首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The orchid reproductive strategy, including the formation of numerous tiny seeds, is achieved by the elimination of some stages in the early plant embryogenesis. In this study, we documented in detail the formation of the maternal tissues (the nucellus and integuments), the structures of female gametophyte (megaspores, chalazal nuclei, synergids, polar nuclei), and embryonic structures in Dendrobium nobile. The ovary is unilocular, and the ovule primordia are formed in the placenta before the pollination. The ovule is medionucellate: the two-cell postament and two rows of nucellar cells persist until the death of the inner integument. A monosporic eight-nucleated embryo sac is developed. After the fertilization, the most common central cell nucleus consisted of two joined but not fused polar nuclei. The embryogenesis of D. nobile is similar to the Caryophyllad-type, and it is characterized by the formation of all embryo cells from the apical cell (ca) of a two-celled proembryo. The only exception is that there is no formation of the radicle and/or cotyledons. The basal cell (cb) does not divide during the embryogenesis, gradually transforming into the uninuclear suspensor. Then the suspensor goes through three main stages: it starts with an unbranched cell within the embryo sac, followed by a branched stage growing into the integuments, and it ends with the cell death. The stage-specific development of the female gametophyte and embryo of D. nobile is discussed.

  相似文献   

2.
A new Dienia type of the embryogenesis of orchid plants differing from the Liparis type, earlier observed for the tribe Malaxideae, has been described in Dienia ophrydis (J. Köenig) Seidenf. (Orchidaceae). The Dienia-type embryogenesis is characterized by the following features: (1) development of a single-celled suspensor formed by a cb-derivative, (2) linear arrangement of embryo cells at the tetrad stage, (3) atypical origin of some tiers, and (4) no divisions of the ci and cb cells. A hypothesis about the convergent similarity between the Dienia and Caryophyllaceae types of embryogenesis has been proposed. A number of embryo sac and embryo structures typical for D. ophrydis, including “petassum,” “fitting,” and “suspensor mantle,” have been first described. A “petassum” represents the remains of cell walls of the pollen tube and probably the filamentous apparatus of synergids sealing the micropyle side of a fertilized embryo sac. The sole suspensor cell has a special appendix (“fitting”), which connects it to the embryo. The suspensor and the fitting are surrounded by a special envelope (“suspensor mantle”), which does not cover the basal cell of the embryo (ci).  相似文献   

3.
The organization of isolated embryo sacs and eggs of Plumbago zeylanica was described before and after fertilization using microscopic cytochemistry and scanning electron microscopy. Major developmental events of fertilization, including preferential fertilization and early embryogenesis, are described in isolated embryo sacs. The two sperms, one unassociated with vegetative nucleus (Sua) and the other physically associated with the vegetative nucleus (Svn), fuse with nuclei of egg and central cell, respectively. The zygote divides asymmetrically to form a two-celled embryo, consisting of a massive suspensor occupying most of the micropylar portion of the embryo during early embryogenesis. Plastids are distributed in the perinuclear and micropylar regions of the egg cell and in cytoplasmic strands of the central cell before fertilization. Calcofluor white-positive fibrillar material in the filiform apparatus (presumed β-1,4 linked glucans) was investigated using scanning electron microscopy. The egg of P. zeylanica can easily be divided into three cytologically distinct regions: 1) perinuclear cytoplasm, 2) lateral cytoplasm, and 3) micropylar cytoplasm. Cytological differences are evident in the organization of the cell walls, general degree of vacuolization, and the distribution of heritable organelles, storage bodies, and microtubules. The present study supports the concept that the egg of P. zeylanica plays combined synergid and gamete functions.  相似文献   

4.
Abstract

The various stages of female gametophyte development and embryogenesis in S. spiralis and S. aestivalis are described. In both species the reproductive cycle is sexual. Some peculiarities are present: the female gametophyte is usually 6-7-8-nucleate; after double fertilization a single endospermatic cell is formed; the proembryo appears differentiated and is made up of different cells in the chalazal and micropylar ends; a single basal cell in the proembryo acts as suspensor.  相似文献   

5.
The nucellus of Machaeranthera pattersonii (A. Gray) Greene (Aster pattersonii A. Gray) contains only one megaspore mother cell, and the female gametophyte develops from the chalazal megaspore of a row of four, thus conforming to the Polygonum type of development. These observations are contrary to the older work of Palm. Three nuclear divisions produce the typical eight nuclei with the egg apparatus, primary endosperm cell with two polar nuclei, and two antipodal cells, the micropylar one containing two nuclei. Usually no more antipodal cells are formed, although there is further nuclear division, apparently followed by nuclear fusion. The antipodal cells remain about the same size without forming an antipodal haustorium. Cell division accompanies the first division of the primary endosperm nucleus. The early stages of the embryo resemble those of other Compositae. Machaeranthera tanacetifolia (HBK) Nees also shows the Polygonum type of development of the female gametophyte. It is suggested that Palm may have been working on some species of Erigeron that had been wrongly identified, which would account for the difference in observations.  相似文献   

6.
采用透射电镜技术对大车前(Plantago major L.)胚乳发育的超微结构进行了研究。结果表明:(1)大车前为细胞型胚乳;初生胚乳核经一次横分裂产生1个珠孔室细胞和1个合点室细胞;珠孔室两次纵向分裂一次横向分裂形成2层8个细胞,位于上层的4个细胞发育为4个珠孔吸器,位于下层的4个细胞发育为胚乳本体;合点室细胞进行一次核分裂,发育为两核的合点吸器。(2)珠孔吸器呈管状插入珠被组织,珠孔端细胞壁加厚呈现少量分支并具有壁内突,壁内突周围细胞质里分布着大量线粒体、粗面内质网、高尔基体、质体等,细胞核与核仁明显,细胞质浓厚,代谢活动旺盛;球胚期,珠孔吸器的体积呈现最大值,珠孔吸器周围的珠被组织均被水解,形成明显的空腔。珠孔吸器从珠被组织吸收并转运营养物质至胚乳本体,参与胚乳的构建与营养物质的贮藏。球胚后期,珠孔吸器逐渐退化。(3)4个胚乳本体原始细胞具旺盛的分生能力,经不断的平周与垂周分裂增加胚乳细胞数目,使胚乳本体呈现圆球体状,并将胚包围其中;珠孔吸器、合点吸器以及珠被绒毡层吸收转运的营养物质贮存在胚乳本体;球胚后期,随着胚柄的退化,胚体周围的胚乳细胞被水解,为发育的胚所利用。(4)合点吸器的2个细胞核与核仁巨大,线粒体、质体、高尔基体、内质网主要绕核分布,液泡化明显;胚体与胚乳本体的体积增大,逐渐将合点吸器向胚珠合点部位挤压,合点吸器周围的合点组织逐渐被水解,形成巨大空腔。合点吸器自珠心组织吸收并转运营养物质至胚乳本体,参与胚乳的结构构建与营养物质的贮藏。球胚后期,合点吸器逐渐失去功能,呈现退化状态。  相似文献   

7.
In Arabidopsis thaliana, zygotic embryo divisions are highly regular, but it is not clear how embryo patterning is established in species or culture systems with irregular cell divisions. We investigated this using the Brassica napus microspore embryogenesis system, where the male gametophyte is reprogrammed in vitro to form haploid embryos in the absence of exogenous growth regulators. Microspore embryos are formed via two pathways: a zygotic-like pathway, characterized by initial suspensor formation followed by embryo proper formation from the distal cell of the suspensor, and a pathway characterized by initially unorganized embryos lacking a suspensor. Using embryo fate and auxin markers, we show that the zygotic-like pathway requires polar auxin transport for embryo proper specification from the suspensor, while the suspensorless pathway is polar auxin transport independent and marked by an initial auxin maximum, suggesting early embryo proper establishment in the absence of a basal suspensor. Polarity establishment in this suspensorless pathway was triggered and guided by rupture of the pollen exine. Irregular division patterns did not affect cell fate establishment in either pathway. These results confirm the importance of the suspensor and suspensor-driven auxin transport in patterning, but also uncover a mechanism where cell patterning is less regular and independent of auxin transport.  相似文献   

8.
Embryo development of Zhangqiu green onion conforms to the Asterad type and goes through the following stages: proembryo, globular, ellipsoidal, laterally concave, stick-shaped, and curved and mature. The persistent synergid is present until the late globular stage of embryogenesis. Endosperm development of Zhangqiu green onion follows the nuclear pattern. Endosperm cell formation begins at both the micropylar end and the chalazai end of the embryo sac when the embryo is in the late globular stage. Due to the anticlinal wall formation, a layer of free nuclei becomes a layer of “open cells” which lack the inner periclinat wall. The open cells undergo cell division periclinally, and a layer of complete cells is cut off outside and a new layer of open cells inside. The subsequent cell divisions give rise to the endosperm cells centripetally until those from the opposite of the embryo sac meet. The first anticlinal walls arise from the cell plates without phragmoplasts between the free nuclei in interphase. The first periclinal walls are formed by normal cytokinesis. When a few layers of endosperm cells are formed at the micropylar end and the chalazal end of the embryo sac, free cells are present in the central vacuole.  相似文献   

9.
The caryophyllad type of embryogenesis in Slellaria media was investigated using topological cytochemical methods for the demonstration of nucleic acids, proteins and polysaccharides. The primary suspensor cell initially contained high levels of cytoplasmic RNA, but these declined rapidly after the first few cell divisions. Cytoplasmic protein levels were high throughout the existence of the primary suspensor cell, becoming concentrated into proteinoplasts at the time of cotyledon initiation in the embryo. These plastids were RNA- and DNA-negative, and only slightly positive with methods for polysaccharides and lipids. Cytoplasmic and nucleolar RNA and protein levels were high in the embryo throughout its development. The cotyledons and endosperm also showed high RNA and protein levels. Cytoplasmic DNA was present in the embryonic apical meristematic cells in the form of Feulgen-positive, deoxyribonuclease-removable granules. Cytoplasmic histones were present in the embryo and endosperm. Polysaccharides were demonstrable in the cotyledons, cortex, endosperm, and nucellus.  相似文献   

10.
Endosperm development was studied in normally setting flowersand pods of soybean from anthesis to a pod length of 10–20mm. The free-nuclear stage following double fertilization istypified by loss of starch and increasing vacuolation. The cytoplasmprovides evidence of extensive metabolic activity. Wall ingrowths,already present at the micropylar end of the embryo sac wallprior to fertilization, develop along the lateral wall of thecentral cell as well as at the chalazal endosperm haustorium.Endosperm cellularization begins when the embryo has developeda distinct globular embryo proper and suspensor. Cellularizationstarts at the micropylar end of the embryo sac as a series ofantidinal walls projecting into the endosperm cytoplasm fromthe wall of the central cell. The free, growing ends of thesewalls are associated with vesicles, microtubules, and endoplasrnicreticulum. Pendinal walls that complete the compartmentalizalionof portions of the endosperm cytoplasm are initiated as cellplates formed during continued mitosis of the endosperm nuclei.Endosperm cell walls are traversed by plasmodesmata. This studywill provide a basis for comparison with endosperin from soybeanflowers programmed to abscise. Glycine max, soybean, endosperm, ovules  相似文献   

11.
Capsella embryogenesis: The suspensor and the basal cell   总被引:1,自引:1,他引:0  
Summary The suspensor and basal cell ofCapsella were examined with the electron microscope and analyzed by histochemical procedures. The suspensor cells are more vacuolate and contain more ER and dictyosomes, but fewer ribosomes and stain less intensely for protein and nucleic acids than the cells of the embryo. The end walls of the suspensor cells contain numerous plasmodesmata but there are no plasmodesmata in the walls separating the suspensor from the embryo sac. The lower suspensor cells fuse with the embryo sac wall and the lateral walls of the lower and middle suspensor cells produce finger-like projections into the endosperm. At the heart stage the suspensor cells begin to degenerate and gradually lose their ability to stain for protein and nucleic acids.The basal cell is highly vacuolate and enlarges to a size of 150 X 70. An extensive network of wall projections develops on the micropylar end wall and adjacent lateral wall. The nucleus becomes deeply lobed and suspended in a strand of cytoplasm traversing the large vacuole. The cytoplasmic matrix darkens at the late globular stage and histochemical staining for protein becomes very intense. The basal cell remains active after the suspensor cytoplasm has degenerated. It is proposed that the suspensor and basal cell function as an embryonic root in the absorption and translocation of nutriments from the integuments to the developing embryo.Research supported by NSF grant GB 3460 and NIH grant 5-RO 1-CA-03656-09.  相似文献   

12.
Cytological and histological studies on postfertilization development of ovules were carried out in six facultatively apomictic Citrus cultivars. At the time of anthesis, adventive embryo initial cells (AEICs) were detected mainly in the cell layers of the nucellus around the chalazal half of the embryo sac. During the approximately 40 days rest period of the AEICs after fertilization, rapid cell division and enlargement in the endosperm and the chalazal half of the nucellus resulted in the split of AEICs into several separated areas forming the micropylar, lateral and chalazal islands surrounding the enlarging embryo sac. Both in diploid seeds with triploid endosperm and triploid seeds with pentaploid endosperm, the AEICs located in the micropylar half successfully developed into adventive embryos. In diploid seeds, almost all AEICs located in the chalazal half did not develop beyond the initial-celled stage, while in the triploid seeds, those located in the chalazal half occasionally developed into cotyledonary embryos. In seeds with aborted endosperm, the AEICs located in the chalazal half often developed into cotyledonary embryos. The chalazal expiants from normal seeds produced a large number of embryos in vitro. Four results can be summarized from these studies on adventive embryogenesis as follows: 1) All AEICs are initiated prior to anthesis. 2) Whether or not the AEICs successfully developed into adventive embryos is dependent upon their position in the seed. 3) The farther the AEICs are located from the micropylar end, the more adventive embryogenesis is suppressed by endosperm. 4) The degree of adventive embryogenesis in the chalazal half is affected by time and extent of malfunction of the endosperm. Under natural conditions, these regulatory systems of adventive embryogenesis contribute to high production of zygotic seedlings in apomictic Citrus species and cultivars.  相似文献   

13.
I. Hakman  P. Rennie  L. Fowke 《Protoplasma》1987,140(2-3):100-109
Summary Somatic embryos in embryogenic callus cultures derived from Immature zygotic embryos ofPicea glauca (White spruce) were examined by light and electron microscopy. Somatic embryos consist of an embryonic region of small densely cytoplasmic cells subtended by a suspensor consisting of long highly vacuolated cells. Mitotic figures are frequent in the embryonic cells but are not observed in the suspensor. Cell divisions in the embryonic region apparently produce rows of cells which elongate to form the suspensor. The presence of abundant polysomes, coated membranes and dictyosomes in the cytoplasm of embryonic and upper suspensor cells suggests rapid growth of the embryo. In contrast the basipetal suspensor cells appear to be senescing. While only a few scattered microfilaments are present in the meristematic cells, the upper suspensor cells contain numerous bundles of longitudinally oriented microfilaments. These bundles correspond to actin cables observed in light microscope preparations stained with rhodamine labelled phalloidin and are oriented parallel to the direction of active streaming in these cells.  相似文献   

14.
花椒球心胚及胚乳的发生和发育   总被引:1,自引:1,他引:0  
对花椒珠心胚及胚乳的发生和发育过程进行了详细的细胞学及细胞学研究。主要研究结果如下;珠心胚发生前,有性胚囊发育过程中从大孢子发生到胚囊形成的各个阶段均可发生退化,退化频率50%,未退化的胚囊发育成熟,成熟胚囊仅含卵器和两个极核。卵器最终退化,极核不经受精自发形成胚肥。当胚乳游离核达到15或32个时,最早的珠心胚原始细胞由靠近胚囊球孔端的珠心细胞分化形成。随着子房生长,多个原始细胞持续不断地从珠孔端  相似文献   

15.
As part of a series of detailed observations on embryogenesis in Drosophila, the protective coverings of the egg and surface changes in the embryo prior to gastrulation have been studied with the SEM. Four specializations of the chorion are described: the plastron, micropylar cone, operculum, and the posterior thickening. After removal of the protective coverings the surface changes during development can be observed. During the first eight synchronous nuclear divisions a dense array of thin microprojections covers the whole embryo. After the ninth division between 373 and 408 nuclei reach the surface and become located in cytoplasmic projections. From counts of the number of surface bulges during the syncytial blastema stages, it was established that 13 synchronous divisions take place producing between 5600 and 6500 surface nuclei. During formation of the cellular blastoderm, the location of the prospective cells becomes obscured by a dense pattern of microprojections from each cell. However, with the completion of the blastoderm, the surfaces of the cells become smooth and the cell outlines distinct. The usefulness of the SEM in developmental studies is discussed.  相似文献   

16.
The inaccessibility of the zygote and proembryos of angiospermswithin the surrounding maternal and filial tissues has hamperedstudies on early plant embryogenesis. Somatic and gametophyticembryo cultures are often used as alternative systems for molecularand biochemical studies on early embryogenesis, but are notwidely used in developmental studies due to differences in theearly cell division patterns with seed embryos. A new Brassicanapus microspore embryo culture system, wherein embryogenesishighly mimics zygotic embryo development, is reported here.In this new system, the donor microspore first divides transverselyto form a filamentous structure, from which the distal cellforms the embryo proper, while the lower part resembles thesuspensor. In conventional microspore embryogenesis, the microsporedivides randomly to form an embryonic mass that after a whileestablishes a protoderm and subsequently shows delayed histodifferentiation.In contrast, the embryo proper of filament-bearing microspore-derivedembryos undergoes the same ordered pattern of cell divisionand early histodifferentiation as in the zygotic embryo. Thisobservation suggests an important role for the suspensor inearly zygotic embryo patterning and histodifferentiation. Thisis the first in vitro system wherein single differentiated cellsin culture can efficiently regenerate embryos that are morphologicallycomparable to zygotic embryos. The system provides a powerfulin vitro tool for studying the diverse developmental processesthat take place during the early stages of plant embryogenesis. Key words: Brassica napus, microspore embryogenesis, pattern formation, polarity, suspensor, zygotic embryogenesis  相似文献   

17.
InCymbidium sinense, the pattern of embryo development is unusualin that oblique cell divisions result in the formation of severalsuspensor cells prior to the development of the embryo proper.Characteristic changes in microtubular distribution can be foundwithin the zygote and the proembryo during their development.After fertilization, the ellipsoid-shaped zygote has randomlydistributed microtubules within its cytoplasm. As the zygotetakes on a more rounded appearance, microtubules organize intoa dense meshwork. Furthermore, microtubule bundles appear atthe chalazal region of the cell prior to the first mitotic divisionof the zygote. At the preprophase stage of mitosis, a preprophaseband of microtubules appears in the cytoplasm of the zygote.The zygote divides obliquely and unequally and gives rise toan apical cell and a slightly larger basal cell. Many randomly-alignedmicrotubules can be found in the cortex of the basal cell. Theincrease in the abundance of microtubules coincides with theisotropic expansion of the basal cell. The early division ofthe basal cell and subsequent division of the apical cell resultsin the formation of a four-celled embryo, of which three cellsnear the micropylar pole develop as suspensor cells. In thesuspensor cells, the microtubules tend to orient in the samedirection as the long axis of the cell. In addition, prominentmicrotubules can also be found near the adjoining cell wallsof the four-celled embryo. The terminal cell is highly cytoplasmicwith abundant microtubules within the cell. Subsequent divisionsof the terminal cell give rise to additional suspensor cellsand the embryo proper. In the mature embryo, five suspensorcells are usually present; one eventually grows through themicropyle of the inner integument and four grow towards thechalazal pole. The cortical microtubules of suspensor cellsredistribute from a longitudinal to a transverse direction asthey grow towards their respective poles.Copyright 1998 Annalsof Botany Company Embryogenesis, endosperm, microtubules, preprophase band, suspensor cells,Cymbidium sinense(Andr.) Willd.  相似文献   

18.
Early embryogenesis is described for the southern corn rootworm, Diabrotica undecimpunctata Howardi Barber, at 24 ± 1°C. During the first four hours following oviposition, the maturation divisions and syngamy are completed. Morphological changes in the second polar body accompany syngamy. Cleavage divisions and energid migration occur during the fourth to the tenth hour. The vitellophags, which appear during cleavage divisions, are distinguished from the blastema-bound nuclei by having smaller, more densely staining nuclei. After completion of a uniform blastoderm (11-14 hour), cell division ceases until the completion of the germ band and the formation of the embryonic membranes (22 hour). This species has a pattern of amnion formation that is different from most Coleoptera but is shared with a few other chrysomelids, some Isoptera, and some Odonata.  相似文献   

19.
J. Bohdanowicz 《Protoplasma》1987,137(2-3):71-83
Summary The development of the suspensor (consisting of a basal cell and a few chalazal cells) inAlisma plantagoaquatica andA. lanceolatum was investigated using cytochemical methods, light and electron microscopy. The basal cell becomes differentiated during the first three days of embryo development. As a result of endopolyploidization the volume of the nucleus rapidly increases, as does the quantity of chromatin it contains and the size of the nucleolus. As basal cell grows, its cytoplasm increases in volume and the number of organelles increase, and wall ingrowths begin to form on the walls at the micropylar pole of the cell. The full development and functioning of the suspensor occurs during the next three days. The enormous basal cell then attains its maximum degree of differentiation: its nucleus reaches a ploidy of 256n or 512n, the micropylar transfer wall is fully developed, as is the cytoplasm, rich in proteins, ribonucleic acids (RNA) and organelles, particularly dictyosomes and long cisternae of the rough endoplasmic reticulum. The chalazal suspensor cells joining the embryo proper to the basal cell also become differentiated. In the seven-day embryo the suspensor begins to degenerate which coincides with the cellularization of the endosperm at the micropylar pole of the embryo sac. The senescence of the suspensor involves the degradation of the nucleus, increasing cytoplasmic vacuolization, and a distinct decrease in protein and RNA content, first in the basal cell, then in the chalazal suspensor cells. Analysis of the development and ultrastructure of the basal suspensor cell suggests that it plays the role of an active metabolic transfer cell, translocating nutrients from the maternal tissues via the chalazal suspensor cells to the growing embryo proper.  相似文献   

20.
为探讨多花地宝兰(Geodorum recurvum)胚胎发育的系统分类学意义,采用石蜡制片法对多花地宝兰胚囊和胚的发育进行解剖学观察。结果表明,在开花前,多花地宝兰胚珠原基发育缓慢,开花授粉后胚珠原基快速发育成"树状二杈分枝结构",随后在"分枝结构"末端形成孢原细胞,开始胚囊发育。多花地宝兰的胚囊发育属于单孢蓼型胚囊,胚珠具有双层珠被。孢原细胞形成后,经过细胞膨大延长发育形成胚囊母细胞,胚囊母细胞经过减数分裂形成线性四分体,在珠孔端形成1个功能大孢子,功能大孢子经过3次有丝分裂形成8核胚囊。多花地宝兰的胚发育具有藜型和紫苑型两种方式。双受精完成后,多花地宝兰合子进行一次橫裂后形成基细胞和顶细胞;基细胞经过多次分裂形成细胞团,细胞团中的细胞向不同方向膨大延长形成多个胚柄细胞;顶细胞有两种分裂方式,一种是横裂形成藜型胚,一种是纵裂形成紫苑型胚。因此,推测多花地宝兰在兰科植物系统分类学上属于较为原始种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号