首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spinal cord injury (SCI) is a serious central trauma, leading to severe dysfunction of motor and sensory systems. Secondary injuries, such as apoptosis and cell autophagy, significantly impact the motor function recovery process. Metformin is a widely used oral anti-diabetic agent for type 2 diabetes in the world. It has been demonstrated to promote autophagy and inhibit apoptosis in the nervous system. However, its role in recovery following SCI is still unknown. In this study, we determined that motor function, assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor assessment scale, was significantly higher in rats treated with metformin following injury. Nissl staining revealed that metformin also increased the number of surviving neurons in the spinal cord lesion. Western blot and immunofluorescent analysis revealed that mammalian target of rapamycin (mTOR) and P70S6 kinase (P70S6K) decreased, while the expression of autophagy markers increased and apoptosis markers declined in animals treated with metformin following SCI. Taken together, these findings suggest that metformin functions as a neuroprotective agent following SCI by promoting autophagy and inhibiting apoptosis by regulating the mTOR/P70S6K signaling pathway.  相似文献   

2.
Gao  Dongsheng  Ma  Linqing  Xie  Yunliang  Xiao  Bo  Xue  Shouru  Xiao  Wenbiao  Zhou  You  Cai  Xiuying  Yang  Xiaoyan 《Neurochemical research》2022,47(8):2396-2404
Neurochemical Research - Temporal lobe epilepsy (TLE) is a complex neurological disease, and its occurrence and development are closely related to the autophagy signaling pathway. However, the...  相似文献   

3.
mTOR inhibitors are used clinically to treat renal cancer but are not curative. Here we show that autophagy is a resistance mechanism of human renal cell carcinoma (RCC) cell lines to mTOR inhibitors. RCC cell lines have high basal autophagy that is required for survival to mTOR inhibition. In RCC4 cells, inhibition of mTOR with CCI-779 stimulates autophagy and eliminates RIP kinases (RIPKs) and this is blocked by autophagy inhibition, which induces RIPK- and ROS-dependent necroptosis in vitro and suppresses xenograft growth. Autophagy of mitochondria is required for cell survival since mTOR inhibition turns off Nrf2 antioxidant defense. Thus, coordinate mTOR and autophagy inhibition leads to an imbalance between ROS production and defense, causing necroptosis that may enhance cancer treatment efficacy.  相似文献   

4.
《Autophagy》2013,9(2):67-73
The downregulation of macroautophagy observed in cancer cells is associated with tumor progression. The regulation of macroautophagy by signaling pathways overlaps with the control of cell growth, proliferation, cell survival, and death. Several tumor suppressor genes (PTEN, TSC2 and p53) involved in the mTOR signaling network have been shown to stimulate autophagy. In contrast, the oncoproteins involved in this network have the opposite effect. These findings, together with the discovery that haplo-insufficiency of the tumor suppressor beclin 1 promotes tumorigenesis in various tissues in transgenic mice, give credibility to the idea that autophagy is a tumor suppressor mechanism. The induction of macroautophagy by cancer treatments may also contribute to cell eradication. However, cancer cells sometimes mobilize autophagic capacities in response to various stimuli without a fatal outcome, suggesting that they can also exploit macroautophagy for their own benefit.  相似文献   

5.
Resveratrol (RSV) is a naturally occurring polyphenol that has been found to exert antioxidant, anti-inflammatory, and neuroprotective properties. However, how RSV exerts its beneficial health effects remains largely unknown. Here, we show that RSV inhibits insulin- and leucine-stimulated mTOR signaling in C2C12 fibroblasts via a Sirt1-independent mechanism. Treating C2C12 cells with RSV dramatically inhibited insulin-stimulated Akt, S6 kinase, and 4E-BP1 phosphorylation but had little effect on tyrosine phosphorylation of the insulin receptor and activation of the p44/42 MAPK signaling pathway. RSV treatment also partially blocked mTOR and S6 kinase phosphorylation in TSC1/2-deficient mouse embryonic fibroblasts, suggesting the presence of an inhibitory site downstream of TSC1/2. Knocking out PDK1 or suppressing AMP-activated protein kinase had little effect on leucine-stimulated mTOR signaling. On the other hand, RSV significantly increased the association between mTOR and its inhibitor, DEPTOR. Furthermore, the inhibitory effect of RSV on leucine-stimulated mTOR signaling was greatly reduced in cells in which the expression levels of DEPTOR were suppressed by RNAi. Taken together, our studies reveal that RSV inhibits leucine-stimulated mTORC1 activation by promoting mTOR/DEPTOR interaction and thus uncover a novel mechanism by which RSV negatively regulates mTOR activity.  相似文献   

6.
Li  Yuanlong  Guo  Yue  Fan  Yue  Tian  He  Li  Kuo  Mei  Xifan 《Neurochemical research》2019,44(8):2007-2019
Neurochemical Research - Spinal cord injury (SCI) leads to neuronal death resulting in central nervous system (CNS) dysfunction; however, the pathogenesis is still poorly understood. Melatonin...  相似文献   

7.
《Molecular cell》2014,53(2):209-220
  1. Download : Download high-res image (148KB)
  2. Download : Download full-size image
  相似文献   

8.
白藜芦醇(resveratrol)可抑制人肾癌786-O细胞增殖,并诱导其凋亡,但是白藜芦醇对786-O细胞自噬(autophagy)的影响及机制尚不清楚.为探究其机制,体外培养786-O细胞,采用CCK-8检测786-O细胞活力;TUNEL染色检测786-O细胞凋亡;透射电子显微镜观察786-O细胞自噬体;吖啶橙染色...  相似文献   

9.
Porcine circovirus type 2 (PCV2) uses autophagy machinery to enhance its replication in PK-15 cells. However, the underlying mechanisms are unknown. By the use of specific inhibitors, RNA interference, and coimmunoprecipitation, we show that PCV2 induces autophagy in PK-15 cells through a pathway involving the kinases AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinase 1/2 (ERK1/2), the tumor suppressor protein TSC2, and the mammalian target of rapamycin (mTOR). AMPK and ERK1/2 positively regulate autophagy through negative control of the mTOR pathway by phosphorylating TSC2 in PCV2-infected PK-15 cells. Thus, PCV2 might induce autophagy via the AMPK/ERK/TSC2/mTOR signaling pathway in the host cells, representing a pivotal mechanism for PCV2 pathogenesis.  相似文献   

10.
《Autophagy》2013,9(6):635-637
Curcumin has a potent anticancer effect and is a promising new therapeutic strategy. We previously demonstrated that curcumin induced non-apoptotic autophagic cell death in malignant glioma cells in vitro and in vivo. This compound inhibited the Akt/mammalian target of rapamycin/p70 ribosomal protein S6 kinase pathway and activated the extracellular signal-regulated kinases 1/2 thereby inducing autophagy. Interestingly, activation of the first pathway inhibited curcumin-induced autophagy and cytotoxicity, whereas inhibition of the latter pathway inhibited curcumin-induced autophagy and induced apoptosis, thus augmenting the cytotoxicity of curcumin. These results imply that these two autophagic pathways have opposite effects on curcumin’s cytotoxicity. However, inhibition of nuclear factor κB, which is the main target of curcumin for its anticancer effect, was not observed in malignant glioma cells. These results suggest that autophagy but not nuclear factor κB plays a central role in curcumin anticancer therapy and warrant further investigation toward application in patients with malignant gliomas. Here, we discuss the therapeutic role of two autophagic pathways influenced by curcumin.

Addendum to:

Evidence That Curcumin Suppresses the Growth of Malignant Gliomas in Vitro and in Vivo through Induction of Autophagy: Role of Akt and Extracellular Signal-Regulated Kinase Signaling Pathways

H. Aoki, Y. Takada, S. Kondo, R. Sawaya, B. B. Aggarwal and Y. Kondo

Mol Pharmacol 2007; 72:29-39  相似文献   

11.
The mammalian target of rapamycin (mTOR) signaling pathway in pulmonary fibrosis was investigated in cell and animal models. mTOR overactivation in alveolar epithelial cells (AECs) was achieved in the conditional and inducible Tsc1 knock-down mice SPC-rtTA/TetO-Cre/Tsc1fx/+ (STT). Doxycycline caused Tsc1 knock-down and consequently mTOR activation in AECs for the STT mice. Mice treated with bleomycin exhibited increased mortality and pulmonary fibrosis compared with control mice. In wild-type C57BL/6J mice, pretreatment with rapamycin attenuated the bleomycin-mediated mortality and fibrosis. Rapamycin-mediated mouse survival benefit was inhibited by chloroquine, an autophagy inhibitor. Autophagosomes were decreased in the lungs after bleomycin exposure. Rapamycin induced the production of autophagosomes and diminished p62. We concluded that mTOR overactivation in AECs and compromised autophagy in the lungs are involved in the pathogenesis of pulmonary fibrosis. The suppression of mTOR and enhancement of autophagy may be used for treatment of pulmonary fibrosis.  相似文献   

12.
13.
14.
《Autophagy》2013,9(4):307-309
Bnip3 is a member of the ‘BH3-only’ Bcl-2 subfamily which has been implicated in apoptotic, necrotic, and autophagic cell death. We recently reported that Bnip3 is a key mediator of mitochondrial dysfunction and cell death in the ex vivo heart following ischemia/reperfusion (I/R). Moreover, we found that Bnip3 was involved in upregulation of autophagy in I/R and that Bnip3-mediated mitochondrial dysfunction correlated with upregulation of autophagy. Using a model of simulated I/R and overexpression of Bnip3 in HL-1 cardiac myocytes, we determined that Bnip3-mediated upregulation of autophagic activity constituted a protective response against Bnip3 death signaling. Here we present additional evidence that enhanced autophagic activity functions as a cytoprotective pathway to oppose ischemia/reperfusion-related apoptosis.  相似文献   

15.
Autophagy is an important homeostatic process for the degradation of cytosolic proteins and organelles and has been reported to play an important role in cellular responses to pathogens and virus replication. However, the role of autophagy in Coxsackievirus A16 (CA16) infection and pathogenesis remains unknown. Here, we demonstrated that CA16 infection enhanced autophagosome formation, resulting in increased extracellular virus production. Moreover, expression of CA16 nonstructural proteins 2C and 3C was sufficient to trigger autophagosome accumulation by blocking the fusion of autophagosomes with lysosomes. Interestingly, we found that Immunity-related GTPase family M (IRGM) was crucial for the activation of CA16 infection-induced autophagy; in turn, reducing IRGM expression suppressed autophagy. Expression of viral protein 2C enhanced IRGM promoter activation, thereby increasing IRGM expression and inducing autophagy. CA16 infection inhibited Akt/mTOR signaling and activated extracellular signal-regulated kinase (ERK) signaling, both of which are necessary for autophagy induction. In summary, CA16 can use autophagy to enhance its own replication. These results raise the possibility of targeting the autophagic pathway for the treatment of hand, foot, and mouth disease (HFMD).  相似文献   

16.
17.
Autophagy has emerged as an important antimicrobial host defense mechanism that not only orchestrates the systemic immune response, but also functions in a cell autonomous manner to directly eliminate invading pathogens. Pathogenic bacteria such as Salmonella have evolved adaptations to protect themselves from autophagic elimination. Here we show that signaling through the non-receptor tyrosine kinase focal adhesion kinase (FAK) is actively manipulated by the Salmonella SPI-2 system in macrophages to promote intracellular survival. In wild-type macrophages, FAK is recruited to the surface of the Salmonella-containing vacuole (SCV), leading to amplified signaling through the Akt-mTOR axis and inhibition of the autophagic response. In FAK-deficient macrophages, Akt/mTOR signaling is attenuated and autophagic capture of intracellular bacteria is enhanced, resulting in reduced bacterial survival. We further demonstrate that enhanced autophagy in FAK−/− macrophages requires the activity of Atg5 and ULK1 in a process that is distinct from LC3-assisted phagocytosis (LAP). In vivo, selective knockout of FAK in macrophages resulted in more rapid clearance of bacteria from tissues after oral infection with S. typhimurium. Clearance was correlated with reduced infiltration of inflammatory cell types into infected tissues and reduced tissue damage. Together, these data demonstrate that FAK is specifically targeted by S. typhimurium as a novel means of suppressing autophagy in macrophages, thereby enhancing their intracellular survival.  相似文献   

18.
Akt phosphorylation is a major driver of cell survival, motility, and proliferation in development and disease, causing increased interest in upstream regulators of Akt like mTOR complex 2 (mTORC2). We used genetic disruption of Rictor to impair mTORC2 activity in mouse mammary epithelia, which decreased Akt phosphorylation, ductal length, secondary branching, cell motility, and cell survival. These effects were recapitulated with a pharmacological dual inhibitor of mTORC1/mTORC2, but not upon genetic disruption of mTORC1 function via Raptor deletion. Surprisingly, Akt re-activation was not sufficient to rescue cell survival or invasion, and modestly increased branching of mTORC2-impaired mammary epithelial cells (MECs) in culture and in vivo. However, another mTORC2 substrate, protein kinase C (PKC)-alpha, fully rescued mTORC2-impaired MEC branching, invasion, and survival, as well as branching morphogenesis in vivo. PKC-alpha-mediated signaling through the small GTPase Rac1 was necessary for mTORC2-dependent mammary epithelial development during puberty, revealing a novel role for Rictor/mTORC2 in MEC survival and motility during branching morphogenesis through a PKC-alpha/Rac1-dependent mechanism.  相似文献   

19.
Exogenous cytokine therapy can induce systemic toxicity, which might be prevented by activating endogenously produced cytokines in local cell niches. Here we developed antibody-based activators of cytokine signaling (AcCS), which recognize cytokines only when they are bound to their cell surface receptors. AcCS were developed for type I interferons (IFNs), which induce cellular activities by binding to cell surface receptors IFNAR1 and IFNAR2. As a potential alternative to exogenous IFN therapy, AcCS were shown to potentiate the biological activities of natural IFNs by ∼100-fold. Biochemical and structural characterization demonstrates that the AcCS stabilize the IFN-IFNAR2 binary complex by recognizing an IFN-induced conformational change in IFNAR2. Using IFN mutants that disrupt IFNAR1 binding, AcCS were able to enhance IFN antiviral potency without activating antiproliferative responses. This suggests AcCS can be used to manipulate cytokine signaling for basic science and possibly for therapeutic applications.  相似文献   

20.
It has long been observed that many neuronal types position their nuclei within restricted cytoplasmic boundaries. A striking example is the apical localization of cone photoreceptors nuclei at the outer edge of the outer nuclear layer of mammalian retinas. Yet, little is known about how such nuclear spatial confinement is achieved and further maintained. Linkers of the Nucleoskeleton to the Cytoskeleton (LINC complexes) consist of evolutionary-conserved macromolecular assemblies that span the nuclear envelope to connect the nucleus with the peripheral cytoskeleton. Here, we applied a new transgenic strategy to disrupt LINC complexes either in cones or rods. In adult cones, we observed a drastic nuclear mislocalization on the basal side of the ONL that affected cone terminals overall architecture. We further provide evidence that this phenotype may stem from the inability of cone precursor nuclei to migrate towards the apical side of the outer nuclear layer during early postnatal retinal development. By contrast, disruption of LINC complexes within rod photoreceptors, whose nuclei are scattered across the outer nuclear layer, had no effect on the positioning of their nuclei thereby emphasizing differential requirements for LINC complexes by different neuronal types. We further show that Sun1, a component of LINC complexes, but not A-type lamins, which interact with LINC complexes at the nuclear envelope, participate in cone nuclei positioning. This study provides key mechanistic aspects underlying the well-known spatial confinement of cone nuclei as well as a new mouse model to evaluate the pathological relevance of nuclear mispositioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号