首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In biochemical networks, reactions often occur on disparate timescales and can be characterized as either fast or slow. The quasi-steady-state approximation (QSSA) utilizes timescale separation to project models of biochemical networks onto lower-dimensional slow manifolds. As a result, fast elementary reactions are not modeled explicitly, and their effect is captured by nonelementary reaction-rate functions (e.g., Hill functions). The accuracy of the QSSA applied to deterministic systems depends on how well timescales are separated. Recently, it has been proposed to use the nonelementary rate functions obtained via the deterministic QSSA to define propensity functions in stochastic simulations of biochemical networks. In this approach, termed the stochastic QSSA, fast reactions that are part of nonelementary reactions are not simulated, greatly reducing computation time. However, it is unclear when the stochastic QSSA provides an accurate approximation of the original stochastic simulation. We show that, unlike the deterministic QSSA, the validity of the stochastic QSSA does not follow from timescale separation alone, but also depends on the sensitivity of the nonelementary reaction rate functions to changes in the slow species. The stochastic QSSA becomes more accurate when this sensitivity is small. Different types of QSSAs result in nonelementary functions with different sensitivities, and the total QSSA results in less sensitive functions than the standard or the prefactor QSSA. We prove that, as a result, the stochastic QSSA becomes more accurate when nonelementary reaction functions are obtained using the total QSSA. Our work provides an apparently novel condition for the validity of the QSSA in stochastic simulations of biochemical reaction networks with disparate timescales.  相似文献   

2.
Biochemical systems consist of numerous elementary reactions governed by the law of mass action. However, experimentally characterizing all the elementary reactions is nearly impossible. Thus, over a century, their deterministic models that typically contain rapid reversible bindings have been simplified with non-elementary reaction functions (e.g., Michaelis-Menten and Morrison equations). Although the non-elementary reaction functions are derived by applying the quasi-steady-state approximation (QSSA) to deterministic systems, they have also been widely used to derive propensities for stochastic simulations due to computational efficiency and simplicity. However, the validity condition for this heuristic approach has not been identified even for the reversible binding between molecules, such as protein-DNA, enzyme-substrate, and receptor-ligand, which is the basis for living cells. Here, we find that the non-elementary propensities based on the deterministic total QSSA can accurately capture the stochastic dynamics of the reversible binding in general. However, serious errors occur when reactant molecules with similar levels tightly bind, unlike deterministic systems. In that case, the non-elementary propensities distort the stochastic dynamics of a bistable switch in the cell cycle and an oscillator in the circadian clock. Accordingly, we derive alternative non-elementary propensities with the stochastic low-state QSSA, developed in this study. This provides a universally valid framework for simplifying multiscale stochastic biochemical systems with rapid reversible bindings, critical for efficient stochastic simulations of cell signaling and gene regulation. To facilitate the framework, we provide a user-friendly open-source computational package, ASSISTER, that automatically performs the present framework.  相似文献   

3.
4.
Many physiological characteristics of living cells are regulated by protein interaction networks. Because the total numbers of these protein species can be small, molecular noise can have significant effects on the dynamical properties of a regulatory network. Computing these stochastic effects is made difficult by the large timescale separations typical of protein interactions (e.g., complex formation may occur in fractions of a second, whereas catalytic conversions may take minutes). Exact stochastic simulation may be very inefficient under these circumstances, and methods for speeding up the simulation without sacrificing accuracy have been widely studied. We show that the “total quasi-steady-state approximation” for enzyme-catalyzed reactions provides a useful framework for efficient and accurate stochastic simulations. The method is applied to three examples: a simple enzyme-catalyzed reaction where enzyme and substrate have comparable abundances, a Goldbeter-Koshland switch, where a kinase and phosphatase regulate the phosphorylation state of a common substrate, and coupled Goldbeter-Koshland switches that exhibit bistability. Simulations based on the total quasi-steady-state approximation accurately capture the steady-state probability distributions of all components of these reaction networks. In many respects, the approximation also faithfully reproduces time-dependent aspects of the fluctuations. The method is accurate even under conditions of poor timescale separation.  相似文献   

5.
In this paper, it is shown that for a class of reaction networks, the discrete stochastic nature of the reacting species and reactions results in qualitative and quantitative differences between the mean of exact stochastic simulations and the prediction of the corresponding deterministic system. The differences are independent of the number of molecules of each species in the system under consideration. These reaction networks are open systems of chemical reactions with no zero-order reaction rates. They are characterized by at least two stationary points, one of which is a nonzero stable point, and one unstable trivial solution (stability based on a linear stability analysis of the deterministic system). Starting from a nonzero initial condition, the deterministic system never reaches the zero stationary point due to its unstable nature. In contrast, the result presented here proves that this zero-state is a stable stationary state for the discrete stochastic system, and other finite states have zero probability of existence at large times. This result generalizes previous theoretical studies and simulations of specific systems and provides a theoretical basis for analyzing a class of systems that exhibit such inconsistent behavior. This result has implications in the simulation of infection, apoptosis, and population kinetics, as it can be shown that for certain models the stochastic simulations will always yield different predictions for the mean behavior than the deterministic simulations.  相似文献   

6.
Large gene regulatory networks (GRN) are often modeled with quasi-steady-state approximation (QSSA) to reduce the huge computational time required for intrinsic noise quantification using Gillespie stochastic simulation algorithm (SSA). However, the question still remains whether the stochastic QSSA model measures the intrinsic noise as accurately as the SSA performed for a detailed mechanistic model or not? To address this issue, we have constructed mechanistic and QSSA models for few frequently observed GRNs exhibiting switching behavior and performed stochastic simulations with them. Our results strongly suggest that the performance of a stochastic QSSA model in comparison to SSA performed for a mechanistic model critically relies on the absolute values of the mRNA and protein half-lives involved in the corresponding GRN. The extent of accuracy level achieved by the stochastic QSSA model calculations will depend on the level of bursting frequency generated due to the absolute value of the half-life of either mRNA or protein or for both the species. For the GRNs considered, the stochastic QSSA quantifies the intrinsic noise at the protein level with greater accuracy and for larger combinations of half-life values of mRNA and protein, whereas in case of mRNA the satisfactory accuracy level can only be reached for limited combinations of absolute values of half-lives. Further, we have clearly demonstrated that the abundance levels of mRNA and protein hardly matter for such comparison between QSSA and mechanistic models. Based on our findings, we conclude that QSSA model can be a good choice for evaluating intrinsic noise for other GRNs as well, provided we make a rational choice based on experimental half-life values available in literature.  相似文献   

7.
8.
The flow of information within a cell is governed by a series of protein–protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed on reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor–ligand binding model and a rule‐based model of interleukin‐12 (IL‐12) signaling in naïve CD4+ T cells. The IL‐12 signaling pathway includes multiple protein–protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based on the available data. The analysis correctly predicted that reactions associated with Janus Kinase 2 and Tyrosine Kinase 2 binding to their corresponding receptor exist at a pseudo‐equilibrium. By contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL‐12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank‐ and flux‐based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule‐based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

9.
10.
The functions of proteins depend on the dynamical behavior of their native states on a wide range of timescales. To investigate these dynamics in the case of the small protein Gβ1, we analyzed molecular dynamics simulations with the model-free approach of nuclear magnetic relaxation. We found amplitudes of fast timescale motions (sub-τc, where τc is the rotational correlation time) consistent with S2 obtained from spin relaxation measurements as well as amplitudes of slow timescale motions (supra-τc) in quantitative agreement with S2 order parameters derived from residual dipolar coupling measurements. The slow timescale motions are associated with the large variations of the 3J couplings that follow transitions between different conformational substates. These results provide further characterization of the large structural fluctuations in the native states of proteins that occur on timescales longer than the rotational correlation time.  相似文献   

11.
12.
Modeling biological systems using Dynetica--a simulator of dynamic networks   总被引:2,自引:0,他引:2  
We present Dynetica, a user-friendly simulator of dynamic networks for constructing, visualizing, and analyzing kinetic models of biological systems. In addition to generic reaction networks, Dynetica facilitates construction of models of genetic networks, where many reactions are gene expression and interactions among gene products. Further, it integrates the capability of conducting both deterministic and stochastic simulations. AVAILABILITY AND SUPPLEMENTARY INFORMATION: Dynetica 1.0, example models, and the user's guide are available at http://www.its.caltech.edu/~you/Dynetica/Dynetica_page.htm  相似文献   

13.
Wang R  Zhou T  Jing Z  Chen L 《Systems biology》2004,1(1):71-84
In this paper, we aim to develop a new methodology to model and design periodic oscillators of biological networks, in particular gene regulatory networks with multiple genes, proteins and time delays, by using multiple timescale networks (MTN). Fast reactions constitute a positive feedback-loop network (PFN), while slow reactions consist of a cyclic feedback-loop network (CFN), in MTN. Multiple timescales are exploited to simplify models according to singular perturbation theory. We show that a MTN has no stable equilibrium but stable periodic orbits when certain conditions are satisfied. Specifically, we first prove the basic properties of MTNs with only one PFN, and then generalise the result to MTNs with multiple PFNs. Finally, we design a biologically plausible gene regulatory network by the cI and Lac genes, to demonstrate the theoretical results. Since there is less restriction on the network structure of a MTN, it can be expected to apply to a wide variety of areas on the modelling, analysing and designing of biological systems.  相似文献   

14.
15.
Stochastic models of biomolecular reaction networks are commonly employed in systems and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. For such models, the Kolmogorov’s forward equation is called the chemical master equation (CME), and it is a fundamental system of linear ordinary differential equations (ODEs) that describes the evolution of the probability distribution of the random state-vector representing the copy-numbers of all the reacting species. The size of this system is given by the number of states that are accessible by the chemical system, and for most examples of interest this number is either very large or infinite. Moreover, approximations that reduce the size of the system by retaining only a finite number of important chemical states (e.g. those with non-negligible probability) result in high-dimensional ODE systems, even when the number of reacting species is small. Consequently, accurate numerical solution of the CME is very challenging, despite the linear nature of the underlying ODEs. One often resorts to estimating the solutions via computationally intensive stochastic simulations. The goal of the present paper is to develop a novel deep-learning approach for computing solution statistics of high-dimensional CMEs by reformulating the stochastic dynamics using Kolmogorov’s backward equation. The proposed method leverages superior approximation properties of Deep Neural Networks (DNNs) to reliably estimate expectations under the CME solution for several user-defined functions of the state-vector. This method is algorithmically based on reinforcement learning and it only requires a moderate number of stochastic simulations (in comparison to typical simulation-based approaches) to train the “policy function”. This allows not just the numerical approximation of various expectations for the CME solution but also of its sensitivities with respect to all the reaction network parameters (e.g. rate constants). We provide four examples to illustrate our methodology and provide several directions for future research.  相似文献   

16.
Prostaglandin H synthase (PGHS) is an autocatalytic enzyme which plays a key role in the arachidonic acid metabolic pathway. PGHS mediates the formation of prostaglandin H2, the precursor for a number of prostaglandins which are important in a wide variety of biological processes, including inflammation, blood clotting, renal function, and tumorigenesis. Here we present a Michaelis-Menten-style model for PGHS. A stability analysis determines when the reaction becomes self-sustaining, and can help explain the regulation of PGHS activity in vivo. We also consider a quasi-steady-state approximation (QSSA) for the model, and present conditions under which the QSSA is expected to be a good approximation. Applying the QSSA for this model can be useful in computationally intensive modeling endeavors involving PGHS.  相似文献   

17.
Two-step binding kinetics are extensively used to study the relative importance of diffusion in biochemical reactions. Classical analysis of this problem assumes ad hoc that the encounter complex is at quasi-steady state (QSS). Using scaling arguments we derive a criterion for the validity of this assumption in the limit of irreversible product formation. We find that the QSS approximation (QSSA) of two-step binding is only valid if the total ligand and receptor concentrations are much smaller than (k2+k-1)/k1, where k1 and k-1 are, respectively, the forward and reverse diffusion encounter rate constants and k2 is the chemical association rate constant. This criterion can be shown to imply that the average time between encounters is much longer than the half-life of the encounter complex and also guarantees that the concentration of the encounter complex is negligible compared to the reactant and product concentrations. Numerical examples of irreversible and reversible cases corroborate our analysis and illustrate that the QSS may be invalid even if k-2相似文献   

18.
19.
The linear noise approximation is a useful method for stochastic noise evaluations in genetic regulatory networks, where the covariance equation described as a Lyapunov equation plays a central role. We discuss the linear noise approximation method for evaluations of an intrinsic noise in autonomously oscillatory genetic networks; in such oscillatory networks, the covariance equation becomes a periodic differential equation that provides generally an unbounded covariance matrix, so that the standard method of noise evaluation based on the covariance matrix cannot be adopted directly. In this paper, we develop a new method of noise evaluation in oscillatory genetic networks; first, we investigate structural properties, e.g., orbital stability and periodicity, of the solutions to the covariance equation given as a periodic Lyapunov differential equation by using the Floquet-Lyapunov theory, and propose a global measure for evaluating stochastic amplitude fluctuations on the periodic trajectory; we also derive an evaluation formula for the period fluctuation. Finally, we apply our method to a model of circadian oscillations based on negative auto-regulation of gene expression, and show validity of our method by comparing the evaluation results with stochastic simulations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号