首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hirsutella rhossiliensis, a nematophagous fungus, has shown potential in biocontrol of plant-parasitic nematodes. Monitoring the population dynamics of a biocontrol agent in soil requires comprehensive techniques and is essential to understand how it works. Bioassay based on the fungal parasitism on the juveniles of soybean cyst nematode, Heterodera glycines, can be used to evaluate the activity of the fungus but fails to quantify fungal biomass in soil. A real-time polymerase chain reaction (PCR) assay was developed to quantify the fungal population density in soil. The assay detected as little as 100 fg of fungal genomic DNA and 40 conidia g−1 soil, respectively. The parasitism bioassay and the real-time PCR assay were carried out to investigate the presence, abundance and activity of H. rhossiliensis in soil after application of different inoculum levels. Both of the percentage of assay nematodes parasitized by H. rhossiliensis based on the parasitism bioassay and the DNA yield of the fungus quantified by real-time PCR increased significantly with the increase of the inoculum levels. The DNA yield of the fungus was positively correlated with the percentage of assay nematodes parasitized by H. rhossiliensis. The combination of the two is useful for monitoring fungal biomass and activity in soil.  相似文献   

2.
Because molecular oxygen functions as the final acceptor of electrons during aerobic respiration and a substrate for diverse enzymatic reactions, eukaryotes employ various mechanisms to maintain cellular homeostasis under varying oxygen concentration. Human fungal pathogens change the expression of genes involved in virulence and oxygen-required metabolisms such as ergosterol (ERG) synthesis when they encounter oxygen limitation (hypoxia) during infection. The oxygen level in plant tissues also fluctuates, potentially creating hypoxic stress to pathogens during infection. However, little is known about how in planta oxygen dynamics impact pathogenesis. In this study, we investigated oxygen dynamics in rice during infection by Magnaporthe oryzae via two approaches. First, rice leaves infected by M. oryzae were noninvasively probed using a microscopic oxygen sensor. Second, an immunofluorescence assay based on a chemical probe, pimonidazole, was used. Both methods showed that oxygen concentration in rice decreased after fungal penetration. We also functionally characterized five hypoxia-responsive genes participating in ERG biosynthesis for their role in pathogenesis. Resulting insights and tools will help study the nature of in planta oxygen dynamics in other pathosystems.  相似文献   

3.
A number of assay methods which measure cellular metabolic activity have only measured intracellular ATP levels because it has been speculated that ATP production and oxygen consumption are obligatorily coupled to each other under normal conditions. However, there exist many cases in which ATP production and oxygen consumption are uncoupled. Therefore, measurement of only intracellular ATP levels has a limit for understanding the overall metabolic states during various cellular functions. Here, we report a novel system for simultaneously monitoring intracellular ATP and oxygen levels using a red‐emitting Phrixothrix hirtus luciferase (PxRe) and a blue‐emitting Renilla luciferase (Rluc). Using this system, we monitored the dynamic changes in both intracellular ATP and oxygen levels during chondrogenesis. We found that the oxygen level oscillated at twice the frequency of ATP in chondrogenesis and the oxygen oscillations have an antiphase mode to the ATP oscillations; we also found an independent mode for the ATP oscillations. This result indicates that both mitochondrial and non‐mitochondrial respiration oscillate and thus play a role in chondrogenesis. This dual‐color monitoring system is useful for studying metabolic regulations that underlie diverse cellular processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The search for new antimicrobial compounds and the optimization of production methods turn the use of antimicrobial susceptibility tests a routine. The most frequently used methods are based on agar diffusion assays or on dilution in agar or broth. For filamentous fungi, the most common antimicrobial activity detection methods comprise the co-culture of two filamentous fungal strains or the use of fungal extracts to test against single-cell microorganisms. Here we report a rapid, effective and reproducible assay to detect fungal antimicrobial activity against single-cell microorganisms. This method allows an easy way of performing a fast antimicrobial screening of actively growing fungi directly against yeast. Because it makes use of an actively growing mycelium, this bioassay also provides a way for studying the production dynamics of antimicrobial compounds by filamentous fungi. The proposed assay is less time consuming and introduces the innovation of allowing the direct detection of fungal antimicrobial properties against single cell microorganisms without the prior isolation of the active substance(s). This is particularly useful when performing large screenings for fungal antimicrobial activity. With this bioassay, antimicrobial activity of Hypholoma fasciculare against yeast species was observed for the first time.  相似文献   

5.
The Coriolis δ air sampler manufactured by Bertin Technologies (France) is a continuous air sampler, dedicated to outdoor monitoring of airborne spores and pollen grains. This high-volume sampler is based on patented Coriolis technology delivering a liquid sample. The air is drawn into a conical vial in a whirling type motion using suction; particles are pulled against the wall by centrifugal force. Airborne particles are separated from the air and collected in a liquid medium. This innovative solution allows rapid analysis by several techniques including PCR assay and serological assay in order to measure the antigenicity/allergenicity of pollen grains and fungal spores. Also, traditional counting of pollen grains or taxa identification by optical microscopy can be done. A study has been carried out by the Health Protection Agency (HPA), Porton Down, UK, to measure the physical efficiency of the Coriolis air sampler. The physical efficiency of the sampler for collection of micro-organism-laden particles of various sizes has been compared with that of membrane filter samplers using the techniques described by ISO 14698-1. The Coriolis was operated simultaneously with membrane filter samplers in a controlled room where they were challenged with uniform-sized particles of different diameters containing bacterial spores. For the larger particle sizes, it was found that the physical efficiency of the Coriolis was 92% for 10-μm particles. The biological performance of the Coriolis in the collection of airborne fungal spores and pollen grains was evaluated in comparison with a Hirst spore trap (one-week tape-on-drum type sampler) which is one of the most frequently used traps in the measurement of outdoor pollen grain concentrations. The advantages and limitations of both technologies are discussed. The Coriolis was operated simultaneously with a Hirst spore trap in the sampling station of Réseau National de Surveillance Aérobiologique, France (RNSA); the pollen grain and fungal spore counts were analysed by optical microscopy. The pollen grain count m−3 collected was compared for both devices. The dispersion values were obtained and statistical analysis was carried out. This study shows that the Coriolis air sampler provided equivalent recovery of pollen grain and fungal spores compared with the volumetric trap standard method (not significantly different, W test, α = 0.05). Nowadays, the French-led project, acronym MONALISA, with financial support from the European Commission––Life-Environment (LIFE05 ENV/F/000068), is testing this innovative air sampler in order to measure the antigenicity/allergenicity of the main aeroallergen particles, i.e. Betula (birch), Poaceae (grasses), Parietaria (pellitory), Olea spp (olive tree), and Artemisia (mugwort) pollen grains, and Alternaria (fungal spores) to validate a new approach of monitoring instead of quantifying pollen grains by their morphology. The robustness and efficiency of the MONALISA system is being demonstrated at a national level throughout Europe in eight different countries with different bio-climatic and topography characteristics: France, UK, Finland, Poland, Spain, Portugal, Switzerland, and Italy.  相似文献   

6.
Mineralization of polymeric wood lignin and its substructures is a result of complex reactions involving oxidizing and reducing enzymes and radicals. The degradation of methoxyl groups is an essential part of this process. The presence of wood greatly stimulates the demethoxylation of a non-phenolic lignin model compound (a [O14CH3]-labeled β-O-4 dimer) by the lignin-degrading white-rot fungi Phlebia radiata and Phanerochaete chrysosporium. When grown on wood, both fungi produced up to 47 and 40% 14CO2 of the applied 14C activity, respectively, under air and oxygen in 8 weeks. Without wood, the demethoxylation of the dimer by both fungi was lower, varying between 0.5 and 35%. Addition of nutrient nitrogen together with glucose decreased demethoxylation when the fungi were grown on spruce wood under air. Because the evolution of 14CO2 in the absence of wood was poor, the fungi may have preferably used wood as a carbon and nitrogen source. The amount of fungal mycelium, as determined by the ergosterol assay, did not show connection to demethoxylation. P. radiata also showed a high demethoxylation of [O14CH3]-labeled vanillic acid in the presence of birch wood. The degradation of lignin and lignin-related substances should be studied in the presence of wood, the natural substrate for white-rot fungi.  相似文献   

7.
Abstract

To investigate the possibility of using simple glass tubes as reactors for oxygen-demanding reactions, a setup was assembled to study the initial rate of conversion of glycerol to dihydroxyacetone (DHA) using Gluconobacter oxydans. Several parallel 10 mL glass tubes were incubated in a temperature-controlled shaker. The concentration of DHA was determined using a fast spectrophotometric HPLC-based method that could process 3 samples/min. It was shown that the obtained results were reproducible and the reaction rates remained constant throughout the reaction. Further, the system reached a high volumetric activity of 15.48 g DHA L? 1 h? 1 consuming 86 mmol L? 1 h? 1 oxygen before the system became mass-transfer limited, indicating a high diffusion of oxygen. It was concluded that the reactor system is well suited for process development where the requirement for oxygen is high and that the assay developed can be used to determine the initial rate of DHA production.  相似文献   

8.
Fungal adhesion and aggregation is considered an important event in human, animal and plant disease as well as in the ecology of fungi in nature (e.g., in mating reactions and the dispersion of fungal propagules). Because of this, numerous models have been developed to study fungal adhesion and aggregation mechanisms over the last decade. Unfortunately, however, nearly all of the work in this area has been carried out in simple in vitro models and has focused its attention on that of the attachment process alone, while realitively little effort has been made toward understanding the role adhesion and aggregation plays in colonization or pathogenesis. The emphasis on adhesion and aggregation mechanisms appears, therefore, to have somewhat obscured the study of the interaction of adhesion with other factors that may be of equal or greater importance in these processes and to the development of more complex adhesion models to explore the relationship between adhesion and colonization. Moreover, because it has not generally been appreciated that several methodologic pitfalls accompany the use of simple in vitro adhesion models, there is now emerging a confused literature base with regard to: (i) the nature of the cell wall component(s) of Candida albicans that mediates its attachment to, for example, epithelial cells; (ii) the mechanism(s) of invasion of mucosal and endothelial surfaces; and (iii) the role certain adhesive reactions observed in vitro play in colonization and pathogenesis by this fungus. Therefore, with an emphasis on C. albicans, this paper will attempt to put into perspective the uses and limitations of models for studying the role of fungal attachment in colonization and pathogenesis. In addition, factors that can modify fungal adhesion data will be discussed and the beginnings of a standardized assay to study the adhesion of C. albicans to buccal epithelial cells will be described.Presented as part of the Everett S. Beneke Symposium in Mycology, May 27, 1988.  相似文献   

9.
Bacteria monitoring is essential for many industrial manufacturing processes, particularly those involving in food, biopharmaceuticals, and semiconductor production. Firefly luciferase ATP luminescence assay is a rapid and simple bacteria detection method. However, the detection limit of this assay for Escherichia coli is approximately 104 colony-forming units (CFU), which is insufficient for many applications. This study aims to improve the assay sensitivity by simultaneous conversion of PPi and AMP, two products of the luciferase reaction, back to ATP to form two chain-reaction loops. Because each consumed ATP continuously produces two new ATP molecules, this approach can achieve exponential amplification of ATP. Two consecutive enzyme reactions were employed to regenerate AMP into ATP: adenylate kinase converting AMP into ADP using UTP as the energy source, and acetate kinase catalyzing acetyl phosphate and ADP into ATP. The PPi-recycling loop was completed using ATP sulfurylase and adenosine 5′ phosphosulfate. The modification maintains good quantification linearity in the ATP luminescence assay and greatly increases its bacteria detection sensitivity. This improved method can detect bacteria concentrations of fewer than 10 CFU. This exponential ATP amplification assay will benefit bacteria monitoring in public health and manufacturing processes that require high-quality water.  相似文献   

10.
Aim: This study aimed to evaluate the effect of bromelain, a cysteine protease isolated from pineapple (Ananas comosus), on growth of several agronomically important fungal pathogens. Methods and Results: Purification of bromelain from pineapple stems was carried out by chromatography techniques, and its antimicrobial activity was tested against the fungal pathogens Fusarium verticillioides, Fusarium oxysporum and Fusarium proliferatum by broth microdilution assay. A concentration of 0·3 μmol l?1 of bromelain was sufficient for 90% growth inhibition of F. verticillioides. The capability of bromelain to inhibit fungal growth is related to its proteolytic activity. Conclusions: The study demonstrates that stem bromelain exhibits a potent antifungal activity against phytopathogens and suggests its potential use as an effective agent for crop protection. Significance and Impact of the Study: The results support the use of a natural protease that accumulates at high levels in pineapple stems as alternative to the use of chemical fungicides for crop protection.  相似文献   

11.
The physico-chemical characteristics and possible formation mechanisms of negative air ions are considered. It was found that the products of oxygen and nitrogen negative ionization reduce ferricytochromec and nitroblue tetrazolium, and that these reactions were inhibited by superoxide dismutase. The interaction of negatively ionized oxygen with water led to hydrogen peroxide accumulation, which was inhibited by tetranitromethane or catalase. Nitrogen ionization under these conditions caused the formation of the hydrated electron e aq and the superoxide anion O 2 . The data obtained indicate that the biological activity of negative air ions may be dependent on superoxide. The generation of reactive oxygen ions in the gas phase and also at a gas/water interface is described. A scheme for superoxide production under oxygen and nitrogen ionization is proposed.  相似文献   

12.
Fungal cultivation in a biological real-time reaction calorimeter (BioRTCal) is arduous due to the heterogeneous nature of the system and difficulty in optimizing the process variables. The aim of this investigation is to monitor the growth of fungi Aspergillus tamarii MTCC 5152 in a calorimeter. Experiments carried out with a spore concentration of 105 spores/mL indicate that the growth based on biomass and heat generation profiles was comparable to those obtained hitherto. Heat yield due to biomass growth, substrate uptake, and oxygen uptake rate was estimated from calorimetric experiments. The results would be useful in fermenter design and scale-up. Heat of combustion of fungal biomass was determined experimentally and compared to the four models reported so far. The substrate concentration had significant effects on pellet formation with variation in pellet porosity and apparent density. Metabolic heat generation is an online process variable portraying the instantaneous activity of monitoring fungal growth and BioRTCal is employed to measure the exothermic heat in a noninvasive way.  相似文献   

13.
The somatic mutation and recombination w/w+ eye assay has been used for genotoxic evaluation of a broad number of chemicals with different action mechanisms yielding high values of sensitivity, specificity and accuracy. The aim of this work was to determine the utility of this assay in the evaluation of reactive oxygen species inducers. For this, we have tested eight compounds: diquat, paraquat, menadione, juglone, plumbagin, streptonigrin, tert-butyl hydroperoxide and 4-nitroquinoline 1-oxide, using the Drosophila Oregon K strain which had previously shown advantageous conditions to test this type of compounds. Diquat was the only chemical for which the results were clearly negative, probably because its high toxicity, whereas indications of a marginal genotoxicity rised for menadione. The remaining compounds were evaluated as positives. The conclusion of these experiments is that the w/w+ assay is capable to detect genotoxic effects induced by compounds that generate reactive oxygen species through different action mechanisms.  相似文献   

14.
Biological control of plant diseases with antagonistic bacteria is a promising alternative to conventional chemical control strategies. In vitro screening for inhibition of mycelial growth of phytopathogenic fungi by bacterial isolates is the first step in selecting putative bacterial biocontrol agents. Dual culture plate assay is the most common method involved in this first-line selection process. However, it needs independent agar plates to test antagonism by a specific bacterial isolate against each of the fungal phytopathogen. Two modified in vitro antagonism tests are proposed here. Antagonistic activity of a putative biocontrol bacterial strain against four different fungal phytopathogens could be assessed in a single agar plate simultaneously. A comparison of the new methods with conventional dual culture plate assay was also done. The proposed methods are easy to perform and results of antagonism are obtained rapidly. Results of fungal inhibition were qualitatively comparable with that generated through dual culture plate assay. Quantity of resources such as agar medium and plates required for the modified antagonistic assays is several folds less than that required for dual culture plate assay.  相似文献   

15.
Rapid reactions comprising efflux of K+ and Cl, phosphorylation of a 63-kDa protein (pp63), extracellular alkalinization and synthesis of H2O2 are equally induced in cells of Picea abies (L.) Karst. by chitotetraose, colloidal chitin and cell wall elicitors from the ectomycorrhizal fungus Hebeloma crustuliniforme (Bull. ex Fries.) Quél. an ectomycorrhizal partner of spruce. Cleavage of fungal cell wall elicitors and of artificial chitin elicitors to monomeric and dimeric fragments by apoplasmic spruce chitinases (36-kDa class I chitinase, pI 8.0, and 28-kDa chitinase, pI 8.7; EC 3.2.1.14) equally prevented induction of these rapid reactions. Also, N-acetylglucosamine oligomers and elicitors from the fungal cell walls showed a similar dependence of their activity on the degree of polymerisation. From these results it is suggested that, during ectomycorrhiza formation, only some of the chitin-derived elicitors reach their receptors at the plant plasma membrane, initiating reactions of the hypersensitive response in the host cells. The remaining fungal elicitors will be degraded to varying extents by wall-localized chitinases of the host root, reducing the defence reactions of the plant and allowing symbiotic interactions of both organisms. Received: 6 January 1997 / Accepted: 14 March 1997  相似文献   

16.
The result of the Leptosphaeria maculans/Brassica napus interaction is usually assessed by symptom scoring following a cotyledon-inoculation test. However, an early evaluation of the interaction, and reliable quantitaive data of fungal growth inside plant tissues are needed to supplement the visual assessment of the symptoms. For this purpose, we developed a quantitatve double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) using rabbit polyclonal antisera directed against soluble mycelial proteins. The specificity of the serum was first assessed by immunoblotting following isoelectric focusing of soluble proteins (Western blot) and by DAS-ELISA. Except for Alternaria brassicae, no cross-reactions were observed with my celial extracts of saprophytes or pathogens of B. napus following DAS-ELISA. Although Tox+ and Tox0 isolates of L. maculans were unequivocally discriminated by Western blot, they were quantitatively indistinguishable following ELISA, thus enabling us to analyse a wide range of L. maculans isolates in planta. The detection limit of the assay was less than 10 ng of fungal proteins per ml of plant extract. For a given isolate, time-course studies showed that fungal growth in cotyledons was correlated with symptom scoring. In the case of hypersensitive response, only 34% of the plants were ELISA-positive, and these plants never contained more than 10 ng of fungal protein per cotyledon. In contrast, in the cases, of susceptibility, 100% of the plants were ELISA-positive and fungal protein content was higher than 10 μg per cotyledon. Moreover, significant differences in ability to colonize the tissues were observed among Tox+ isolates. Finally, using the ELISA quantification, intermediate symptoms could be differentiated as lateresistance responses or susceptibility.  相似文献   

17.
Diversity and activity of aquatic fungi under low oxygen conditions   总被引:1,自引:0,他引:1  
1. The objective was to test whether a decrease in oxygen concentration in streams affects the diversity and activity of aquatic hyphomycetes and consequently leaf litter decomposition. 2. Senescent leaves of Alnus glutinosa were immersed for 7 days in a reference stream, for fungal colonization, and then incubated for 18 days in microcosms at five oxygen concentrations (4%, 26%, 54%, 76% and 94% saturation). Leaf decomposition (as loss of leaf toughness), fungal diversity, reproduction (as spore production) and biomass (ergosterol content) were determined. 3. Leaf toughness decreased by 70% in leaves exposed to the highest O2 concentration, whereas the decrease was substantially less (from 25% to 45%) in treatments with lower O2. Fungal biomass decreased from 99 to 12 mg fungi g−1 ash‐free dry mass on exposure to 94% and 4% O2 respectively. Sporulation was strongly inhibited by reduction of dissolved O2 in water (3.1 × 104 versus 1.3 × 103 spores per microcosms) for 94% and 4% saturation respectively. 4. A total of 20 species of aquatic hyphomycetes were identified on leaves exposed to 94% O2, whereas only 12 species were found in the treatment with 4% O2 saturation. Multidimensional scaling revealed that fungal assemblages exposed to 4% O2 were separated from all the others. Articulospora tetracladia, Cylindrocarpon sp. and Flagellospora curta were the dominant species in microcosms with 4% O2, while Flagellospora curvula and Anguillospora filiformis were dominant at higher O2 concentrations. 5. Overall results suggest that the functional role of aquatic hyphomycetes as decomposers of leaf litter is limited when the concentration of dissolved oxygen in streams is low.  相似文献   

18.
The continuous bioluminescent assay of ATP has been adapted to the study of Mg2+-dependent ATPases, including the (Na+,K+) pump, in amphibian tissues. A discrete bioluminescent assay procedure for ATPase has also been developed. Components of the firefly luciferase assay reagent modify the observed ATPase activity but this can be circumvented by performing discrete instead of continuous measurements of enzyme activity. In assays with commercial ATPase preparations the continuous bioluminescent assay procedure gave ATPase activities 2.2-fold lower than obtained with the discrete procedure. In Xenopus oocyte or egg homogenates, in contrast, the total ATPase activity measured is stimulated eight times by the luciferase reagent, mainly through an unexplained activation of a Mg2+-independent ATPase. In other tissues, such as Xenopus brain homogenates, both the continuous and discrete monitoring procedures are equally suitable for the determination of ATPase activity.  相似文献   

19.
A continuous fluorimetric method using auxiliary-coupling enzymes such as pyruvate kinase and lactate dehydrogenase for measuring ADP production to assay ATPase activity is described. This method is simpler, more rapid, and more sensitive than the previously used spectrophotometric method. The application of this method for studying the ATPase of rabbit psoas muscle fibers during Mg2+-ATP activation is also illustrated and discussed.  相似文献   

20.
Summary A selection of mono- and polyfunctional alkylating agents as well as a folic acid antagonist and an acridine derivate were tested with the host-mediated assay, and as far as not known from the literature, with the dominant lethal test for mutagenic activity in mice. In the host-mediated assay system the indicator organisms Salmonella typhimurium G46 His , Serratia marcescens a 13 His and a 21 Leu were used as back mutation systems and E. coli 343 as a forward mutation system. We found indications that polyfunctional alkylating agents induce dominant lethal mutations to a larger extent, whereas monofunctional alkylating agents revealed more mutagenic activity on the molecular level. No definite mutagenicity could be observed for amethopterine, which is mutagenic in cytogenetic investigations. Trypaflavin which is known to be mutagenic in the dominant lethal test, did not induce point mutations in our indicator strains. We conclude that the spectra of mutations, which can be recognized by these two methods, overlap only partially.Parts of this paper were presented on the 4th International Congress of Human Genetics, Paris, Sept. 1971.This work was sponsored by the Deutsche Forschungsgesellschaft.Essential results of this paper are part of the doctorate thesis of W. Buselmaier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号