共查询到20条相似文献,搜索用时 15 毫秒
1.
Arvind Pratap Singh Shu-chin Lai Tannistha Nandi Hui Hoon Chua Wen Fong Ooi Catherine Ong John D. Boyce Ben Adler Rodney J. Devenish Patrick Tan 《Journal of bacteriology》2013,195(24):5487-5498
Burkholderia pseudomallei, the causative agent of melioidosis, contains a large pathogen genome (7.2 Mb) with ∼2,000 genes of putative or unknown function. Interactions with potential hosts and environmental factors may induce rapid adaptations in these B. pseudomallei genes, which can be discerned through evolutionary analysis of multiple B. pseudomallei genomes. Here we show that several previously uncharacterized B. pseudomallei genes bearing genetic signatures of rapid adaptation (positive selection) can induce diverse cellular phenotypes when expressed in mammalian cells. Notably, several of these phenotypes are plausibly related to virulence, including multinuclear giant cell formation, apoptosis, and autophagy induction. Specifically, we show that BPSS0180, a type VI cluster-associated gene, is capable of inducing autophagy in both phagocytic and nonphagocytic mammalian cells. Following infection of macrophages, a B. pseudomallei mutant disrupted in BPSS0180 exhibited significantly decreased colocalization with LC3 and impaired intracellular survival; these phenotypes were rescued by introduction of an intact BPSS0180 gene. The results suggest that BPSS0180 may be a novel inducer of host cell autophagy that contributes to B. pseudomallei intracellular growth. More generally, our study highlights the utility of applying evolutionary principles to microbial genomes to identify novel virulence genes. 相似文献
2.
3.
4.
Jean F. Challacombe Chris J. Stubben Christopher P. Klimko Susan L. Welkos Steven J. Kern Joel A. Bozue Patricia L. Worsham Christopher K. Cote Daniel N. Wolfe 《PloS one》2014,9(12)
Infection by the Gram-negative pathogen Burkholderia pseudomallei results in the disease melioidosis, acquired from the environment in parts of southeast Asia and northern Australia. Clinical symptoms of melioidosis range from acute (fever, pneumonia, septicemia, and localized infection) to chronic (abscesses in various organs and tissues, most commonly occurring in the lungs, liver, spleen, kidney, prostate and skeletal muscle), and persistent infections in humans are difficult to cure. Understanding the basic biology and genomics of B. pseudomallei is imperative for the development of new vaccines and therapeutic interventions. This formidable task is becoming more tractable due to the increasing number of B. pseudomallei genomes that are being sequenced and compared.Here, we compared three B. pseudomallei genomes, from strains MSHR668, K96243 and 1106a, to identify features that might explain why MSHR668 is more virulent than K96243 and 1106a in a mouse model of B. pseudomallei infection. Our analyses focused on metabolic, virulence and regulatory genes that were present in MSHR668 but absent from both K96243 and 1106a. We also noted features present in K96243 and 1106a but absent from MSHR668, and identified genomic differences that may contribute to variations in virulence noted among the three B. pseudomallei isolates. While this work contributes to our understanding of B. pseudomallei genomics, more detailed experiments are necessary to characterize the relevance of specific genomic features to B. pseudomallei metabolism and virulence. Functional analyses of metabolic networks, virulence and regulation shows promise for examining the effects of B. pseudomallei on host cell metabolism and will lay a foundation for future prediction of the virulence of emerging strains. Continued emphasis in this area will be critical for protection against melioidosis, as a better understanding of what constitutes a fully virulent Burkholderia isolate may provide for better diagnostic and medical countermeasure strategies. 相似文献
5.
Ming Yi 《PloS one》2012,7(10)
Annexin A1 is a multi functional molecule which is involved in inflammation, innate and adaptive immune systems, tumor progression and metastasis. We have previously showed the impaired tumor growth, metastasis, angiogenesis and wound healing in annexin A1 knockout mice. While tumor is a piece of heterogeneous mass including not only malignant tumor cells but also the stroma, the importance of the tumor stroma for tumor progression and metastasis is becoming increasingly clear. The tumor stroma is comprised by various components including extracellular matrix and non-malignant cells in the tumor, such as endothelial cells, fibroblasts, immune cells, inflammatory cells. Based on our previous finding of pro-angiogenic functions for annexin A1 in vascular endothelial cell sprouting, wound healing, tumor growth and metastasis, and the previously known properties for annexin A1 in immune cells and inflammation, this study hypothesized that annexin A1 is a key functional player in tumor development, linking the various components in tumor stroma by its actions in endothelial cells and immune cells. Using systems analysis programs commercially available, this paper further compared the gene expression between tumors from annexin A1 wild type mice and annexin A1 knockout mice and found a list of genes that significantly changed in the tumor stroma that lacked annexin A1. This revealed annexin A1 to be an effective regulator in tumor stroma and suggested a mechanism that annexin A1 affects tumor development and metastasis through interaction with the various components in the microenvironment surrounding the tumor cells. 相似文献
6.
Susan L. Welkos Christopher P. Klimko Steven J. Kern Jeremy J. Bearss Joel A. Bozue Robert C. Bernhards Sylvia R. Trevino David M. Waag Kei Amemiya Patricia L. Worsham Christopher K. Cote 《PloS one》2015,10(4)
Burkholderia pseudomallei, the etiologic agent of melioidosis, is a gram-negative facultative intracellular bacterium. This bacterium is endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. It has also been estimated to present a considerable risk as a potential biothreat agent. There are currently no effective vaccines for B. pseudomallei, and antibiotic treatment can be hampered by nonspecific symptomology, the high incidence of naturally occurring antibiotic resistant strains, and disease chronicity. Accordingly, there is a concerted effort to better characterize B. pseudomallei and its associated disease. Before novel vaccines and therapeutics can be tested in vivo, a well characterized animal model is essential. Previous work has indicated that mice may be a useful animal model. In order to develop standardized animal models of melioidosis, different strains of bacteria must be isolated, propagated, and characterized. Using a murine intraperitoneal (IP) infection model, we tested the virulence of 11 B. pseudomallei strains. The IP route offers a reproducible way to rank virulence that can be readily reproduced by other laboratories. This infection route is also useful in distinguishing significant differences in strain virulence that may be masked by the exquisite susceptibility associated with other routes of infection (e.g., inhalational). Additionally, there were several pathologic lesions observed in mice following IP infection. These included varisized abscesses in the spleen, liver, and haired skin. This model indicated that commonly used laboratory strains of B. pseudomallei (i.e., K96243 and 1026b) were significantly less virulent as compared to more recently acquired clinical isolates. Additionally, we characterized in vitro strain-associated differences in virulence for macrophages and described a potential inverse relationship between virulence in the IP mouse model of some strains and in the macrophage phagocytosis assay. Strains which were more virulent for mice (e.g., HBPU10304a) were often less virulent in the macrophage assays, as determined by several parameters such as intracellular bacterial replication and host cell cytotoxicity. 相似文献
7.
Characterization of the capsular polysaccharide of Burkholderia (Pseudomonas) pseudomallei 304b.
下载免费PDF全文

Burkholderia (Pseudomonas) pseudomallei is the causative agent of melioidosis, a bacterial infection of considerable morbidity in areas of endemicity of Southeast Asia and northern Australia. Clinical isolates of B. pseudomallei have been demonstrated to produce a lipopolysaccharide (LPS) containing two separate and chemically distinct antigenic O polysaccharides against which infected patients produced antibodies. A putative capsular polysaccharide (CPS) has also been reported and is thought to be antigenically conserved based on results of serological studies with clinical B. pseudomallei isolates. In the present study, the CPS isolated from B. pseudomallei 304b from northeastern Thailand was found to have an [alpha]D of +99 degrees (water), was composed of D-galactose (D-Gal), 3-deoxy-D-manno-2-octulosonic acid (KDO), and O-acetyl 3:1:1), and was a linear unbranched polymer of repeating tetrasaccharide units having the following structure: -3)-2-O-Ac-beta-D-Galp-(1-4)-alpha-D-Galp-(1-3)-beta-D -Galp-(1-5)-beta-D-KDOp-(2-. Sera from 13 of 15 patients with different clinical manifestations of melioidosis but not normal controls recognize the CPS, which suggests that it is immunogenic and raises the possibility that it may have a role as a vaccine candidate and/or diagnostic agent. 相似文献
8.
9.
Characterization of the catalase-peroxidase KatG from Burkholderia pseudomallei by mass spectrometry
Donald LJ Krokhin OV Duckworth HW Wiseman B Deemagarn T Singh R Switala J Carpena X Fita I Loewen PC 《The Journal of biological chemistry》2003,278(37):35687-35692
The electron density maps of the catalase-peroxidase from Burkholderia pseudomallei (BpKatG) presented two unusual covalent modifications. A covalent structure linked the active site Trp111 with Tyr238 and Tyr238 with Met264, and the heme was modified, likely by a perhydroxy group added to the vinyl group on ring I. Mass spectrometry analysis of tryptic digests of BpKatG revealed a cluster of ions at m/z 6585, consistent with the fusion of three peptides through Trp111, Tyr238, and Met264, and a cluster at m/z approximately 4525, consistent with the fusion of two peptides linked through Trp111 and Tyr238. MS/MS analysis of the major ions at m/z 4524 and 4540 confirmed the expected sequence and suggested that the multiple ions in the cluster were the result of multiple oxidation events and transfer of CH3-S to the tyrosine. Neither cluster of ions at m/z 4525 or 6585 was present in the spectrum of a tryptic digest of the W111F variant of BpKatG. The spectrum of the tryptic digest of native BpKatG also contained a major ion for a peptide in which Met264 had been converted to homoserine, consistent with the covalent bond between Tyr238 and Met264 being susceptible to hydrolysis, including the loss of the CH3-S from the methionine. Analysis of the tryptic digests of hydroperoxidase I (KatG) from Escherichia coli provided direct evidence for the covalent linkage between Trp105 and Tyr226 and indirect evidence for a covalent linkage between Tyr226 and Met252. Tryptic peptide analysis and N-terminal sequencing revealed that the N-terminal residue of BpKatG is Ser22. 相似文献
10.
11.
Tannistha Nandi Catherine Ong Arvind Pratap Singh Justin Boddey Timothy Atkins Mitali Sarkar-Tyson Angela E. Essex-Lopresti Hui Hoon Chua Talima Pearson Jason F. Kreisberg Christina Nilsson Pramila Ariyaratne Catherine Ronning Liliana Losada Yijun Ruan Wing-Kin Sung Donald Woods Richard W. Titball Ifor Beacham Ian Peak Paul Keim William C. Nierman Patrick Tan 《PLoS pathogens》2010,6(4)
12.
13.
A single chain variable fragment (scFv) specific towards B. pseudomallei exotoxin had previously been generated from an existing hybridoma cell line (6E6AF83B) and cloned into the phage display vector pComb3H. In this study, the scFv was subcloned into the pComb3X vector to facilitate the detection and purification of expressed antibodies. Detection was facilitated by the presence of a hemagglutinin (HA) tag, and purification was facilitated by the presence of a histidine tag. The culture was grown at 30 degrees C until log phase was achieved and then induced with 1 mM IPTG in the absence of any additional carbon source. Induction was continued at 30 degrees C for five h. The scFv was discerned by dual processes-direct enzyme-linked immunosorbent assays (ELISA), and Western blotting. When compared to E. coli strains ER2537 and HB2151, scFv expression was observed to be highest in the E. coli strain Top10F'. The expressed scFv protein was purified via nickel-mediated affinity chromatography and results indicated that two proteins a 52 kDa protein, and a 30 kDa protein were co-purified. These antibodies, when blotted against immobilized exotoxin, exhibited significant specificity towards the exotoxin, compared to other B. pseudomallei antigens. Thus, these antibodies should serve as suitable reagents for future affinity purification of the exotoxin. 相似文献
14.
15.
Molecular Characterization of Genetic Loci Required for Secretion of Exoproducts in Burkholderia pseudomallei
下载免费PDF全文

David DeShazer Paul J. Brett Mary N. Burtnick Donald E. Woods 《Journal of bacteriology》1999,181(15):4661-4664
Previous studies have demonstrated that Burkholderia pseudomallei secretes protease, lipase, and phospholipase C (PLC) into the extracellular milieu, but their mechanisms of secretion and roles in pathogenesis have not been elucidated. In this study, we isolated and characterized 29 transposon mutants unable to secrete protease, lipase, and PLC. 相似文献
16.
Sarovich DS Price EP Von Schulze AT Cook JM Mayo M Watson LM Richardson L Seymour ML Tuanyok A Engelthaler DM Pearson T Peacock SJ Currie BJ Keim P Wagner DM 《PloS one》2012,7(2):e30789
Burkholderia pseudomallei is a gram-negative bacterium that causes the serious human disease, melioidosis. There is no vaccine against melioidosis and it can be fatal if not treated with a specific antibiotic regimen, which typically includes the third-generation cephalosporin, ceftazidime (CAZ). There have been several resistance mechanisms described for B. pseudomallei, of which the best described are amino acid changes that alter substrate specificity in the highly conserved class A β-lactamase, PenA. In the current study, we sequenced penA from isolates sequentially derived from two melioidosis patients with wild-type (1.5 μg/mL) and, subsequently, resistant (16 or ≥256 μg/mL) CAZ phenotypes. We identified two single-nucleotide polymorphisms (SNPs) that directly increased CAZ hydrolysis. One SNP caused an amino acid substitution (C69Y) near the active site of PenA, whereas a second novel SNP was found within the penA promoter region. In both instances, the CAZ resistance phenotype corresponded directly with the SNP genotype. Interestingly, these SNPs appeared after infection and under selection from CAZ chemotherapy. Through heterologous cloning and expression, and subsequent allelic exchange in the native bacterium, we confirmed the role of penA in generating both low-level and high-level CAZ resistance in these clinical isolates. Similar to previous studies, the amino acid substitution altered substrate specificity to other β-lactams, suggesting a potential fitness cost associated with this mutation, a finding that could be exploited to improve therapeutic outcomes in patients harboring CAZ resistant B. pseudomallei. Our study is the first to functionally characterize CAZ resistance in clinical isolates of B. pseudomallei and to provide proven and clinically relevant signatures for monitoring the development of antibiotic resistance in this important pathogen. 相似文献
17.
18.
19.
20.
Genomic diversity of Burkholderia pseudomallei clinical isolates: subtractive hybridization reveals a Burkholderia mallei-specific prophage in B. pseudomallei 1026b
下载免费PDF全文

DeShazer D 《Journal of bacteriology》2004,186(12):3938-3950
Burkholderia pseudomallei is the etiologic agent of the disease melioidosis and is a category B biological threat agent. The genomic sequence of B. pseudomallei K96243 was recently determined, but little is known about the overall genetic diversity of this species. Suppression subtractive hybridization was employed to assess the genetic variability between two distinct clinical isolates of B. pseudomallei, 1026b and K96243. Numerous mobile genetic elements, including a temperate bacteriophage designated phi1026b, were identified among the 1026b-specific suppression subtractive hybridization products. Bacteriophage phi1026b was spontaneously produced by 1026b, and it had a restricted host range, infecting only Burkholderia mallei. It possessed a noncontractile tail, an isometric head, and a linear 54,865-bp genome. The mosaic nature of the phi1026b genome was revealed by comparison with bacteriophage phiE125, a B. mallei-specific bacteriophage produced by Burkholderia thailandensis. The phi1026b genes for DNA packaging, tail morphogenesis, host lysis, integration, and DNA replication were nearly identical to the corresponding genes in phiE125. On the other hand, phi1026b genes involved in head morphogenesis were similar to head morphogenesis genes encoded by Pseudomonas putida and Pseudomonas aeruginosa bacteriophages. Consistent with this observation, immunogold electron microscopy demonstrated that polyclonal antiserum against phiE125 reacted with the tail of phi1026b but not with the head. The results presented here suggest that B. pseudomallei strains are genetically heterogeneous and that bacteriophages are major contributors to the genomic diversity of this species. The bacteriophage characterized in this study may be a useful diagnostic tool for differentiating B. pseudomallei and B. mallei, two closely related biological threat agents. 相似文献