首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytoplasmic dynein moves processively along microtubules, but the mechanism of how its heads use the energy from ATP hydrolysis, coupled to a linker swing, to achieve directed motion, is still unclear. In this article, we present a theoretical model based on the winch mechanism in which the principal direction of the linker stroke is toward the microtubule-binding domain. When mechanically coupling two identical heads (each with postulated elastic properties and a minimal ATPase cycle), the model reproduces stepping with 8-nm steps (even though the motor itself is much larger), interhead coordination, and processivity, as reported for mammalian dyneins. Furthermore, when we loosen the elastic connection between the heads, the model still shows processive directional stepping, but it becomes uncoordinated and the stepping pattern shows a greater variability, which reproduces the properties of yeast dyneins. Their slower chemical kinetics allows processive motility and a high stall force without the need for coordination.  相似文献   

2.
Normal left-right patterning in vertebrates depends on the rotational movement of nodal cilia. In order to produce this ciliary motion, the activity of axonemal dyneins must be tightly regulated in a temporal and spatial manner; the specific activation pattern of the dynein motors in the nodal cilia has not been reported. Contemporary imaging techniques cannot directly assess dynein activity in a living cilium. In this study, we establish a three-dimensional model to mimic the ciliary ultrastructure and assume that the activation of dynein proteins is related to the interdoublet distance. By employing finite-element analysis and grid deformation techniques, we simulate the mechanical function of dyneins by pairs of point loads, investigate the time-variant interdoublet distance, and simulate the dynein-triggered ciliary motion. The computational results indicate that, to produce the rotational movement of nodal cilia, the dynein activity is transferred clockwise (looking from the tip) between the nine doublet microtubules, and along each microtubule, the dynein activation should occur faster at the basal region and slower when it is close to the ciliary tip. Moreover, the time cost by all the dyneins along one microtubule to be activated can be used to deduce the dynein activation pattern; it implies that, as an alternative method, measuring this time can indirectly reveal the dynein activity. The proposed protein-structure model can simulate the ciliary motion triggered by various dynein activation patterns explicitly and may contribute to furthering the studies on axonemal dynein activity.  相似文献   

3.
To complete meiosis II in animal cells, the male DNA material needs to meet the female DNA material contained in the female pronucleus at the egg center, but it is not known how the male pronucleus, deposited by the sperm at the periphery of the cell, finds the cell center in large eggs. Pronucleus centering is an active process that appears to involve microtubules and molecular motors. For small and medium-sized cells, the force required to move the centrosome can arise from either microtubule pushing on the cortex, or cortically-attached dynein pulling on microtubules. However, in large cells, such as the fertilized Xenopus laevis embryo, where microtubules are too long to support pushing forces or they do not reach all boundaries before centrosome centering begins, a different force generating mechanism must exist. Here, we present a centrosome positioning model in which the cytosolic drag experienced by cargoes hauled by cytoplasmic dynein on the sperm aster microtubules can move the centrosome towards the cell’s center. We find that small, fast cargoes (diameter ∼100 nm, cargo velocity ∼2 µm/s) are sufficient to move the centrosome in the geometry of the Xenopus laevis embryo within the experimentally observed length and time scales.  相似文献   

4.
《Biophysical journal》2020,118(8):1930-1945
Cytoplasmic dynein is a two-headed molecular motor that moves to the minus end of a microtubule by ATP hydrolysis free energy. By employing its two heads (motor domains), cytoplasmic dynein exhibits various bipedal stepping motions: inchworm and hand-over-hand motions, as well as nonalternating steps of one head. However, the molecular basis to achieve such diverse stepping manners remains unclear because of the lack of an experimental method to observe stepping and the ATPase reaction of dynein simultaneously. Here, we propose a kinetic model for bipedal motions of cytoplasmic dynein and perform Gillespie Monte Carlo simulations that qualitatively reproduce most experimental data obtained to date. The model represents the status of each motor domain as five states according to conformation and nucleotide- and microtubule-binding conditions of the domain. In addition, the relative positions of the two domains were approximated by three discrete states. Accompanied by ATP hydrolysis cycles, the model dynein stochastically and processively moved forward in multiple steps via diverse pathways, including inchworm and hand-over-hand motions, similarly to experimental data. The model reproduced key experimental motility-related properties, including velocity and run length, as functions of the ATP concentration and external force, therefore providing a plausible explanation of how dynein achieves various stepping manners with explicit characterization of nucleotide states. Our model highlights the uniqueness of dynein in the coupling of ATPase with its movement during both inchworm and hand-over-hand stepping.  相似文献   

5.
6.
Molecular Characterization of a Cytoplasmic Dynein from Dictyostelium   总被引:1,自引:0,他引:1  
Cytoplasmic dynein is a high molecular weight, microtubule-based mechanochemical ATPase that is believed to provide motive force for a number of intracellular motilities, including transport of membrane-bound organelles. Cytoplasmic dynein also localizes to the mitotic spindles of some organisms and to the kinetochore regions of some condensed chromosomes, where it may play an active role in spindle assembly, spindle position, and/or chromosome movement during cell division. Despite active research efforts from a number of laboratories, little detail is yet available about dynein-based cellular activities. This paper describes our efforts to characterize cytoplasmic dynein from Dictyostelium and to use this protist as a molecular genetic factory to probe structure-function relationships of this molecule.  相似文献   

7.
Previous work has revealed a cytoplasmic pool of flagellar precursor proteins capable of contributing to the assembly of new flagella, but how and where these components assemble is unknown. We tested Chlamydomonas outer-dynein arm subunit stability and assembly in the cytoplasm of wild-type cells and 11 outer dynein arm assembly mutant strains (oda1-oda11) by Western blotting of cytoplasmic extracts, or immunoprecipitates from these extracts, with five outer-row dynein subunit-specific antibodies. Western blots reveal that at least three oda mutants (oda6, oda7, and oda9) alter the level of a subunit that is not the mutant gene product. Immunoprecipitation shows that large preassembled flagellar complexes containing all five tested subunits (three heavy chains and two intermediate chains) exist within wild-type cytoplasm. When the preassembly of these subunits was examined in oda strains, we observed three patterns: complete coassembly (oda 1, 3, 5, 8, and 10), partial coassembly (oda7 and oda11), and no coassembly (oda2, 6, and 9) of the four tested subunits with HCβ. Our data, together with previous studies, suggest that flagellar outer-dynein arms preassemble into a complete Mr 2 × 106 dynein arm that resides in a cytoplasmic precursor pool before transport into the flagellar compartment.  相似文献   

8.
Cytoplasmic dynein, a minus end–directed, microtubule-based motor protein, is thought to drive the movement of membranous organelles and chromosomes. It is a massive complex that consists of multiple polypeptides. Among these polypeptides, the cytoplasmic dynein heavy chain (cDHC) constitutes the major part of this complex. To elucidate the function of cytoplasmic dynein, we have produced mice lacking cDHC by gene targeting. cDHC−/− embryos were indistinguishable from cDHC+/−or cDHC+/+ littermates at the blastocyst stage. However, no cDHC−/− embryos were found at 8.5 d postcoitum. When cDHC−/− blastocysts were cultured in vitro, they showed interesting phenotypes. First, the Golgi complex became highly vesiculated and distributed throughout the cytoplasm. Second, endosomes and lysosomes were not concentrated near the nucleus but were distributed evenly throughout the cytoplasm. Interestingly, the Golgi “fragments” and lysosomes were still found to be attached to microtubules.

These results show that cDHC is essential for the formation and positioning of the Golgi complex. Moreover, cDHC is required for cell proliferation and proper distribution of endosomes and lysosomes. However, molecules other than cDHC might mediate attachment of the Golgi complex and endosomes/lysosomes to microtubules.

  相似文献   

9.
10.

Background

Cytoplasmic dynein complex is a large multi-subunit microtubule (MT)-associated molecular motor involved in various cellular functions including organelle positioning, vesicle transport and cell division. However, regulatory mechanism of the cell-cycle dependent distribution of dynein has not fully been understood.

Methodology/Principal Findings

Here we report live-cell imaging of cytoplasmic dynein in HeLa cells, by expressing multifunctional green fluorescent protein (mfGFP)-tagged 74-kDa intermediate chain (IC74). IC74-mfGFP was successfully incorporated into functional dynein complex. In interphase, dynein moved bi-directionally along with MTs, which might carry cargos such as transport vesicles. A substantial fraction of dynein moved toward cell periphery together with EB1, a member of MT plus end-tracking proteins (+TIPs), suggesting +TIPs-mediated transport of dynein. In late-interphase and prophase, dynein was localized at the centrosomes and the radial MT array. In prometaphase and metaphase, dynein was localized at spindle MTs where it frequently moved from spindle poles toward chromosomes or cell cortex. +TIPs may be involved in the transport of spindle dyneins. Possible kinetochore and cortical dyneins were also observed.

Conclusions and Significance

These findings suggest that cytoplasmic dynein is transported to the site of action in preparation for the following cellular events, primarily by the MT-based transport. The MT-based transport may have greater advantage than simple diffusion of soluble dynein in rapid and efficient transport of the limited concentration of the protein.  相似文献   

11.
The heavy chain of cytoplasmic dynein is required for nuclear migration in Aspergillus nidulans and other fungi. Here we report on a new gene required for nuclear migration, nudG, which encodes a homologue of the “8-kD” cytoplasmic dynein light chain (CDLC). We demonstrate that the temperature sensitive nudG8 mutation inhibits nuclear migration and growth at restrictive temperature. This mutation also inhibits asexual and sexual sporulation, decreases the intracellular concentration of the nudG CDLC protein and causes the cytoplasmic dynein heavy chain to be absent from the mycelial tip, where it is normally located in wild-type mycelia. Coimmunoprecipitation experiments with antibodies against the cytoplasmic dynein heavy chain (CDHC) and the nudG CDLC demonstrated that some fraction of the cytoplasmic dynein light chain is in a protein complex with the CDHC. Sucrose gradient sedimentation analysis, however, showed that not all of the NUDG protein is complexed with the heavy chain. A double mutant carrying a cytoplasmic dynein heavy chain deletion plus a temperature-sensitive nudG mutation grew no more slowly at restrictive temperature than a strain with only the CDHC deletion. This result demonstrates that the effect of the nudG mutation on nuclear migration and growth is mediated through an interaction with the CDHC rather than with some other molecule (e.g., myosin-V) with which the 8-kD CDLC might theoretically interact.  相似文献   

12.
Previous work from our laboratory suggested that microtubules are released from the neuronal centrosome and then transported into the axon (Ahmad, F.J., and P.W. Baas. 1995. J. Cell Sci. 108: 2761–2769). In these studies, cultured sympathetic neurons were treated with nocodazole to depolymerize most of their microtubule polymer, rinsed free of the drug for a few minutes to permit a burst of microtubule assembly from the centrosome, and then exposed to nanomolar levels of vinblastine to suppress further microtubule assembly from occurring. Over time, the microtubules appeared first near the centrosome, then dispersed throughout the cytoplasm, and finally concentrated beneath the periphery of the cell body and within developing axons. In the present study, we microinjected fluorescent tubulin into the neurons at the time of the vinblastine treatment. Fluorescent tubulin was not detected in the microtubules over the time frame of the experiment, confirming that the redistribution of microtubules observed with the experimental regime reflects microtubule transport rather than microtubule assembly. To determine whether cytoplasmic dynein is the motor protein that drives this transport, we experimentally increased the levels of the dynamitin subunit of dynactin within the neurons. Dynactin, a complex of proteins that mediates the interaction of cytoplasmic dynein and its cargo, dissociates under these conditions, resulting in a cessation of all functions of the motor tested to date (Echeverri, C.J., B.M. Paschal, K.T. Vaughan, and R.B. Vallee. 1996. J. Cell Biol. 132: 617–633). In the presence of excess dynamitin, the microtubules did not show the outward progression but instead remained near the centrosome or dispersed throughout the cytoplasm. On the basis of these results, we conclude that cytoplasmic dynein and dynactin are essential for the transport of microtubules from the centrosome into the axon.  相似文献   

13.
It was our goal to determine the location of the intermediate chain within the complex of cytoplasmic dynein by immunoelectron microscopy. To do so we generated two monoclonal antibodies (m74-1 and m74-2) specific for the intermediate chain. Both antibodies recognised the intermediate chain by sodium dodecyl sulphate–polyacrylamide gel electrophoresis immunoblot and ELISA assays of native and denatured proteins. When sucrose density gradient-purified cytoplasmic dynein from bovine brain was incubated with the gold-conjugated monoclonal antibodies, m74-1 and m74-2, and examined by negative staining, the gold label was found opposite the globular heads at the base of the V-shaped stalk of the motor complex. The labelling of the intermediate chain is the first mapping of a component within cytoplasmic dynein. The identification of the intermediate chain at the base of the complex supports a possible docking function of the intermediate chain.  相似文献   

14.
Microtubules are filamentous tubular protein polymers which are essential for a range of cellular behaviour, and are generally straight over micron length scales. However, in some gliding assays, where microtubules move over a carpet of molecular motors, individual microtubules can also form tight arcs or rings, even in the absence of crosslinking proteins. Understanding this phenomenon may provide important explanations for similar highly curved microtubules which can be found in nerve cells undergoing neurodegeneration. We propose a model for gliding assays where the kinesins moving the microtubules over the surface induce ring formation through differential binding, substantiated by recent findings that a mutant version of the motor protein kinesin applied in solution is able to lock-in microtubule curvature. For certain parameter regimes, our model predicts that both straight and curved microtubules can exist simultaneously as stable steady states, as has been seen experimentally. Additionally, unsteady solutions are found, where a wave of differential binding propagates down the microtubule as it glides across the surface, which can lead to chaotic motion. Whilst this model explains two-dimensional microtubule behaviour in an experimental gliding assay, it has the potential to be adapted to explain pathological curling in nerve cells.  相似文献   

15.
Dyneins are microtubule-based molecular motors involved in many different types of cell movement. Most dynein heavy chains (DHCs) clearly group into cytoplasmic or axonemal isoforms. However, DHC1b has been enigmatic. To learn more about this isoform, we isolated Chlamydomonas cDNA clones encoding a portion of DHC1b, and used these clones to identify a Chlamydomonas cell line with a deletion mutation in DHC1b. The mutant grows normally and appears to have a normal Golgi apparatus, but has very short flagella. The deletion also results in a massive redistribution of raft subunits from a peri-basal body pool (Cole, D.G., D.R. Diener, A.L. Himelblau, P.L. Beech, J.C. Fuster, and J.L. Rosenbaum. 1998. J. Cell Biol. 141:993–1008) to the flagella. Rafts are particles that normally move up and down the flagella in a process known as intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519–5523), which is essential for assembly and maintenance of flagella. The redistribution of raft subunits apparently occurs due to a defect in the retrograde component of IFT, suggesting that DHC1b is the motor for retrograde IFT. Consistent with this, Western blots indicate that DHC1b is present in the flagellum, predominantly in the detergent- and ATP-soluble fractions. These results indicate that DHC1b is a cytoplasmic dynein essential for flagellar assembly, probably because it is the motor for retrograde IFT.  相似文献   

16.
Glycogen synthase kinase 3 (GSK‐3) has been linked to regulation of kinesin‐dependent axonal transport in squid and flies, and to indirect regulation of cytoplasmic dynein. We have now found evidence for direct regulation of dynein by mammalian GSK‐3β in both neurons and non‐neuronal cells. GSK‐3β coprecipitates with and phosphorylates mammalian dynein. Phosphorylation of dynein intermediate chain (IC) reduces its interaction with Ndel1, a protein that contributes to dynein force generation. Two conserved residues, S87/T88 in IC‐1B and S88/T89 in IC‐2C, have been identified as GSK‐3 targets by both mass spectrometry and site‐directed mutagenesis. These sites are within an Ndel1‐binding domain, and mutation of both sites alters the interaction of IC's with Ndel1. Dynein motility is stimulated by (i) pharmacological and genetic inhibition of GSK‐3β, (ii) an insulin‐sensitizing agent (rosiglitazone) and (iii) manipulating an insulin response pathway that leads to GSK‐3β inactivation. Thus, our study connects a well‐characterized insulin‐signaling pathway directly to dynein stimulation via GSK‐3 inhibition.   相似文献   

17.
Several viruses target the microtubular motor system in early stages of the viral life cycle. African swine fever virus (ASFV) protein p54 hijacks the microtubule-dependent transport by interaction with a dynein light chain (DYNLL1/DLC8). This was shown to be a high-affinity interaction, and the residues gradually disappearing were mapped on DLC8 to define a putative p54 binding surface by nuclear magnetic resonance (NMR) spectroscopy. The potential of short peptides targeting the binding domain to disrupt this high-affinity protein-protein interaction was assayed, and a short peptide sequence was shown to bind and compete with viral protein binding to dynein. Given the complexity and number of proteins involved in cellular transport, the prevention of this viral-DLC8 interaction might not be relevant for successful viral infection. Thus, we tested the capacity of these peptides to interfere with viral infection by disrupting dynein interaction with viral p54. Using this approach, we report on short peptides that inhibit viral growth.To enter the host cell, a virus must cross several barriers to reach the nucleus. Many viruses hijack the microtubular network to be transported along the cytoplasm (7, 18). Dynein is a microtubular motor protein, part of a large macromolecular complex called the microtubular motor complex. Dynein is involved in early stages of the viral life cycle of diverse infections, the first stage being the intracellular transport of the incoming virus along microtubules. Once transported throughout the cytosol, the virus rapidly gains the perinuclear area or the nucleus, where virus replication takes place. The disruption of microtubules or microtubular motor dynein function impairs the transport of a number of viruses; however, the intrinsic mechanism of this transport is unclear. Also, it has not been firmly established whether there is a common mechanism by which these viruses hijack a component of the microtubular motor complex for this purpose (7). A direct interaction between a given viral protein and cytoplasmic dynein for transport has been reported for HIV, herpes simplex virus, African swine fever virus (ASFV), and rabies virus (4, 14, 22, 25). In adenoviruses, a direct interaction of the viral capsid hexon subunit with cytoplasmic dynein has been described recently (5).One of these viruses, ASFV, which is a large DNA virus, enters the cell by dynamin- and clathrin-dependent endocytosis (12), and its infectivity is dependent on the acidification of the endosome. ASFV protein p54, a major protein of virion membranes, interacts with the light-chain dynein of 8 kDa (DLC8), which allows the transport of the virus to the perinuclear area (4), in a region called the microtubular organizing center (MTOC). In this zone, the virus starts replication in the viral factory, a secluded compartment where newly formed virions assemble (11, 13). By binding DLC8, the virus masters intracellular transport to ensure successful infection. However, due to the complexity of the system, the mechanism of this interaction is still elusive.A variety of names have been used for the subunits of the cytoplasmic dynein complex. A new classification for mammalian cytoplasmic dynein subunit genes based on their phylogenetic relationships has been reported in which the DLC8 gene was named DYNLL1 (26).Light dynein chains are responsible for direct cargo binding in the cell, but how do they select so many different cargos? It is not known whether the mode and site of binding is the same for viral proteins and physiological cargos. Within these multimeric complexes, there are a number of molecules that theoretically could interact with a given viral protein. However, to date viral proteins have been described to bind only light or intermediate dynein chains, such as DLC8 and TcTex1 (4, 5, 8). A candidate viral protein would bind one of the DLC binding domains, which in DLC8 are located between the two dimers of the DLC8 molecule (LysXThrThr). Here, we analyzed this interaction between a viral protein and DLC8 in an attempt to elucidate its requirements and relevance for viral infection.To determine whether this interaction is crucial for viral replication or whether it is just one of a number of alternatives for the virus-host interplay, we analyzed the capacity of a set of inhibitor peptides targeting a determined binding domain of the DLC8 molecule to interfere with viral infection by disrupting dynein interaction with viral p54.  相似文献   

18.
The cytoplasmic dynein motor complex is known to exist in multiple forms, but few specific functions have been assigned to individual subunits. A key limitation in the analysis of dynein in intact mammalian cells has been the reliance on gross perturbation of dynein function, e.g., inhibitory antibodies, depolymerization of the entire microtubule network, or the use of expression of dominant negative proteins that inhibit dynein indirectly. Here, we have used RNAi and automated image analysis to define roles for dynein subunits in distinct membrane-trafficking processes. Depletion of a specific subset of dynein subunits, notably LIC1 (DYNC1LI1) but not LIC2 (DYNC1LI2), recapitulates a direct block of ER export, revealing that dynein is required to maintain the steady-state composition of the Golgi, through ongoing ER-to-Golgi transport. Suppression of LIC2 but not of LIC1 results in a defect in recycling endosome distribution and cytokinesis. Biochemical analyses also define the role of each subunit in stabilization of the dynein complex; notably, suppression of DHC1 or IC2 results in concomitant loss of Tctex1. Our data demonstrate that LIC1 and LIC2 define distinct dynein complexes that function at the Golgi versus recycling endosomes, respectively, suggesting that functional populations of dynein mediate discrete intracellular trafficking pathways.  相似文献   

19.
Ryanodine receptor type 1 (RyR1) produces spatially and temporally defined Ca2+ signals in several cell types. How signals received in the cytoplasmic domain are transmitted to the ion gate and how the channel gates are unknown. We used EGTA or neuroactive PCB 95 to stabilize the full closed or open states of RyR1. Single-channel measurements in the presence of FKBP12 indicate that PCB 95 inverts the thermodynamic stability of RyR1 and locks it in a long-lived open state whose unitary current is indistinguishable from the native open state. We analyzed two datasets of 15,625 and 18,527 frozen-hydrated RyR1-FKBP12 particles in the closed and open conformations, respectively, by cryo-electron microscopy. Their corresponding three-dimensional structures at 10.2 Å resolution refine the structure surrounding the ion pathway previously identified in the closed conformation: two right-handed bundles emerging from the putative ion gate (the cytoplasmic “inner branches” and the transmembrane “inner helices”). Furthermore, six of the identifiable transmembrane segments of RyR1 have similar organization to those of the mammalian Kv1.2 potassium channel. Upon gating, the distal cytoplasmic domains move towards the transmembrane domain while the central cytoplasmic domains move away from it, and also away from the 4-fold axis. Along the ion pathway, precise relocation of the inner helices and inner branches results in an approximately 4 Å diameter increase of the ion gate. Whereas the inner helices of the K+ channels and of the RyR1 channel cross-correlate best with their corresponding open/closed states, the cytoplasmic inner branches, which are not observed in the K+ channels, appear to have at least as important a role as the inner helices for RyR1 gating. We propose a theoretical model whereby the inner helices, the inner branches, and the h1 densities together create an efficient novel gating mechanism for channel opening by relaxing two right-handed bundle structures along a common 4-fold axis.  相似文献   

20.
Integrin-ligand binding generates many intracellular signals, including signals to initiate focal contact formation and to regulate cellular decisions concerning growth and differentiation. Oligomerization of the β subunit cytoplasmic domain appears to be required for many of these events. In order to study these processes, we have generated a novel chimeric protein, consisting of the chicken integrin β1, cytoplasmic domain connected to the central rod domain of a neuronal intermediate filament, a-internexin. This chimeric protein, when expressed transiently in 293T cells, oligomerizes in a β cytoplasmic domain-dependent manner. This oligomerization requires the membrane proximal amino acids LLMII of the β1 cytoplasmic domain, as demonstrated by deletion analysis. Therefore, the integrin β cytoplasmic domain in this system contains an oligomerization function, which may provide some insight as to the function of intact integrins in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号