首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Α-syntrophin modulates myogenin expression in differentiating myoblasts   总被引:1,自引:0,他引:1  
Kim MJ  Hwang SH  Lim JA  Froehner SC  Adams ME  Kim HS 《PloS one》2010,5(12):e15355

Background

α-Syntrophin is a scaffolding protein linking signaling proteins to the sarcolemmal dystrophin complex in mature muscle. However, α-syntrophin is also expressed in differentiating myoblasts during the early stages of muscle differentiation. In this study, we examined the relationship between the expression of α-syntrophin and myogenin, a key muscle regulatory factor.

Methods and Findings

The absence of α-syntrophin leads to reduced and delayed myogenin expression. This conclusion is based on experiments using muscle cells isolated from α-syntrophin null mice, muscle regeneration studies in α-syntrophin null mice, experiments in Sol8 cells (a cell line that expresses only low levels of α-syntrophin) and siRNA studies in differentiating C2 cells. In primary cultured myocytes isolated from α-syntrophin null mice, the level of myogenin was less than 50% that from wild type myocytes (p<0.005) 40 h after differentiation induction. In regenerating muscle, the expression of myogenin in the α-syntrophin null muscle was reduced to approximately 25% that of wild type muscle (p<0.005). Conversely, myogenin expression is enhanced in primary cultures of myoblasts isolated from a transgenic mouse over-expressing α-syntrophin and in Sol8 cells transfected with a vector to over-express α-syntrophin. Moreover, we find that myogenin mRNA is reduced in the absence of α-syntrophin and increased by α-syntrophin over-expression. Immunofluorescence microscopy shows that α-syntrophin is localized to the nuclei of differentiating myoblasts. Finally, immunoprecipitation experiments demonstrate that α-syntrophin associates with Mixed-Lineage Leukemia 5, a regulator of myogenin expression.

Conclusions

We conclude that α-syntrophin plays an important role in regulating myogenesis by modulating myogenin expression.  相似文献   

2.
Calcineurin signaling is essential for successful muscle regeneration. Although calcineurin inhibition compromises muscle repair, it is not known whether calcineurin activation can enhance muscle repair after injury. Tibialis anterior (TA) muscles from adult wild-type (WT) and transgenic mice overexpressing the constitutively active calcineurin-A alpha transgene under the control of the mitochondrial creatine kinase promoter (MCK-CnA alpha*) were injected with the myotoxic snake venom Notexin to destroy all muscle fibers. The TA muscle of the contralateral limb served as the uninjured control. Muscle structure was assessed at 5 and 9 days postinjury, and muscle function was tested in situ at 9 days postinjury. Calcineurin stimulation enhanced muscle regeneration and altered levels of myoregulatory factors (MRFs). Recovery of myofiber size and force-producing capacity was hastened in injured muscles of MCK-CnA alpha* mice compared with control. Myogenin levels were greater 5 days postinjury and myocyte enhancer factor 2a (MEF2a) expression was greater 9 days postinjury in muscles of MCK-CnA alpha* mice compared with WT mice. Higher MEF2a expression in regenerating muscles of MCK-CnA alpha* mice 9 days postinjury may be related to an increase of slow fiber genes. Calcineurin activation in uninjured and injured TA muscles slowed muscle contractile properties, reduced fatigability, and enhanced force recovery after 4 min of intermittent maximal stimulation. Therefore, calcineurin activation can confer structural and functional benefits to regenerating skeletal muscles, which may be mediated in part by differential expression of MRFs.  相似文献   

3.
The expression of laminin isoforms and laminin-binding integrin receptors known to occur in muscle was investigated during myogenic regeneration after crush injury. Comparisons were made between dystrophic 129ReJ dy/dy mice, which have reduced laminin alpha2 expression, and their normal littermates. The overall histological pattern of regeneration after crush injury was similar in dy/dy and control muscle, but proceeded faster in dy/dy mice. In vitro studies revealed a greater yield of mononuclear cells extracted from dy/dy muscle and a reduced proportion of desmin-positive cells upon in vitro cultivation, reflecting the presence of inflammatory cells and "preactivated" myoblasts due to ongoing regenerative processes within the endogenous dystrophic lesions. Laminin alpha1 was not detectable in skeletal muscle. Laminin alpha2 was present in basement membranes of mature myofibers and newly formed myotubes in control and dy/dy muscles, albeit weaker in dy/dy. Laminin alpha2-negative myogenic cells were detected in dy/dy and control muscle, suggesting the involvement of other laminin alpha chains in early myogenic differentiation, such as laminin alpha4 and alpha5 which were both transiently expressed in basement membranes of newly formed myotubes of dy/dy and control mice. Integrin beta1 was expressed on endothelial cells, muscle fibers, and peripheral nerves in uninjured muscle and broadened after crush injury to the interstitium where it occurred on myogenic and nonmyogenic cells. Integrin alpha3 was not expressed in uninjured or regenerating muscle, while integrin alpha6 was expressed mainly on endothelial cells and peripheral nerves in uninjured muscle. Upon crush injury integrin alpha6 increased in the interstitium mainly on nonmyogenic cells, including infiltrating leukocytes, endothelial cells, and fibroblasts. In dy/dy muscle, integrin alpha6 occurred on some newly formed myotubes. Integrin alpha7 was expressed on muscle fibers at the myotendinous junction and showed weak and irregular expression on muscle fibers. After crush injury, integrin alpha7 expression extended to the newly formed myotubes and some myoblasts. However, many myoblasts and newly formed myotubes were integrin alpha7 negative. No marked difference was observed in integrin alpha7 expression between dy/dy and control muscle, either uninjured or after crush injury. Only laminin alpha4 and integrin alpha6 expression patterns were notably different between dy/dy and control muscle. Expression of both molecules was more extensive in dy/dy muscle, especially in the interstitium of regenerating areas and on newly formed myotubes. In view of the faster myogenic regeneration observed in dy/dy mice, the data suggest that laminin alpha4 and integrin alpha6 support myogenic regeneration. However, whether these accelerated myogenic effects are a direct consequence of the reduced laminin alpha2 expression in dy/dy mice, or an accentuation of the ongoing regenerative events in focal lesions in the muscle, requires further investigation.  相似文献   

4.
The perisynaptic Schwann cell (PSC) has gained recent attention with respect to its roles in synaptic function, remodeling, and regeneration at the vertebrate neuromuscular junction (NMJ). Here we test the hypothesis that, following nerve injury, processes extended by PSCs guide regenerating nerve terminals (NTs) in vivo, and that the extension of sprouts by PSCs is triggered by the arrival of regenerating NTs. Frog NMJs were double-stained with a fluorescent dye, FM4-64, for NTs, and fluorescein isothiocyanate (FITC)-tagged peanut agglutinin (PNA) for PSCs. Identified NMJs were imaged in vivo repeatedly for several months after nerve injury. PSCs sprouted profusely beginning 3-4 weeks after nerve transection and, as reinnervation progressed, regenerating NTs closely followed the preceding PSC sprouts, which could extend tens to hundreds of microns beyond the original synaptic site. The pattern of reinnervation was dictated by PSC sprouts, which could form novel routes joining neighboring junctions or develop into new myelinated axonal pathways. In contrast to mammals, profuse PSC sprouting in frog muscles was not seen in response to axotomy alone, and did not occur at chronically denervated NMJs. Instead, sprouting coincided with the arrival of regenerating NTs. Immunofluorescent staining revealed that in muscle undergoing reinnervation 4 weeks after axotomy, 91% of NMJs bore PSC sprouts, compared to only 6% of NMJs in muscle that was chronically denervated for 4 weeks. These results suggest that reciprocal interactions between regenerating NTs and PSCs govern the process of reinnervation at frog NMJs: regenerating NTs induce PSCs to sprout, and PSC sprouts, in turn, lead and guide the elaboration of NTs.  相似文献   

5.
Genetic studies have linked myocilin to open angle glaucoma, but the functions of the protein in the eye and other tissues have remained elusive. The purpose of this investigation was to elucidate myocilin function(s). We identified α1-syntrophin, a component of the dystrophin-associated protein complex (DAPC), as a myocilin-binding candidate. Myocilin interacted with α1-syntrophin via its N-terminal domain and co-immunoprecipitated with α1-syntrophin from C2C12 myotubes and mouse skeletal muscle. Expression of 15-fold higher levels of myocilin in the muscles of transgenic mice led to the elevated association of α1-syntrophin, neuronal nitric-oxide synthase, and α-dystroglycan with DAPC, which increased the binding of laminin to α-dystroglycan and Akt signaling. Phosphorylation of Akt and Forkhead box O-class 3, key regulators of muscle size, was increased more than 3-fold, whereas the expression of muscle-specific RING finger protein-1 and atrogin-1, muscle atrophy markers, was decreased by 79 and 88%, respectively, in the muscles of transgenic mice. Consequently, the average size of muscle fibers of the transgenic mice was increased by 36% relative to controls. We suggest that intracellular myocilin plays a role as a regulator of muscle hypertrophy pathways, acting through the components of DAPC.  相似文献   

6.
Mice genetically deficient in growth and differentiation factor 8 (GDF8/myostatin) had markedly increased muscle fiber numbers and fiber hypertrophy. In the regenerating muscle of mice possessing FGF6 mutation, fiber remodeling was delayed. Although myostatin and FGF6 may be important for the maintenance, regeneration and/or hypertrophy of muscle, little work has been done on the possible role of these proteins in adult muscle in vivo. Using Western blot and immunohistochemical analysis, we investigated, in rats, the distribution of myostatin, FGF6 and LIF proteins between slow- and fast-type muscles, and the adaptive response of these proteins in mechanically overloaded muscles, in regenerating muscles following bupivacaine injection and in denervated muscles after section of the sciatic nerve. The amounts of myostatin and LIF protein were markedly greater in normal slow-type muscles. In the soleus muscle, myostatin and LIF proteins were detected at the site of the myonucleus in both slow-twitch and fast-twitch fibers. In contrast, FGF6 protein was selectively expressed in normal fast-type muscles. Mechanical overloading rapidly enhanced the myostatin and LIF but not FGF6 protein level. In the regenerating muscles, marked diminution of myostatin and FGF6 was observed besides enhancement of LIF. Denervation of fast-type muscles rapidly increased the LIF, but decreased the FGF6 expression. Therefore, the increased expressions of myostatin and LIF play an important role in muscle hypertrophy following mechanical overloading. The marked reduction of FGF6 in the hypertrophied and regenerating muscle would imply that FGF6 regulates muscle differentiation but not proliferation of satellite cells and/or myoblasts.  相似文献   

7.

Background

Motor neuron degeneration in SOD1G93A transgenic mice begins at the nerve terminal. Here we examine whether this degeneration depends on expression of mutant SOD1 in muscle fibers.

Methodology/Principal Findings

Hindlimb muscles were transplanted between wild-type and SOD1G93A transgenic mice and the innervation status of neuromuscular junctions (NMJs) was examined after 2 months. The results showed that muscles from SOD1G93A mice did not induce motor terminal degeneration in wildtype mice and that muscles from wildtype mice did not prevent degeneration in SOD1G93A transgenic mice. Control studies demonstrated that muscles transplanted from SOD1G93A mice continued to express mutant SOD1 protein. Experiments on wildtype mice established that the host supplied terminal Schwann cells (TSCs) at the NMJs of transplanted muscles.

Conclusions/Significance

These results indicate that expression of the mutant protein in muscle is not needed to cause motor terminal degeneration in SOD1G93A transgenic mice and that a combination of motor terminals, motor axons and Schwann cells, all of which express mutant protein may be sufficient.  相似文献   

8.
Stimulating the beta-adrenoceptor (beta-AR) signaling pathway can enhance the functional repair of skeletal muscle after injury, but long-term use of beta-AR agonists causes beta-AR downregulation, which may limit their therapeutic effectiveness. The aim was to examine beta-AR signaling during early regeneration in rat fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles after bupivacaine injury and test the hypothesis that, during regeneration, beta-agonist administration does not cause beta-AR desensitization. Rats received either the beta-AR agonist fenoterol (1.4 mgxkg(-1)xday(-1) ip) or saline for 7 days postinjury. Fenoterol reduced beta-AR density in regenerating soleus muscles by 42%. Regenerating EDL muscles showed a threefold increase in beta-AR density, and, again, these values were 43% lower with fenoterol treatment. An amplified adenylate cyclase (AC) response to isoproterenol was observed in cell membrane fragments from EDL and soleus muscles 7 days postinjury. Fenoterol attenuated this increase in regenerating EDL muscles but not soleus muscles. beta-AR signaling mechanisms were assessed using AC stimulants (NaF, forskolin, and Mn(2+)). Although beta-agonist treatment reduces beta-AR density in regenerating muscles, these muscles can produce large cAMP responses relative to healthy (uninjured) muscles. Desensitization of beta-AR signaling in regenerating muscles is prevented by altered rates of beta-AR synthesis and/or degradation, changes in G protein populations and coupling efficiency, and altered AC activity. These mechanisms have important therapeutic implications for modulating beta-AR signaling to enhance muscle repair after injury.  相似文献   

9.
Important functions in myogenesis have been proposed for FGF6, a member of the fibroblast growth factor family accumulating almost exclusively in the myogenic lineage. However, the use of FGF6(-/-) mutant mice gave contradictory results and the role of FGF6 during myogenesis remains largely unclear. Using FGF6(-/-) mice, we first analysed the morphology of the regenerated soleus following cardiotoxin injection and showed hypertrophied myofibres in soleus of the mutant mice as compared to wild-type mice. Secondly, to examine the function of the IGF family in the hypertrophy process, we used semiquantitative and real-time RT-PCR assays and Western blots to monitor the expression of the insulin-like growth factors (IGF-I and IGF-II), their receptors [type I IGF receptor (IGF1R) and IGF-II receptor (IGF2R)], and of a binding protein IGFBP-5 in regenerating soleus muscles of FGF6(-/-) knockout mice vs. wild-type mice. In the mutant, both IGF-II and IGF2R, but not IGF-I and IGF1R, were strongly up-regulated, whereas IGFBP5 was down-regulated, strongly suggesting that, in the absence of FGF6, the mechanisms leading to myofibre hypertrophy were mediated specifically by an IGF-II/IGF2R signalling pathway distinct from the classic mechanism involving IGF-I and IGF1R previously described for skeletal muscle hypertrophy. The potential regulating role of IGFBP5 on IGF-II expression is also discussed. This report shows for the first time a specific role for FGF6 in the regulation of myofibre size during a process of in vivo myogenesis.  相似文献   

10.
Recent studies have shown that bone marrow (BM) cells, including the BM side population (BM-SP) cells that enrich hematopoietic stem cells (HSCs), are incorporated into skeletal muscle during regeneration, but it is not clear how and what kinds of BM cells contribute to muscle fiber regeneration. We found that a large number of SP cells migrated from BM to muscles following injury in BM-transplanted mice. These BM-derived SP cells in regenerating muscles expressed different surface markers from those of HSCs and could not reconstitute the mouse blood system. BM-derived SP/Mac-1(low) cells increased in number in regenerating muscles following injury. Importantly, our co-culture studies with activated satellite cells revealed that this fraction carried significant potential for myogenic differentiation. By contrast, mature inflammatory (Mac-1(high)) cells showed negligible myogenic activities. Further, these BM-derived SP/Mac-1(low) cells gave rise to mononucleate myocytes, indicating that their myogenesis was not caused by stochastic fusion with host myogenic cells, although they required cell-to-cell contact with myogenic cells for muscle differentiation. Taken together, our data suggest that neither HSCs nor mature inflammatory cells, but Mac-1(low) early myeloid cells in the BM-derived SP fraction, play an important role in regenerating skeletal muscles.  相似文献   

11.
Alpha1-syntrophin, a scaffolding adapter and modular protein, is a cytoplasmic component of the dystrophin glycoprotein complex. This study investigated immunohistochemically the expression of alpha1-syntrophin in Duchenne and Fukuyama muscular dystrophies (DMD and FCMD, respectively). Biopsied muscles of five DMD, five FCMD, five normal controls and five disease controls (three myotonic and two facioscapulohumeral dystrophies) were analyzed. Immunoblot analysis showed that anti-alpha1-syntrophin antibody had a decreased reaction in both DMD and FCMD muscle extracts. Biopsied muscle sections and their serial sections were immunostained with rabbit anti-alpha1-syntrophin and rabbit anti-muscle-specific beta-spectrin antibodies, respectively. Immunoreactive patterns of sarcolemma were classified into (i) a continuously positive immunostaining pattern, (ii) a partially positive immunostaining pattern, (iii) a negative immunostaining pattern and (iv) a faint but entire surface positive immunostaining pattern. The group mean percentages of alpha1-syntrophin and beta-spectrin immunonegative myofibers in the DMD group were 39.3% and 10.8%, respectively, while those in the FCMD group were 45.5% and 10.4%, respectively. These values were statistically significant compared with those of disease control and normal control muscles. Thus we found that dystrophin-deficient DMD muscles contained significant numbers of alpha1-syntrophin-positive fibers and significant numbers of alpha1-syntrophin-negative fibers were present in dystrophin-positive muscles of severe muscular dystrophy such as FCMD. Alpha-dystrobrevin immunoreactivity was tested in DMD muscles and appreciable amounts of alpha-dystrobrevin that binds to syntrophin were found in DMD muscle membranes.  相似文献   

12.
We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.  相似文献   

13.
We previously showed in vitro that calcium entry through Trpc1 ion channels regulates myoblast migration and differentiation. In the present work, we used primary cell cultures and isolated muscles from Trpc1(-/-) and Trpc1(+/+) murine model to investigate the role of Trpc1 in myoblast differentiation and in muscle regeneration. In these models, we studied regeneration consecutive to cardiotoxin-induced muscle injury and observed a significant hypotrophy and a delayed regeneration in Trpc1(-/-) muscles consisting in smaller fiber size and increased proportion of centrally nucleated fibers. This was accompanied by a decreased expression of myogenic factors such as MyoD, Myf5, and myogenin and of one of their targets, the developmental MHC (MHCd). Consequently, muscle tension was systematically lower in muscles from Trpc1(-/-) mice. Importantly, the PI3K/Akt/mTOR/p70S6K pathway, which plays a crucial role in muscle growth and regeneration, was down-regulated in regenerating Trpc1(-/-) muscles. Indeed, phosphorylation of both Akt and p70S6K proteins was decreased as well as the activation of PI3K, the main upstream regulator of the Akt. This effect was independent of insulin-like growth factor expression. Akt phosphorylation also was reduced in Trpc1(-/-) primary myoblasts and in control myoblasts differentiated in the absence of extracellular Ca(2+) or pretreated with EGTA-AM or wortmannin, suggesting that the entry of Ca(2+) through Trpc1 channels enhanced the activity of PI3K. Our results emphasize the involvement of Trpc1 channels in skeletal muscle development in vitro and in vivo, and identify a Ca(2+)-dependent activation of the PI3K/Akt/mTOR/p70S6K pathway during myoblast differentiation and muscle regeneration.  相似文献   

14.
Recent studies have shown that cells from bone marrow (BM) can give rise to differentiated skeletal muscle fibers. However, the mechanisms and identities of the cell types involved remain unknown. We performed BM transplantation in acid alpha-glucosidase (GAA) knockout mice, a model of glycogen storage disease type II, and our observations suggested that the BM cells contribute to skeletal muscle fiber formation. Furthermore, we showed that most CD45+:Sca1+ cells have a donor character in regenerating muscle of recipient mice. Based on these findings, CD45+:Sca1+ cells were sorted from regenerating muscles. The cell number was increased with granulocyte colony-stimulating factor after cardiotoxin injury, and the cells were transplanted directly into the tibialis anterior (TA) muscles of GAA knockout mice. Sections of the TA muscles stained with anti-laminin-alpha2 antibody showed that the number of CD45+:Sca1+ cells contributing to muscle fiber formation and glycogen levels were decreased in transplanted muscles. Our results indicated that hematopoietic stem cells, such as CD45+:Sca1+ cells, are involved in skeletal muscle regeneration.  相似文献   

15.
Syntrophins are adaptor proteins that link intracellular signaling molecules to the dystrophin based scaffold. In this study, we investigated the function of syntrophins in cell migration, one of the early steps in myogenic differentiation and in regeneration of adult muscle. Hepatocyte growth factor (HGF) stimulates migration and lamellipodia formation in cultured C2 myoblasts. In the migrating cells, syntrophin concentrated in the rear-lateral region of the cell, opposite of the lamellipodia, instead of being diffusely present throughout the cytoplasm of non-migrating cells. When the expression of α-syntrophin, the major syntrophin isoform of skeletal muscle, was reduced by transfection with the α-syntrophin-specific siRNA, HGF stimulation of lamellipodia formation was prevented. Likewise, migration of myoblasts from α-syntrophin knockout mice could not be stimulated by HGF. However, HGF-induced migration was restored in myoblasts isolated from a transgenic mouse expressing α-syntrophin only in muscle cells. Treatment of C2 myoblasts with inhibitors of PI3-kinase not only reduced the rate of cell migration, but also impaired the accumulation of syntrophins in the rear-lateral region of the migrating cells. Phosphorylation of Akt was reduced in the α-syntrophin siRNA-treated C2 cells. These results suggest that α-syntrophin is required for HGF-induced migration of myoblasts and for proper PI3-kinase/Akt signaling.  相似文献   

16.
Nitric oxide (NO) is an important signaling molecule produced in skeletal muscle primarily via the neuronal subtype of NO synthase (NOS1, or nNOS). While many studies have reported NO production to be important in muscle regeneration, none have examined the contribution of nNOS-derived NO to functional muscle regeneration (i.e., restoration of the muscle's ability to produce force) after acute myotoxic injury. In the present study, we tested the hypothesis that genetic deletion of nNOS would impair functional muscle regeneration after myotoxic injury in nNOS(-/-) mice. We found that nNOS(-/-) mice had lower body mass, lower muscle mass, and smaller myofiber cross-sectional area and that their tibialis anterior (TA) muscles produced lower absolute tetanic forces than those of wild-type littermate controls but that normalized or specific force was identical between the strains. In addition, muscles from nNOS(-/-) mice were more resistant to fatigue than those of wild-type littermates (P < 0.05). To determine whether deletion of nNOS affected muscle regeneration, TA muscles from nNOS(-/-) mice and wild-type littermates were injected with the myotoxin notexin to cause complete fiber degeneration, and muscle structure and function were assessed at 7 and 10 days postinjury. Myofiber cross-sectional area was lower in regenerating nNOS(-/-) mice than wild-type controls at 7 and 10 days postinjury; however, contrary to our original hypothesis, no difference in force-producing capacity of the TA muscle was evident between the two groups at either time point. Our findings reveal that nNOS is not essential for functional muscle regeneration after acute myotoxic damage.  相似文献   

17.
miR-1, miR-133a, and miR-206 are muscle-specific microRNAs expressed in skeletal muscles and have been shown to contribute to muscle development. To gain insight into the pathophysiological roles of these three microRNAs in dystrophin-deficient muscular dystrophy, their expression in the tibialis anterior (TA) muscles of mdx mice and CXMD(J) dogs were evaluated by semiquantitative RT-PCR and in situ hybridization. Their temporal and spatial expression patterns were also analyzed in C2C12 cells during muscle differentiation and in cardiotoxin (CTX)-injured TA muscles to examine how muscle degeneration and regeneration affect their expression. In dystrophic TA muscles of mdx mice, miR-206 expression was significantly elevated as compared to that in control TA muscles of age-matched B10 mice, whereas there were no differences in miR-1 or miR-133a expression between B10 and mdx TA muscles. On in situ hybridization analysis, intense signals for miR-206 probes were localized in newly formed myotubes with centralized nuclei, or regenerating muscle fibers, but not in intact pre-degenerated fibers or numerous small mononucleated cells, possibly proliferating myoblasts and inflammatory infiltrates. Similar increased expression of miR-206 was also found in C2C12 differentiation and CTX-induced regeneration, in which differentiated myotubes or regenerating fibers showed abundant expression of miR-206. However, CXMD(J) TA muscles contained smaller amounts of miR-206, miR-1, and miR-133a than controls. They exhibited more severe and more progressive degenerative alterations than mdx TA muscles. Taken together, these observations indicated that newly formed myotubes showed markedly increased expression of miR-206, which might reflect active regeneration and efficient maturation of skeletal muscle fibers.  相似文献   

18.
The capacity for skeletal muscle to repair from daily insults as well as larger injuries is a vital component to maintaining muscle health over our lifetime. Given the importance of skeletal muscle for our physical and metabolic well-being, identifying novel factors mediating the growth and repair of skeletal muscle will thus build our foundational knowledge and help lead to potential therapeutic avenues for muscle wasting disorders. To that end, we investigated the expression of T-cell death associated gene 51 (TDAG51) during skeletal muscle repair and studied the response of TDAG51 deficient (TDAG51-/-) mice to chemically-induced muscle damage.TDAG51 mRNA and protein expression within uninjured skeletal muscle is almost undetectable but, in response to chemically-induced muscle damage, protein levels increase by 5 days post-injury and remain elevated for up to 10 days of regeneration. To determine the impact of TDAG51 deletion on skeletal muscle form and function, we compared adult male TDAG51-/- mice with age-matched wild-type (WT) mice. Body and muscle mass were not different between the two groups, however, in situ muscle testing demonstrated a significant reduction in force production both before and after fatiguing contractions in TDAG51-/- mice.During the early phases of the regenerative process (5 days post-injury), TDAG51-/- muscles display a significantly larger area of degenerating muscle tissue concomitant with significantly less regenerating area compared to WT (as demonstrated by embryonic myosin heavy chain expression). Despite these early deficits in regeneration, TDAG51-/- muscles displayed no morphological deficits by 10 days post injury compared to WT mice.Taken together, the data presented herein demonstrate TDAG51 expression to be upregulated in damaged skeletal muscle and its absence attenuates the early phases of muscle regeneration.  相似文献   

19.
The mouse mdr1a and mdr1b genes are expressed in skeletal muscle, though their precise role in muscle is unknown. Dystrophic muscle is characterized by repeated cycles of degeneration and regeneration. To explore the role of the mdr1 genes during muscle regeneration, we have created a triple knockout mouse lacking the mdr1a, mdr1b, and the dystrophin genes. The resulting ReX mice developed normally and were fertile. However, as adults, ReX had a higher proportion of degenerating muscle fibers and greater long-term loss of muscle mass than mdx. ReX muscles were also characterized by a reduced proportion of muscle side population (mSP) cells, of myogenic cells, and a reduced capacity for muscle regeneration. We found too that mSP cells derived from dystrophic muscle are more myogenic than those from normal muscle. Thus, in dystrophic muscle, the mdr1 gene plays an important role in the preservation of the mSP and of the myogenic regenerative potential. Moreover, our results suggest a hitherto unappreciated role of mdr1 in precursor cells of regenerating tissue; they therefore provide an important clue to the physiological significance of mdr1 expression in stem cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号