previously reported 2-aminobenzoxazole analogue 1 as a potent ChemR23 inhibitor. The compound showed inhibitory activity against chemerin-induced calcium signaling through ChemR23 internalization in CAL-1 cells, which are cell lines of plasmacytoid dendric cells (pDCs). Furthermore, compound 2 inhibited chemotaxis of CAL-1 triggered by chemerin in vitro. However, we noted a difference in the ChemR23 response to our inhibitor between rodents and non-rodents in a previous study. To address this issue, we performed optimization of ChemR23 inhibitors using CAL-1 cells endogenously expressing human ChemR23 and conducted a pharmacokinetics study in cynomolgus monkeys. Various substituents at the 4-position of the benzoxazole ring exhibited potent in vitro bioactivity, while those at the 6-position were not tolerated. Among substituents, a carboxyl group was identified as key for improving the oral bioavailability in cynomolgus monkeys. Compound 38a with the acidic part changed from a tetrazole group to a 1,2,4-oxadiazol-5-one group to improve bioactivity and pharmacokinetic parameters exhibited inhibitory activity against chemerin-induced chemotaxis in vitro. In addition, we confirmed the ChemR23 internalization of pDCs by compound 38a orally administered to cynomolgus monkeys. These 2-aminobenzoxazole-based ChemR23 inhibitors may be useful as novel immunotherapeutic agents capable of suppressing the migration of pDCs, which are known to be major producers of type I interferons in the lesion area of certain autoimmune diseases, such as systemic lupus erythematosus and psoriasis.  相似文献   

15.
Mesenchymal stem cells (MSCs), which are modulated by cytokines present in the tumor microenvironment, play an important role in tumor progression. It is well documented that inflammation is an important part of the tumor microenvironment, so we investigated whether stimulation of MSCs by inflammatory cytokines would contribute to their ability to promote tumor growth. We first showed that MSCs could increase C26 colon cancer growth in mice. This growth-promoting effect was further accelerated when the MSCs were pre-stimulated by inflammatory factors IFN-γ and TNF-α. At the same time, we demonstrated that MSCs pre-stimulated by both inflammatory factors could promote tumor angiogenesis in vivo to a greater degree than untreated MSCs or MSCs pre-stimulated by either IFN-γ or TNF-α alone. A hen egg test-chorioallantoic membrane (HET-CAM) assay showed that treatment of MSC-conditioned medium can promote chorioallantoic membrane angiogenesis in vitro, especially treatment with conditioned medium of MSCs pretreated with IFN-γ and TNF-α together. This mechanism of promoting angiogenesis appears to take place via an increase in the expression of vascular endothelial growth factor (VEGF), which itself takes place through an increase in signaling in the hypoxia-inducible factor 1α (HIF-1α)-dependent pathway. Inhibition of HIF-1α in MSCs by siRNA was found to effectively reduce the ability of MSC to affect the growth of colon cancer in vivo in the inflammatory microenviroment. These results indicate that MSCs stimulated by inflammatory cytokines such as IFN-γ and TNF-α in the tumor microenvironment express higher levels of VEGF via the HIF-1α signaling pathway and that these MSCs then enhance tumor angiogenesis, finally leading to colon cancer growth in mice.  相似文献   

16.
Mesenchymal stem cells (MSCs) are a heterogeneous population of non-hematopoietic precursor cells predominantly found in the bone marrow. They have been recently reported to home towards the hypoxic tumor microenvironment in vivo. Interleukin-6 is a multifunctional cytokine normally involved in the regulation of the immune and inflammatory response. In addition to its normal function, IL-6 signaling has been implicated in tumorigenesis. Solid tumors develop hypoxia as a result of inadequate O2 supply. Interestingly, tumor types with increased levels of hypoxia are known to have increased resistance to chemotherapy as well as increased metastatic potential. Here, we present evidence that under hypoxic conditions (1.5% O2) breast cancer cells secrete high levels of IL-6, which serve to activate and attract MSCs. We now report that secreted IL-6 acts in a paracrine fashion on MSCs stimulating the activation of both Stat3 and MAPK signaling pathways to enhance migratory potential and cell survival. Inhibition of IL-6 signaling utilizing neutralizing antibodies leads to attenuation of MSC migration. Specifically, increased migration is dependent on IL-6 signaling through the IL-6 receptor. Collectively, our data demonstrate that hypoxic tumor cells specifically recruit MSCs, which through activation of signaling and survival pathways facilitate tumor progression.  相似文献   

17.
Chronic obstructive pulmonary disease is mainly triggered by cigarette smoke (CS) and progresses even after smoking cessation. CS induces an exaggerated influx of inflammatory cells to the bronchoalveolar space and lung parenchyma, likely resulting from a complex interplay between chemoattractants and their respective receptors. In a murine CS model of chronic obstructive pulmonary disease, we studied the importance of chemokine-like receptor ChemR23 for the induction and resolution of inflammation in CS-exposed lungs. Subacute and chronic CS exposure increased protein levels of the ChemR23 ligand and chemoattractant, chemerin, in bronchoalveolar lavage (BAL) fluid of wild-type (WT) mice. Moreover, the proinflammatory chemokines CXCL1, CCL2, and CCL20 were increased in the airways of CS-exposed WT mice, accompanied by a massive accumulation of inflammatory neutrophils and monocytes, CD11b(hi)CD103(-) and CD11b(lo)CD103(+) dendritic cells (DCs), and CD4(+) and CD8(+) T cells. The lung parenchyma of WT mice was infiltrated with inflammatory neutrophils, CD11b(hi)CD103(-) DCs, and activated CD4(+) T cells after CS exposure. CS-induced inflammation was severely attenuated in BAL fluid and lungs of ChemR23 knockout mice with regard to the induction of inflammatory chemokines and the recruitment of inflammatory cells. Neutrophils and CD8(+) T cells persisted in the airways of WT mice, as did the airway-derived conventional DCs in the mediastinal lymph nodes, for at least 14 d after smoking cessation. In the BAL fluid of CS-exposed ChemR23 knockout mice, there was a remarkable delayed accumulation of T cells 14 d after the final exposure. Our data support a role for ChemR23 in directing innate and adaptive immune cells to CS-exposed lungs.  相似文献   

18.
Transforming growth factor beta (TGFbeta) plays a dual role in oncogenesis, acting as both a tumor suppressor and a tumor promoter. These disparate processes of suppression and promotion are mediated primarily by Smad and non-Smad signaling, respectively. A central issue in understanding the role of TGFbeta in the progression of epithelial cancers is the elucidation of the mechanisms underlying activation of non-Smad signaling cascades. Because the potent lipid mediator sphingosine-1-phosphate (S1P) has been shown to transactivate the TGFbeta receptor and activate Smad3, we examined its role in TGFbeta activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and promotion of migration and invasion of esophageal cancer cells. Both S1P and TGFbeta activate ERK1/2, but only TGFbeta activates Smad3. Both ligands promoted ERK1/2-dependent migration and invasion. Furthermore, TGFbeta rapidly increased S1P, which was required for TGFbeta-induced ERK1/2 activation, as well as migration and invasion, since downregulation of sphingosine kinases, the enzymes that produce S1P, inhibited these responses. Finally, our data demonstrate that TGFbeta activation of ERK1/2, as well as induction of migration and invasion, is mediated at least in part by ligation of the S1P receptor, S1PR2. Thus, these studies provide the first evidence that TGFbeta activation of sphingosine kinases and formation of S1P contribute to non-Smad signaling and could be important for progression of esophageal cancer.  相似文献   

19.
Neutrophil activation and adhesion must be tightly controlled to prevent complications associated with excessive inflammatory responses. The role of the anti‐inflammatory peptide chemerin15 (C15) and the receptor ChemR23 in neutrophil physiology is unknown. Here, we report that ChemR23 is expressed in neutrophil granules and rapidly upregulated upon neutrophil activation. C15 inhibits integrin activation and clustering, reducing neutrophil adhesion and chemotaxis in vitro. In the inflamed microvasculature, C15 rapidly modulates neutrophil physiology inducing adherent cell detachment from the inflamed endothelium, while reducing neutrophil recruitment and heart damage in a murine myocardial infarction model. These effects are mediated through ChemR23. We identify the C15/ChemR23 pathway as a new regulator and thus therapeutic target in neutrophil‐driven pathologies.  相似文献   

20.
Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into different cell types. Owing to their immunosuppressive and anti-inflammatory properties, they are widely used in regenerative medicine, but they have a dual effect on cancer progression and exert both growth-stimulatory or -inhibitory effects on different cancer types. It has been proposed that these controversial effects of MSC in tumor microenvironment (TME) are mediated by their polarization to proinflammatory or anti-inflammatory phenotype. In addition, they can polarize the immune system cells that in turn influence tumor progression. One of the mechanisms involved in the TME communications is extracellular vesicles (EVs). MSCs, as one of cell populations in TME, produce a large amount of EVs that can influence tumor development. Similar to MSC, MSC-EVs can exert both anti- or protumorigenic effects. In the current study, we will investigate the current knowledge related to MSC role in cancer progression with a focus on the MSC-EV content in limiting tumor growth, angiogenesis, and metastasis. We suppose MSC-EVs can be used as safe vehicles for delivering antitumor agents to TME.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号