首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ray‐finned fishes (Actinopterygii) dominate modern aquatic ecosystems and are represented by over 32000 extant species. The vast majority of living actinopterygians are teleosts; their success is often attributed to a genome duplication event or morphological novelties. The remainder are ‘living fossils’ belonging to a few depauperate lineages with long‐retained ecomorphologies: Polypteriformes (bichirs), Holostei (bowfin and gar) and Chondrostei (paddlefish and sturgeon). Despite over a century of systematic work, the circumstances surrounding the origins of these clades, as well as their basic interrelationships and diagnoses, have been largely mired in uncertainty. Here, I review the systematics and characteristics of these major ray‐finned fish clades, and the early fossil record of Actinopterygii, in order to gauge the sources of doubt. Recent relaxed molecular clock studies have pushed the origins of actinopterygian crown clades to the mid‐late Palaeozoic [Silurian–Carboniferous; 420 to 298 million years ago (Ma)], despite a diagnostic body fossil record extending only to the later Mesozoic (251 to 66 Ma). This disjunct, recently termed the ‘Teleost Gap’ (although it affects all crown lineages), is based partly on calibrations from potential Palaeozoic stem‐taxa and thus has been attributed to poor fossil sampling. Actinopterygian fossils of appropriate ages are usually abundant and well preserved, yet long‐term neglect of this record in both taxonomic and systematic studies has exacerbated the gaps and obscured potential synapomorphies. At the moment, it is possible that later Palaeozoic‐age teleost, holostean, chondrostean and/or polypteriform crown taxa sit unrecognized in museum drawers. However, it is equally likely that the ‘Teleost Gap’ is an artifact of incorrect attributions to extant lineages, overwriting both a post‐Palaeozoic crown actinopterygian radiation and the ecomorphological diversity of stem‐taxa.  相似文献   

2.
Understanding the history that underlies patterns of species richness across the Tree of Life requires an investigation of the mechanisms that not only generate young species‐rich clades, but also those that maintain species‐poor lineages over long stretches of evolutionary time. However, diversification dynamics that underlie ancient species‐poor lineages are often hidden due to a lack of fossil evidence. Using information from the fossil record and time calibrated molecular phylogenies, we investigate the history of lineage diversification in Polypteridae, which is the sister lineage of all other ray‐finned fishes (Actinopterygii). Despite originating at least 390 million years (Myr) ago, molecular timetrees support a Neogene origin for the living polypterid species. Our analyses demonstrate polypterids are exceptionally species depauperate with a stem lineage duration that exceeds 380 million years (Ma) and is significantly longer than the stem lineage durations observed in other ray‐finned fish lineages. Analyses of the fossil record show an early Late Cretaceous (100.5–83.6 Ma) peak in polypterid genus richness, followed by 60 Ma of low richness. The Neogene species radiation and evidence for high‐diversity intervals in the geological past suggest a “boom and bust” pattern of diversification that contrasts with common perceptions of relative evolutionary stasis in so‐called “living fossils.”  相似文献   

3.
Among Scarabaeoidea, pollen feeding occurs in two major lineages, pleurostict Scarabaeidae and Glaphyridae. Here we infer for the first time the phylogeny of the scarabaeoid lineage Glaphyridae (Coleoptera) based on molecular data using partial gene sequences for 28S rRNA, cytochrome oxidase I (cox1) and 16S rRNA (rrnL) for 41 species. Based on the resulting tree topology, we inferred the timing of the origin of pollination and of their coevolution with different flower host taxa, with particular focus on the prominent red-coloured ‘poppy guild’ flowers. All genera of Glaphyridae that were sampled with multiple species were recovered as monophyletic. According to this analysis, the origin of Glaphyridae was around 140 Ma, while crown group divergence was dated to have occurred c. 112 Ma. Pollen feeding originated in Glaphyridae only once and much later than in other important pollinator groups, between 97 and 67 Ma. According to the reconstruction of ancestral feeding traits, Asteraceae (Cicharioidae) were the first hosts of Glaphyridae. Presumably, a further adaptive radiation was triggered by feeding on and pollination of red flowers (poppy guild) which arose at a later stage. It occurred for the first time between 30 and 40 Ma, whereby the clades that use red Ranunculaceae (Pygopleurus spp.) are older than clades using exclusively red Papaveraceae (Eulasia spp.) (25–30 Ma). The rather young age of red Ranunculaceae would imply that Pygopleurus species only subsequently used red Ranunculus species as flower hosts, and that a broad parallel host shift probably from red Papaver spp. to red Ranunculus asiaticus has occurred rather recently.  相似文献   

4.

Background

Molecular clock estimates of crown strepsirhine origins generally advocate an ancient antiquity for Malagasy lemuriforms and Afro-Asian lorisiforms, near the onset of the Tertiary but most often extending back to the Late Cretaceous. Despite their inferred early origin, the subsequent evolutionary histories of both groups (except for the Malagasy aye-aye lineage) exhibit a vacuum of lineage diversification during most part of the Eocene, followed by a relative acceleration in diversification from the late Middle Eocene. This early evolutionary stasis was tentatively explained by the possibility of unrecorded lineage extinctions during the early Tertiary. However, this prevailing molecular view regarding the ancient origin and early diversification of crown strepsirhines must be viewed with skepticism due to the new but still scarce paleontological evidence gathered in recent years.

Methodological/Principal Findings

Here, we describe new fossils attributable to Djebelemur martinezi, a≈50 Ma primate from Tunisia (Djebel Chambi). This taxon was originally interpreted as a cercamoniine adapiform based on limited information from its lower dentition. The new fossils provide anatomical evidence demonstrating that Djebelemur was not an adapiform but clearly a distant relative of lemurs, lorises and galagos. Cranial, dental and postcranial remains indicate that this diminutive primate was likely nocturnal, predatory (primarily insectivorous), and engaged in a form of generalized arboreal quadrupedalism with frequent horizontal leaping. Djebelemur did not have an anterior lower dentition as specialized as that characterizing most crown strepsirhines (i.e., tooth-comb), but it clearly exhibited a transformed antemolar pattern representing an early stage of a crown strepsirhine-like adaptation (“pre-tooth-comb”).

Conclusions/Significance

These new fossil data suggest that the differentiation of the tooth-comb must postdate the djebelemurid divergence, a view which hence constrains the timing of crown strepsirhine origins to the Middle Eocene, and then precludes the existence of unrecorded lineage extinctions of tooth-combed primates during the earliest Tertiary.  相似文献   

5.
6.
A study is made of the articulation and base of the hindwings of Scarabaeoidea. The survey is based on an examination of over 250 genera from thirteen scarabaeoid families. Relationships among all families of Scarabaeoidea are examined here for the first time. The reconstructed phylogeny shows that the Scarabaeoidea is comprised of three major lineages: a glaresid, passalid and scarabaeid lineage. The glaresid lineage consists only of the Glaresidae. The passalid lineage is comprised of two major lines: a passalid line (containing Passalidae, Lucanidae, Diphyllostomatidae, Glaphyridae, Trogidae, Bolboceratidae and Pleocomidae) and a geotrupid line (containing Geotrupidae, Ochodaeidae, Ceratocanthidae and Hybosoridae). The scarabaeid lineage contains those taxa traditionally included within the Scarabaeidae (Aegialiinae, Aulonocneminae, Aphodiinae, Scarabaeinae, Orphninae, Melolonthinae, Acoma , Chasmatopterinae, Hopliinae, Oncerinae, Rutelinae, Dynastinae, Trichiinae, Cetoniinae and Valginae). Additional evidence, from other character suites, supporting this breakdown of the Scarabaeoidea is given.  相似文献   

7.
The rich fossil record of horses has made them a classic example of evolutionary processes. However, while the overall picture of equid evolution is well known, the details are surprisingly poorly understood, especially for the later Pliocene and Pleistocene, c. 3 million to 0.01 million years (Ma) ago, and nowhere more so than in the Americas. There is no consensus on the number of equid species or even the number of lineages that existed in these continents. Likewise, the origin of the endemic South American genus Hippidion is unresolved, as is the phylogenetic position of the "stilt-legged" horses of North America. Using ancient DNA sequences, we show that, in contrast to current models based on morphology and a recent genetic study, Hippidion was phylogenetically close to the caballine (true) horses, with origins considerably more recent than the currently accepted date of c. 10 Ma. Furthermore, we show that stilt-legged horses, commonly regarded as Old World migrants related to the hemionid asses of Asia, were in fact an endemic North American lineage. Finally, our data suggest that there were fewer horse species in late Pleistocene North America than have been named on morphological grounds. Both caballine and stilt-legged lineages may each have comprised a single, wide-ranging species.  相似文献   

8.
Sponges are one of the critical groups in understanding the early evolution of animals. Traditional views of these relationships are currently being challenged by molecular data, but the debate has so far made little use of recent palaeontological advances that provide an independent perspective on deep sponge evolution. This review summarises the available information, particularly where the fossil record reveals extinct character combinations that directly impinge on our understanding of high-level relationships and evolutionary origins. An evolutionary outline is proposed that includes the major early fossil groups, combining the fossil record with molecular phylogenetics. The key points are as follows. (1) Crown-group sponge classes are difficult to recognise in the fossil record, with the exception of demosponges, the origins of which are now becoming clear. (2) Hexactine spicules were present in the stem lineages of Hexactinellida, Demospongiae, Silicea and probably also Calcarea and Porifera; this spicule type is not diagnostic of hexactinellids in the fossil record. (3) Reticulosans form the stem lineage of Silicea, and probably also Porifera. (4) At least some early-branching groups possessed biminerallic spicules of silica (with axial filament) combined with an outer layer of calcite secreted within an organic sheath. (5) Spicules are homologous within Silicea, but also between Silicea and Calcarea, and perhaps with Homoscleromorpha. (6) The last common ancestor of extant sponges was probably a thin-walled, hexactine-bearing sponge with biminerallic spicules. (7) The stem group of sponges included tetraradially-symmetric taxa that grade morphologically into Cambrian fossils described as ctenophores. (8) The protomonaxonid sponges are an early-branching group, probably derived from the poriferan stem lineage, and include the problematic chancelloriids as derived members of the piraniid lineage. (9) There are no definite records of Precambrian sponges: isolated hexactine-like spicules may instead be derived from radiolarians. Early sponges had mineralised skeletons and thus should have a good preservation potential: the lack of sponge fossils in Precambrian strata may be due to genuine absence of sponges. (10) In contrast to molecular clock and biomarker evidence, the fossil record indicates a basal Cambrian diversification of the main sponge lineages, and a clear relationship to ctenophore-like ancestors. Overall, the early sponge fossil record reveals a diverse suite of extinct and surprising character combinations that illustrate the origins of the major lineages; however, there are still unanswered questions that require further detailed studies of the morphology, mineralogy and structure of early sponges.  相似文献   

9.
Accurate and precise estimation of divergence times during the Neo-Proterozoic is necessary to understand the speciation dynamic of early Eukaryotes. However such deep divergences are difficult to date, as the molecular clock is seriously violated. Recent improvements in Bayesian molecular dating techniques allow the relaxation of the molecular clock hypothesis as well as incorporation of multiple and flexible fossil calibrations. Divergence times can then be estimated even when the evolutionary rate varies among lineages and even when the fossil calibrations involve substantial uncertainties. In this paper, we used a Bayesian method to estimate divergence times in Foraminifera, a group of unicellular eukaryotes, known for their excellent fossil record but also for the high evolutionary rates of their genomes. Based on multigene data we reconstructed the phylogeny of Foraminifera and dated their origin and the major radiation events. Our estimates suggest that Foraminifera emerged during the Cryogenian (650-920 Ma, Neo-Proterozoic), with a mean time around 770 Ma, about 220 Myr before the first appearance of reliable foraminiferal fossils in sediments (545 Ma). Most dates are in agreement with the fossil record, but in general our results suggest earlier origins of foraminiferal orders. We found that the posterior time estimates were robust to specifications of the prior. Our results highlight inter-species variations of evolutionary rates in Foraminifera. Their effect was partially overcome by using the partitioned Bayesian analysis to accommodate rate heterogeneity among data partitions and using the relaxed molecular clock to account for changing evolutionary rates. However, more coding genes appear necessary to obtain more precise estimates of divergence times and to resolve the conflicts between fossil and molecular date estimates.  相似文献   

10.
Calibration of the divergence times of sponge lineages and understanding of their phylogenetic history are hampered by the difficulty in recognizing crown versus stem groups in the fossil record. A new specimen from the lower Cambrian (Series 2, Stage 3; approximately 515 Ma) Sirius Passet Biota of North Greenland has yielded a diagnostic spicule assemblage of the extant demosponge lineages Haploscleromorpha and/or Heteroscleromorpha. The specimen has disarticulated approximately in situ, but represents an individual sponge that possessed monaxon spicules combined with a range of slightly smaller sigma, toxa and unique spiral morphologies. The combination of spicule forms, together with their relatively large size, suggests that the sponge represents the stem lineage of Haploscleromorpha + Heteroscleromorpha. This is the first crown‐group demosponge described from the early Cambrian and provides the most reliable calibration point currently available for phylogenetic studies.  相似文献   

11.
Living reef fishes are one of the most diverse vertebrate assemblages on Earth. Despite its prominence and ecological importance, the origins and assembly of the reef fish fauna is poorly described. A patchy fossil record suggests that the major colonization of reef habitats must have occurred in the Late Cretaceous and early Palaeogene, with the earliest known modern fossil coral reef fish assemblage dated to 50 Ma. Using a phylogenetic approach, we analysed the early evolutionary dynamics of modern reef fishes. We find that reef lineages successively colonized reef habitats throughout the Late Cretaceous and early Palaeogene. Two waves of invasion were accompanied by increasing morphological convergence: one in the Late Cretaceous from 90 to 72 Ma and the other immediately following the end-Cretaceous mass extinction. The surge in reef invasions after the Cretaceous–Palaeogene boundary continued for 10 Myr, after which the pace of transitions to reef habitats slowed. Combined, these patterns match a classic niche-filling scenario: early transitions to reefs were made rapidly by morphologically distinct lineages and were followed by a decrease in the rate of invasions and eventual saturation of morphospace. Major alterations in reef composition, distribution and abundance, along with shifts in climate and oceanic currents, occurred during the Late Cretaceous and early Palaeogene interval. A causal mechanism between these changes and concurrent episodes of reef invasion remains obscure, but what is clear is that the broad framework of the modern reef fish fauna was in place within 10 Myr of the end-Cretaceous extinction.  相似文献   

12.
Phototrophic bacteria are among the most biogeochemically significant organisms on Earth and are physiologically related through the use of reaction centers to collect photons for energy metabolism. However, the major phototrophic lineages are not closely related to one another in bacterial phylogeny, and the origins of their respective photosynthetic machinery remain obscured by time and low sequence similarity. To better understand the co‐evolution of Cyanobacteria and other ancient anoxygenic phototrophic lineages with respect to geologic time, we designed and implemented a variety of molecular clocks that use horizontal gene transfer (HGT) as additional, relative constraints. These HGT constraints improve the precision of phototroph divergence date estimates and indicate that stem green non‐sulfur bacteria are likely the oldest phototrophic lineage. Concurrently, crown Cyanobacteria age estimates ranged from 2.2 Ga to 2.7 Ga, with stem Cyanobacteria diverging ~2.8 Ga. These estimates provide a several hundred Ma window for oxygenic photosynthesis to evolve prior to the Great Oxidation Event (GOE) ~2.3 Ga. In all models, crown green sulfur bacteria diversify after the loss of the banded iron formations from the sedimentary record (~1.8 Ga) and may indicate the expansion of the lineage into a new ecological niche following the GOE. Our date estimates also provide a timeline to investigate the temporal feasibility of different photosystem HGT events between phototrophic lineages. Using this approach, we infer that stem Cyanobacteria are unlikely to be the recipient of an HGT of photosystem I proteins from green sulfur bacteria but could still have been either the HGT donor or the recipient of photosystem II proteins with green non‐sulfur bacteria, prior to the GOE. Together, these results indicate that HGT‐constrained molecular clocks are useful tools for the evaluation of various geological and evolutionary hypotheses, using the evolutionary histories of both genes and organismal lineages.  相似文献   

13.
The ecology, abundance and diversity of galatheoid squat lobsters make them an ideal group to study deep-sea diversification processes. Here, we reconstructed the evolutionary and biogeographic history of Leiogalathea, a genus of circum-tropical deep-sea squat lobsters, in order to compare patterns and processes that have affected shallow-water and deep-sea squat lobster species. We first built a multilocus phylogeny and a calibrated species tree with a relaxed clock using StarBEAST2 to reconstruct evolutionary relationships and divergence times among Leiogalathea species. We used BioGeoBEARS and a DEC model, implemented in RevBayes, to reconstruct ancestral distribution ranges and the biogeographic history of the genus. Our results showed that Leiogalathea is monophyletic and comprises four main lineages; morphological homogeneity is common within and between clades, except in one; the reconstructed ancestral range of the genus is in the Atlantic and Indian oceans (Tethys). They also revealed the divergence of the Atlantic species around 25 million years ago (Ma), intense cladogenesis 15–25 Ma and low levels of speciation over the last 5 million years (Myr). The four Leiogalathea lineages showed similar patterns of speciation: allopatric speciation followed by range expansion and subsequent stasis. Leiogalathea started diversifying during the Oligocene, likely in the Tethyan. The Atlantic lineage then split from its Indo-Pacific sister group due to vicariance driven by closure of the Tethys Seaway. The Atlantic lineage is less speciose compared with the Indo-Pacific lineages, with the Tropical Southwestern Pacific being the current centre of diversity. Leiogalathea diversification coincided with cladogenetic peaks in shallow-water genera, indicating that historical biogeographic events similarly shaped the diversification and distribution of both deep-sea and shallow-water squat lobsters.  相似文献   

14.
Hippidions are past members of the equid lineage which appeared in the South American fossil record around 2.5 Ma but then became extinct during the great late Pleistocene megafaunal extinction. According to fossil records and numerous dental, cranial, and postcranial characters, Hippidion and Equus lineages were expected to cluster in two distinct phylogenetic groups that diverged at least 10 MY, long before the emergence of the first Equus. However, the first DNA sequence information retrieved from Hippidion fossils supported a striking different phylogeny, with hippidions nesting inside a paraphyletic group of Equus. This result indicated either that the currently accepted phylogenetic tree of equids was incorrect regarding the timing of the evolutionary split between Hippidion and Equus or that the taxonomic identification of the hippidion fossils used for DNA analysis needed to be reexamined (and attributed to another extinct South American member of the equid lineage). The most likely candidate for the latter explanation is Equus (Amerhippus) neogeus. Here, we show by retrieving new ancient mtDNA sequences that hippidions and Equus (Amerhippus) neogeus were members of two distinct lineages. Furthermore, using a rigorous phylogenetic approach, we demonstrate that while formerly the largest equid from Southern America, Equus (Amerhippus) was just a member of the species Equus caballus. This new data increases the known phenotypic plasticity of horses and consequently casts doubt on the taxonomic validity of the subgenus Equus (Amerhippus).  相似文献   

15.
Dating evolutionary origins of taxa is essential for understanding rates and timing of evolutionary events, often inciting intense debate when molecular estimates differ from first fossil appearances. For numerous reasons, ostracods present a challenging case study of rates of evolution and congruence of fossil and molecular divergence time estimates. On the one hand, ostracods have one of the densest fossil records of any metazoan group. However, taxonomy of fossil ostracods is controversial, owing at least in part to homoplasy of carapaces, the most commonly fossilized part. In addition, rates of evolution are variable in ostracods. Here, we report evidence of extreme variation in the rate of molecular evolution in different ostracod groups. This rate is significantly elevated in Halocyprid ostracods, a widespread planktonic group, consistent with previous observations that planktonic groups show elevated rates of molecular evolution. At the same time, the rate of molecular evolution is slow in the lineage leading to Manawa staceyi, a relict species that we estimate diverged approximately 500 million years ago from its closest known living relative. We also report multiple cases of significant incongruence between fossil and molecular estimates of divergence times in Ostracoda. Although relaxed clock methods improve the congruence of fossil and molecular divergence estimates over strict clock models, incongruence is present regardless of method. We hypothesize that this observed incongruence is driven largely by problems with taxonomy of fossil Ostracoda. Our results illustrate the difficulty in consistently estimating lineage divergence times, even in the presence of a voluminous fossil record.  相似文献   

16.
Natural selection has almost certainly shaped many evolutionary trajectories documented in fossil lineages, but it has proven difficult to demonstrate this claim by analyzing sequences of evolutionary changes. In a recently published and particularly promising test case, an evolutionary time series of populations displaying armor reduction in a fossil stickleback lineage could not be consistently distinguished from a null model of neutral drift, despite excellent temporal resolution and an abundance of indirect evidence implicating natural selection. Here, we revisit this case study, applying analyses that differ from standard approaches in that: (1) we do not treat genetic drift as a null model, and instead assess neutral and adaptive explanations on equal footing using the Akaike Information Criterion; and (2) rather than constant directional selection, the adaptive scenario we consider is that of a population ascending a peak on the adaptive landscape, modeled as an Orstein-Uhlenbeck process. For all three skeletal features measured in the stickleback lineage, the adaptive model decisively outperforms neutral evolution, supporting a role for natural selection in the evolution of these traits. These results demonstrate that, at least under favorable circumstances, it is possible to infer in fossil lineages the relationship between evolutionary change and features of the adaptive landscape.  相似文献   

17.
We propose a simple statistical approach for using Dispersal-Vicariance Analysis (DIVA) software to infer biogeographic histories without fully bifurcating trees. In this approach, ancestral ranges are first optimized for a sample of Bayesian trees. The probability P of an ancestral range r at a node is then calculated as P(rY) = ∑t^n=1 F(rY)t Pt where Y is a node, and F(rY) is the frequency of range r among all the optimal solutions resulting from DIVA optimization at node Y, t is one of n topologies optimized, and Pt is the probability of topology t. Node Y is a hypothesized ancestor shared by a specific crown lineage and the sister of that lineage "x", where x may vary due to phylogenetic uncertainty (polytomies and nodes with posterior probability 〈 100%). Using this method, the ancestral distribution at Y can be estimated to provide inference of the geographic origins of the specific crown group of interest. This approach takes into account phylogenetic uncertainty as well as uncertainty from DIVA optimization. It is an extension of the previously described method called Bayes-DIVA, which pairs Bayesian phylogenetic analysis with biogeographic analysis using DIVA. Further, we show that the probability P of an ancestral range at Y calculated using this method does not equate to pp*F(rY) on the Bayesian consensus tree when both variables are 〈 100%, where pp is the posterior probability and F(rY) is the frequency of range r for the node containing the specific crown group. We tested our DIVA-Bayes approach using Aesculus L., which has major lineages unresolved as a polytomy. We inferred the most probable geographic origins of the five traditional sections of Aesculus and ofAesculus californica Nutt. and examined range subdivisions at parental nodes of these lineages. Additionally, we used the DIVA-Bayes data from Aesculus to quantify the effects on biogeographic inference of including two wildcard fossil taxa in phylogenetic analysis. Our analysis resolved the geographic  相似文献   

18.
The specialized grasping feet of primates, and in particular the nature of the hallucal grasping capabilities of living strepsirrhines and tarsiers (i.e., ‘prosimians’), have played central roles in the study of primate origins. Prior comparative studies of first metatarsal (Mt1) morphology have documented specialized characters in living prosimians that are indicative of a more abducted hallux, which in turn is often inferred to be related to an increased ability for powerful grasping. These include a well-developed peroneal process and a greater angle of the proximal articular surface relative to the long axis of the diaphysis. Although known Mt1s of fossil prosimians share these characters with living non-anthropoid primates, Mt1 morphology in the earliest crown group anthropoids is not well known. Here we describe two Mt1s from the Fayum Depression of Egypt - one from the latest Eocene (from the ∼34 Ma Quarry L-41), and one from the later early Oligocene (from the ∼29-30 Ma Quarry M) - and compare them with a sample of extant and fossil primate Mt1s. Multivariate analyses of Mt1 shape variables indicate that the Fayum specimens are most similar to those of crown group anthropoids, and likely belong to the stem catarrhines Catopithecus and Aegyptopithecus specifically, based on analyses of size. Also, phylogenetic analyses with 16 newly defined Mt1 characters support the hypotheses that “prosimian”-like Mt1 features evolved along the primate stem lineage, while crown anthropoid Mt1 morphology and function is derived among primates, and likely differed from that of basal stem anthropoids. The derived loss of powerful hallucal grasping as reflected in the Mt1 morphology of crown anthropoids may reflect long-term selection for improved navigation of large-diameter, more horizontal branches at the expense of movement in smaller, more variably inclined branches in the arboreal environment.  相似文献   

19.
Defining phyla: evolutionary pathways to metazoan body plans   总被引:3,自引:0,他引:3  
SUMMARY Phyla are defined by two sets of criteria, one morphological and the other historical. Molecular evidence permits the grouping of animals into clades and suggests that some groups widely recognized as phyla are paraphyletic, while some may be polyphyletic; the phyletic status of crown phyla is tabulated. Four recent evolutionary scenarios for the origins of metazoan phyla and of supraphyletic clades are assessed in the light of a molecular phylogeny: the trochaea hypothesis of Nielsen; the clonal hypothesis of Dewel; the set-aside cell hypothesis of Davidson et al.; and a benthic hypothesis suggested by the fossil record. It is concluded that a benthic radiation of animals could have supplied the ancestral lineages of all but a few phyla, is consistent with molecular evidence, accords well with fossil evidence, and accounts for some of the difficulties in phylogenetic analyses of phyla based on morphological criteria.  相似文献   

20.
Although the deserts of North America are of very recent origin, their characteristic arid-adapted endemic plant lineages have been suggested to be much older. Earlier researchers have hypothesized that the ancestors of many of these modern desert lineages first adapted to aridity in highly localized arid or semi-arid sites as early as the late Cretaceous or early Tertiary, and that these lineages subsequently spread and diversified as global climate became increasingly arid during the Cenozoic. No study has explicitly examined these hypotheses for any North American arid-adapted plant group. The current paper tests these hypotheses using the genus Tiquilia (Boraginaceae), a diverse North American desert plant group. A strongly supported phylogeny of the genus is estimated using combined sequence data from three chloroplast markers (matK, ndhF, and rps16) and two nuclear markers (ITS and waxy). Ages of divergence events within the genus are estimated using penalized likelihood and a molecular clock approach on the ndhF tree for Tiquilia and representative outgroups, including most of the major lineages of Boraginales. The dating analysis suggests that the stem lineage of Tiquilia split from its nearest extant relative in the Paleocene or Eocene ( approximately 59-48 Ma). This was followed by a relatively long period before the first divergence in the crown group near the Eocene/Oligocene boundary ( approximately 33-29 Ma), shortly after the greatest Cenozoic episode of rapid aridification. Divergence of seven major lineages of Tiquilia is dated to the early-to-mid Miocene ( approximately 23-13 Ma). Several major lineages show a marked increase in diversification concomitant with the onset of more widespread semi-arid and then arid conditions beginning in the late Miocene ( approximately 7 Ma). This sequence of divergence events in Tiquilia agrees well with earlier researchers' ideas concerning North American desert flora assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号