首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sand dune ecosystems are one of the areas most affected by the introduction of invasive species which represents a threat for biodiversity conservation. Their invasion patterns and spread may depend on their salinity tolerance, besides other factors. To test this hypothesis, we investigated the effects of salt stress on seed germination and on the activity of antioxidant enzymes (catalase, CAT; ascorbate peroxidase, APX; peroxidase, POX; and glutathione reductase, GR) in two legume species, an invasive, Acacia longifolia (Andrews.) Willd., and a native, Ulex europaeus (L.), very common in the sand dunes of the coast of Portugal. Salt stress was induced by adding NaCl at different concentrations, 0, 50, 100 and 200 mM, for 15 days. Results showed that the highest germination percentages were obtained in distilled water (control) and that, with increasing salt concentration, seed germination was delayed and decreased in both species. Inhibition of germination was higher in the native species, only 3% of seeds germinated at 100 mM and no seeds germinated at 200 mM NaCl. In the invasive species, the reduction was higher at 200 mM NaCl (16%). Considering the coefficient of germination velocity, a decrease in both species with increasing NaCl concentration was observed. The CAT and GR activities decreased in A. longifolia with increasing salinity. In turn, APX activity significantly increased as NaCl concentration increased while the POX activities declined at the highest NaCl concentration. On the other hand, at 50 mM NaCl lower activity of CAT and APX and higher GR and POX were found in U. europaeus. In both species, protein content increased as NaCl concentration increased. In addition, it seems that APX activities play an essential role in the scavenging reactive oxygen species (ROS). These results suggest that the seeds of the invasive legume A. longifolia are more tolerant to salinity than the native legume U. europaeus, and seem better equipped to handle the physiological stress of high salinity, which may contribute to its invasive ability in sand dunes.  相似文献   

2.
Sacred lotus (Nelumbo nucifera Gaertn. ‘Tielian’) seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW] −1, respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100°C. Germination percentage of maize (Zea mays L. ‘Huangbaogu’) seeds was zero after they were treated at 100°Cfor 15 min and that of lotus seeds was 13.5% following the treatment at 100°C for 24 h. The time in which 50% of lotus and maize seeds were killed by 100°C was about 14.5 h and 6 min, respectively. With increasing treatment time at 100°C, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100°C was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100°C was more than 12 h, plasmolysis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plasmolemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0 −12 h of the treatment at 100°C and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5–10 min of the treatment at 100°C and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100°C and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treatment time at 100°C. For maize seeds: (1) activities of SOD and DHAR of embryos and endosperms and of GR of embryos increased during the early phase of the treatment at 100°C and then decreased; and (2) activities of APX and CAT of embryos and endosperms and of GR of endosperms rapidly decreased with increasing treatment time at 100°C. With decrease in seed germination, activities of SOD, APX, CAT, GR and DHAR of axes and cotyledons of lotus seeds decreased slowly, and those of embryos and endosperms of maize seeds decreased rapidly.  相似文献   

3.
Liu  Xiongsheng  Xiao  Yufei  Wang  Yong  Chen  Fengfan  Huang  Ronglin  Jiang  Yi 《Protoplasma》2020,257(4):1221-1230

Keteleeria fortunei var. cyclolepis is an ideal tree species for mountain afforestation, timber forests, and landscaping. Its pollination process can be affected by the rainy season, making it difficult to pollinate the massive female cones, which leads to a high abortion rate and low quality of seeds. Here, we observed the pollen morphology of K. f. cyclolepis using scanning electron and light microscopes, investigated the characteristics of its in vitro germination by the detached method, and explored the effect of different storage temperatures and times on the pollen germination rate and the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Our results indicated that the pollen of K. f. cyclolepis is a five-cell pollen, comprising one noumenon and two air sacs, both of which were oval in polar view. The optimal condition for pollen germination of K. f. cyclolepis was 240 g/L sucrose + 70 mg/L CaCl2 + 210 mg/L H3BO3 at 24 °C and pH 6.0, resulting in a germination rate of 45.0%. The effects of different storage temperature and time on pollen germination rate varied significantly. The best storage temperature was − 80 °C, at which the germination rate was 20.9% after 365 days of storage, and the activity of three protective enzymes remained relatively high, representing relatively strong antioxidation and antiaging activity. Stepwise regression analysis showed that SOD was the main factor affecting the pollen germination rate of K. f. cyclolepis. The function of the three protective enzymes differed under various temperatures, for example, SOD served as a sensitive protective enzyme at room temperature, − 20 °C and − 80 °C, whereas both SOD and CAT served as sensitive protective enzymes at 4 °C.

  相似文献   

4.
The aim of this study was to determine if loss of germinability in Pyrus betulaefolia seeds stored at 4°C and at room temperature is associated with a loss of membrane lipid peroxidation or changes in antioxidant enzyme activities. The results indicated that germination percentage clearly decreased when seeds were stored at room temperature rather than at 4°C from 6 to 12 months. Room-temperature storage of the pear stock seed for 12 months decreased germination to 15.52%, but germination percentage was not changed when seed was stored at 4°C for 12 months. MDA, a marker for membrane lipid peroxidation, increased significantly under room-temperature storage conditions. Antioxidant enzyme (SOD, POD, and CAT) activities were a good indicator of germination percentage in pear stock seeds. Antioxidant enzyme activities of pear stock seeds at 4°C were higher than antioxidant enzyme activities in seeds stored at room temperature from 6 to 12 months. Antioxidant enzyme activities of the pear stock seed decreased markedly under conditions of room-temperature storage from 6 to 12 months. The results of this study showed that long-term room-temperature storage was detrimental for maintaining the vigor of P. betulaefolia seeds. The mechanisms responsible for this outcome are a higher level of membrane lipid peroxidation and a lower level of activity of antioxidant enzymes.  相似文献   

5.
Pigeonpea [Cajanus cajan (L.) Millsp.] is a waterlogging-sensitive legume crop. We studied the effect of waterlogging stress on hydrogen peroxide (H2O2) content, lipid peroxidation and antioxidant enzyme activities in two pigeonpea genotypes viz., ICPL-84023 (waterlogging resistant) and MAL-18 (waterlogging susceptible). In a pot experiment, waterlogging stress was imposed for 6 days at early vegetative stage (20 days after sowing). Waterlogging treatment significantly increased hydrogen peroxide accumulation and lipid peroxidation, which indicated the extent of oxidative injury posed by stress conditions. Enzyme activities of peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and polyphenol oxidase (PPO) increased in pigeonpea roots as a consequence of waterlogged conditions, and all the enzyme activities were significantly higher in waterlogged ICPL-84023 than in MAL-18. POX activity was the maximum immediately after imposing stress, therefore, it was suggested to be involved in early scavenging of H2O2, while rest of the enzymes (CAT, APX, SOD and PPO) were more important in late responses to waterlogging. Present study revealed that H2O2 content is directly related to lipid peroxidation leading to oxidative damage during waterlogging in pigeonpea. Higher antioxidant potential in ICPL-84023 as evidenced by enhanced POX, CAT, APX, SOD and PPO activities increased capacity for reactive oxygen species (ROS) scavenging and indicated relationship between waterlogging resistance and antioxidant defense system in pigeonpea.  相似文献   

6.
Germination of lettuce seeds was inhibited by 6-methoxy-2-benzoxazolinone (MBOA) at concentrations greater than 0.03 mmol/L. MBOA also inhibited the induction of α-amylase activity in the lettuce seeds at concentrations greater than 0.03 mmol/L. These two concentration–response curves for the germination and α-amylase indicate that the percentage of the germination was positively correlated with the activity of α-amylase in the seeds. Lettuce seeds germinated around 18 h after incubation and inhibition of α-amylase by MBOA occurred within 6 h after seed incubation. These results show that MBOA may inhibit the germination of lettuce seeds by inhibiting the induction of α-amylase activity.  相似文献   

7.
Caper (Capparis ovata Desf.) is a perennial shrub (xerophyte) and drought resistant plant which is well adapted to Mediterranean Ecosystem. In the present study we investigated the plant growth, relative water content (RWC), chlorophyll fluorescence (FV/FM), lipid peroxidation (TBA-reactive substances content) as parameters indicative of oxidative stress and antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POX), catalase (CAT) and glutathione reductase (GR) in relation to the tolerance to polyethylene glycol mediated drought stress in C. ovata seedlings. For induction of drought stress, the 35 days seedlings were subjected to PEG 6000 of osmotic potential −0.81 MPa for 14 days. Lipid peroxidation increased in PEG stressed seedlings as compared to non-stressed seedlings of C. ovata during the experimental period. With regard to vegetative growth, PEG treatment caused decrease in shoot fresh and dry weights, RWC and FV/FM but decline was more prominent on day 14 of PEG treatment. Total activity of antioxidative enzymes SOD, APX, POX, CAT and GR were investigated in C. ovata seedlings under PEG mediated drought. Induced activities of SOD, CAT and POX enzymes were high and the rate of increment was higher in stressed seedling. APX activity increased on both days of PEG treatment, however, increase in GR activity was highest on day 14 of drought stress. We concluded that increased drought tolerance of C. ovata is correlated with diminishing oxidative injury by functioning of antioxidant system at higher rates under drought stress.  相似文献   

8.
Lipid peroxidation resulting from loss of free radical scavenging is thought to be involved in deterioration of sunflower (Helianthus annuus L.) seeds during accelerated ageing. In other respects, presoaking of seeds in a solution of low water potential (osmopriming) has been demonstrated to reinvigorate aged seeds. The aim of the present work was to study the effect of osmopriming on the germination of aged sunflower seeds and to investigate whether this effect was associated with the restoration of antioxidant defence systems. Seeds were aged for 5 days at 45°C and 100% relative humidity and then primed for various durations up to 7 days at 15°C in a solution of polyethylene glycol 6000 at ?2 MPa. Lipid peroxidation was estimated by measuring malondialdehyde (MDA) and conjugated diene contents, and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) were measured throughout the treatments. Accelerated ageing resulted in a marked decrease in the germination rate, and was associated with an increase in the levels of MDA and conjugated dienes, thus indicating lipid peroxidation. Ageing was also characterized by a decrease in the activities of CAT and GR. The activities of SOD and DHAR were much less altered. No APX activity was detected whatever the seed treatment. Priming of aged seeds progressively restored the initial germinative ability and resulted in a marked decrease in the levels of MDA and conjugated dienes, indicating a fall in lipid peroxidation processes. These effects of priming were also well correlated to the recovery of SOD, CAT and GR activities. Priming treatment for 7 days led to full restoration of the cell detoxifying mechanisms which were strongly altered during ageing. Glutathione content showed the same changes as GR activity. There existed a clear-cut relationship between seed germinative energy, expressed as the germination rate, and the efficiency of free radical scavenging systems, in particular CAT and GR activities and glutathione content. The results suggest that the antioxidant defence systems might play a key role in seed vigour.  相似文献   

9.
Temperature is a critical abiotic factor that causes physiological changes in arthropods. However, little is known about the effect of heat stress on the antioxidant responses of Araneae species. Hylyphantes graminicola is a dominant predator in many cropping systems in China. In the present study, the effect of short-term heat stress (36, 38, 40 or 42 °C) on the reactive oxygen species (ROS) levels, the activities of antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], peroxidases [POD] and glutathione-S-transferases GST]), total antioxidant capacity (TAC), malondialdehyde (MDA) concentrations and survival of H. graminicola spiderlings and adults were investigated. The results showed that H. graminicola adults had a significantly higher survival rate compared to spiderlings at 40 °C. The heat stress increased ROS contents in H. graminicola. The SOD, CAT, POD and GST activities increased in spiderlings and adults under heat stress. These data suggest a defensive function for these enzymes in alleviating oxidative damage. Specifically, SOD plays a key role in reducing the high level of superoxide radicals in spiderlings and adults. Moreover, the POD and CAT capabilities for scavenging H2O2 in spiderlings were similar, and CAT may play a more important role than POD in scavenging H2O2 in adults at 42 °C. The spiderling TAC increased significantly at 40 and 42 °C, and the adult TAC was stable at 36–40 °C but decreased at 42 °C. These data suggest that TAC was insufficient in H. graminicola adults under more severe stress conditions. These results further our understanding of the physiological response of Araneae species exposed to heat stress.  相似文献   

10.
Brassica insularis is a perennial plant growing on both coastal and inland cliffs. Three seed lots from Sardinia were analysed using an image analysis system to detect differences in seed morphology, both within and among populations. Germination requirements at constant (5–25 °C) and alternating temperatures (25/10 °C), both in light and in darkness, were evaluated for all populations. In addition, the effect of a dry after‐ripening period (90 days at 25 °C) was also investigated. Morpho‐colorimetric analysis clearly identified seeds from different populations and discriminated three chromatic categories for seeds belonging to the Isola dei Cavoli coastal population, but not for the inland Masùa and the coastal Planu Sartu. Inter‐population variability was also observed in germination behaviour. B. insularis seeds germinated, with percentages up to 60%, in a wide range of temperatures (5–25 °C), and neither light nor dry after‐ripening affected final germination percentages. Moisture content measurements were made for seeds of each colour, but there were no particular differences among colours. Inter‐populational variability in germination behaviour may be a survival strategy for species growing under unpredictable environmental conditions, such as under Mediterranean climate, while heteromorphy may be due to independent evolutionary divergence processes of the Isola dei Cavoli population.  相似文献   

11.
Dormant, intact Avena fatua L. (wild oat) seeds germinate poorly at 20 °C. Removing the hulls slightly increased germination. Treatment with smoke solutions increased the germination of both intact seeds and caryopses. Exogenous GA3, alone or in the presence of smoke solution, increased the germination of caryopses, while ACC shows a tendency to increase germination of caryopses only when applied in combination with smoke solution. Results suggest that GA3 and ethylene, but not smoke solutions, are involved in the regulation of α-amylase activity during germination. However, the participation of smoke solutions in the control of ACC oxidase activity cannot be excluded.  相似文献   

12.
  • Information on the optimal conditions to promote the germination of Lamprocapnos spectabilis (L.) Fukuhara seeds is limited; consequently, this study was conducted to establish the requirements to break seed dormancy and promote germination.
  • The selected seeds had morphophysiological dormancy and had not begun embryo development. To study the dormancy breaking and embryo development processes, seeds were subjected to constant or changing temperature treatments during moist stratification.
  • High temperature and humidity resulted in vigorous embryo growth, with the longest embryos occurring after 1 month of incubation at 20 °C. At 4 °C, the seeds required incubation period of at least 3 months to germinate. Embryo growth and germination were higher with changing high and low temperatures than under a constant temperature, and changing temperatures also considerably changed the endogenous hormone levels, embryo development and germination. Bioactive gibberellin (GA) content was higher in seeds incubated at 20 °C for 1 month, then at 4 °C for 2 months. The content of endogenous abscisic acid in seeds subjected to the same treatment decreased by 97.6% compared with that of the untreated seeds.
  • Embryo growth and seed germination require changing high and low temperatures; however, exogenous GA3 could substitute for high temperatures, as it also causes accelerated germination. In this study, the seeds of L. spectabilis were identified as an intermediate simple type, a sub‐level of morphophysiologically dormant seeds.
  相似文献   

13.
The effects of long-term NaCl and KCl treatment on plant growth and antioxidative responses were investigated in Chenopodium album, a salt-resistant species widely distributed in semi-arid and light-saline areas of Xinjiang, China. Growth parameters [plant height, branch number, leaf morphology and chlorophyll (Chl) content], the level of oxidative stress [superoxide anion radical (O2 ), hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations], activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (POX)], the contents of non-enzymatic antioxidants [carotenoids (Car) and ascorbic acid (AsA)] and expression of selected genes were investigated. Plants were grown in the presence of 0, 50, and 300 mM NaCl or KCl for 2 months. Growth was stimulated by 50 mM NaCl or KCl, maintained stable at 300 mM NaCl, but was inhibited by 300 mM KCl. Three hundred mM NaCl did not affect O2 , H2O2, MDA, Car and AsA, but increased the activities of SOD, CAT and POX compared to the controls. RT-PCR analysis suggested that expression of some genes encoding antioxidant enzymes could be induced during long-term salt stress, which was consistent with the enzyme activities. Treatment with 300 mM KCl was associated with elevated oxidative stress, and significantly decreased Car and AsA contents. These results suggest that an efficient antioxidant machinery is important for overcoming oxidative stress induced by treatment with high NaCl concentrations in C. album. Other strategies of ion regulation may also contribute to the differential tolerance to Na and K at higher concentrations.  相似文献   

14.
  • Seed germination of Citrullus colocynthis, as in many other species of Cucurbitaceae, is inhibited by light, particularly at low temperatures. Germination response to light and temperature has been attributed to day length and temperature during seed maturation. This study assessed the effects of these factors on the germination response of C. colocynthis to temperature and light quality.
  • Ripe fruits were collected from natural habitats during December and February and germinated at three temperatures (15/25, 20/30 and 25/35 °C) in five light treatments (dark, white light and Red:Far Red (R:FR) ratios of 0.30, 0.87 and 1.19). Additionally, unripe fruits were also collected from natural habitats and completed their maturation in growth chambers under different day lengths (6, 16 and 24 h of darkness) at 10/20 °C, and in darkness at both 10/20 °C and 25/35 °C. Mature seeds of the different treatments were germinated in the same five light treatments at 15/25 °C.
  • Germination was significantly higher in the dark than that in any light treatment. Seeds matured at higher temperatures (i.e. seeds from the December collection and those matured at 25/35 °C) had significantly higher germination than those matured at lower temperatures (i.e. seeds from the February collection and those matured at 10/20 °C). Dark germination was significantly higher for the December collection than for the February collection. Seeds of the two collections germinated in the dark only at 15/25 °C. However, seeds matured in a growth chamber at 10/20 °C in darkness germinated at 15/25 °C in all light treatments, except for the R:FR ratio 0.30. Seeds of the different treatments failed to germinate in FR‐rich light.
  • This study demonstrates that both temperature and day length during seed maturation play significant roles in the germination response of C. colocynthis. Additionally, the dark requirement for germination is likely beneficial for species with the larger seeds, such as C. colocynthis, which produce bigger seedlings that are able to emerge from deep soils and are competitively superior under dense vegetation and resource‐limited conditions.
  相似文献   

15.
Fire is considered an important factor in influencing the physiognomy, dynamics and composition of Neotropical savannas. Species of diverse physiognomies exhibit different responses to fire, such as population persistence and seed mortality, according to the fire frequency to which they are submitted. The aim of this study is to investigate the effects of heat shocks on seed germination of Anadenanthera macrocarpa (Benth.) Brenan, Dalbergia miscolobium Benth., Aristolochia galeata Mart. & Zucc., Kielmeyera coriacea (Spreng.) Mart. and Guazuma ulmifolia Lam., which are native species of the Brazilian savanna. The temperatures and exposure times to which the seeds were submitted were established according to data obtained in the field during a prescribed fire: 60 °C (10, 20 and 40 min), 80 °C (5, 10 and 20 min) and 100 °C (2, 5 and 10 min). Untreated seeds were used as controls. Seeds of A. galeata and K. coriacea showed high tolerance to most heat treatments, and seeds of A. macrocarpa showed a significant reduction in germination percentage after treatments of 80 °C and 100 °C. Treatments of 100 °C for 10 min reduced germination percentage for all species except G. ulmifolia, which has dormant seeds. For this species, germination was accelerated by heat treatments. The high temperatures applied did not interfere with the time to 50% germination (T50) of the tolerant seeds. Seeds of the savanna species K. coriacea and A. galeata were more tolerant to heat shocks than seeds of the forest species A. macrocarpa. Guazuma ulmifolia, the forest species with seeds that germinate after heat shock, also occurs in savanna physiognomies. Overall, the high temperatures applied did not affect the germination rate of the tolerant seeds.  相似文献   

16.
Followed a heat acclimation pretreatment, seedlings of Freesia hybrida ‘Shangnong Jinghuanghou’ were exposed to heat stress at 38°C for 6 h treatment and then recovered at 22°C for 72 h to study the impact of heat acclimation (30°C) on thermotolerance under heat stress. The results showed that the pretreated seedlings performed better under heat stress than control. Heat acclimation could slow down the decrease of chlorophyll contents under heat stress and recover better. Higher levels of soluble sugar and proline and slight lower level of soluble protein were observed in pretreated seedlings. After recovery, similar levels of proline and soluble protein were maintained in all seedlings. However, a higher level of soluble sugar was maintained in pretreated seedlings. MDA content and EL showed a stable level in pretreated seedlings while a significant increase in control, followed by a significant decrease after recovery. Significant different responses of SOD, POD, CAT, and APX activities were observed in pretreated seedlings and control. Heat acclimation led to higher activities of these enzymes and a significant response of antioxidant enzyme activities occurred in a time-dependent manner under heat stress. Exposure to high temperature caused a significant increase in SOD and APX activity, and much higher levels in SOD and APX activity were observed in pretreated seedlings compared to control during heat stress. A slight difference in change pattern of POD and CAT activity was presented. The highest activities of POD and CAT were observed at 4 and 6 h of heat stress in pretreated seedlings and control, respectively. After 72 h recovery, the activities of all tested enzymes decreased to similar levels in all seedlings.  相似文献   

17.
To understand the functions of antioxidant enzymes during leaf development in sweetpotato, we investigated the activities of several antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX), ascorbate peroxidase (APX) and catalase (CAT). Significant increases were observed in the activities of SOD, POX and APX during the late stage of leaf development, whereas CAT activity increased during the early developmental stage. By RT-PCR analysis, various POX and APX genes showed differential expression patterns during leaf development. Four POX genes swpa3, swpa4, swpa6, swpb4 and one APX gene swAPX1 exhibited high levels of gene expression during the senescence stage of leaf development, but two POX genes, swpa1 and swpa7 were preferentially expressed at both the mature green and the late senescence stages of leaf development. These results indicate that hydrogen peroxide (H2O2)-related antioxidant enzymes are differentially regulated in the process of leaf development of sweetpotato.  相似文献   

18.
The seeds of pedunculate oak (Quercus robur L.) were subjected to slow (S) and rapid (R) desiccation at desiccation rates of 0.16 and 0.39% H2O per hour, respectively. Till ca. 40% water content (WC) the germination capacity of seeds in the S and R variants was high (ca. 100%). Between 40 and 28% WC, germination capacity declined to 20 and 50% in S and R variants, respectively. The decrease in seed viability was accompanied by a significant increase of electrolyte leakage from embryonic axes (28% for S and 15% for R variants). In the embryonic axes of seeds subjected to slow desiccation, malondialdehyde (MDA) and free fatty acid (FFA) contents were significantly higher than those in R variants, indicating greater membrane damage due to lipid peroxidation. The production of ROS (H2O2 and O2·−) was significantly higher in S than in R variants. The low molecular weight antioxidants α-tocopherol, ascorbic acid (ASA), and phenolic compounds indicated different reactions in response to desiccation stress. ASA levels decreased during desiccation to a similar degree in both the S and R variants. A significant decrease of total phenols was observed in R variant, which coincided with a significant increase of guaiacol peroxidase (POX) activity. α-Tocopherol content was significantly higher in the embryonic axes of seeds subjected to rapid drying. The activities of the enzymatic scavengers APX and GR had similar runs and were slightly higher in R variant. The activities of POX and SOD were significantly higher in the embryonic axes of seeds subjected to rapid drying. These results show that rapid dehydration of Q. robur seeds leads to the greater mobilization of antioxidant system in embryonic axes, particularly increased levels of α-tocopherol and POX and SOD activities, in the first stages of water loss. This mobilization has a greater impact on maintenance of higher viability of seeds after drying to lower level of WC.  相似文献   

19.
  • Anogeissus leiocarpa (DC.) Guill. & Perr. (Combretaceae) has important economic and cultural value in West Africa as source of wood, dye and medicine. Although this tree is in high demand by local communities, its planting remains limited due to its very low propagation via seed.
  • In this study, X‐rays were used to select filled fruits in order to characterise their morphology and seed germination responses to treatment with sulphuric acid and different incubation temperatures.
  • Morphological observations highlighted a straight orthotropous seed structure. The increase in mass detected for both intact and scarified fruits through imbibition tests, as well as morphological observations of fruits soaked in methylene blue solution, confirmed that they are water‐permeable, although acid‐scarified fruits reached significantly higher mass increment values than intact ones. Acid scarification (10 min soaking in 98% H2SO4) positively affected seed germination rate but not final germination proportions. When intact fruits where incubated at a range of temperatures, no seeds germinated at 10 °C, while maximum seed germination (ca. 80%) was reached at 20 °C. T50 values ranged from a minimum of ca. 12 days at 25 °C to a maximum of ca. 34 days at 15 and 35 °C. A theoretical base temperature for germination (Tb) of ca. 10 °C and a thermal requirement for 50% germination (S) of ca. 195 °Cd were also identified for intact fruits.
  • The results of this study revealed the seed germination characteristics driven by fruit and seed morphology of this species, which will help in its wider propagation in plantations.
  相似文献   

20.
The effects of increasing arsenic (0, 10, 50, 100 mg L?1) and zinc (0, 50, 80, 120, 200 mg L?1) doses on germination and oxidative stress markers (H2O2, MDA, SOD, CAT, APX, and GR) were examined in two Brazilian savanna tree species (Anadenanthera peregrina and Myracrodruon urundeuva) commonly used to remediate contaminated soils. The deleterious effects of As and Zn on seed germination were due to As- and Zn-induced H2O2 accumulation and inhibition of APX and GR activities, which lead to oxidative damage by lipid peroxidation. SOD and CAT did not show any As- and Zn-induced inhibition of their activities as was seen with APX and GR. We investigated the close relationships between seed germination success under As and Zn stress in terms of GR and, especially, APX activities. Increased germination of A. peregrina seeds exposed to 50 mg L?1 of Zn was related to increased APX activity, and germination in the presence of As (10 mg L?1) was observed only in M. urundeuva seeds that demonstrated increased APX activity. All the treatments for both species in which germination decreased or was inhibited showed decreases in APX activity. A. peregrina seeds showed higher Zn-tolerance than M. urundeuva, while the reverse was observed with arsenic up to exposures of 10 mg L?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号