首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ecotope (spatial eco-space) map that considers topography and bio-organism-relevant variables emerges as an important basic framework when landscape-scale characteristics for ecosystem management and wildlife conservation are needed. A spatio-geoecological framework based on geographic information systems (GIS) and a vegetation survey were developed for wildlife habitat evaluation of national parks and applied to a representative rugged valley area of Mt. Sorak National Park in Korea. An ecotope map was classified into hundreds of types and dozens of groups by combining biological and geophysical variables. Variables included: forest vegetation type, topographic solar radiation, normalized difference vegetation index (NDVI), elevation, and anthropogenic factors, such as, streams and roads. Layers of GIS variables were produced by field surveys, modeling, satellite images, or digitalization. Vegetation surveys were carried out to identify finer-scale distribution of vegetation types in the rugged valley area. Digital forest vegetation maps from the Forestry Administrator were then modified using the field-surveyed vegetation maps. Topographic solar radiation was predicted with a daily topographic radiation model. The NDVI was calculated from the satellite imagery of a Landsat Thematic Mapper. A digital elevation model (DEM) was used and the other layers were digitized using topographical maps with a scale of 1:25000. The aim of this study is to determine the geoecological factors relating to the spatial pattern of plant community. It was cleared by the spatial pattern of environmental variables and vegetation characteristics by detrended correspondence analysis using plant species and the environmental variables of each plot. The ordination component value of the first axis shows significant regression to some environmental variables. A case study of habitat evaluation was carried out using the resultant ecotope map. The spatial distribution of potential goral habitat and vegetation characteristics were predicted and the impact of human trails on the neighboring vegetation was also examined for restoration planning. The GIS-based framework developed for wildlife habitat evaluation is useful for natural resource management and human activity control in national parks in Korea.  相似文献   

2.
3.
Management strategies for the conservation of biodiversity can be developed only with precise information on the spatial distribution of organisms on relevant, mostly regional, spatial scales. Current surrogates for approximating the distribution of biodiversity are habitats mapped within a number of national and international frameworks (e.g., Natura 2000), even though conventional habitat mapping is time consuming and requires well-trained personnel. Here we evaluated the use of light detection and ranging (LiDAR) to map forest habitat types to simplify the process. We used available data of habitat types for the Bavarian Forest National Park as a basis to predict habitat types with LiDAR-derived variables. Furthermore, we compared these results with predictions based on extensive ground-based climate, soil and vegetation data. Using linear and flexible discriminant analyses, we found that LiDAR is able to predict forest habitat types with the same overall accuracy as the extensive ground data for climate, soil and vegetation composition. Subtle differences in the vegetation structure between habitat types, particularly in the vertical and horizontal vegetation profiles, were captured by LiDAR. These differences in the physiognomy were in part caused by changes in altitude, which also influence tree species composition. We propose that the most-efficient way to identify forest habitat types according Natura 2000 is to combine remote-sensing LiDAR data with well-directed field surveys.  相似文献   

4.
5.
森林所有制对景观格局和动物生境的影响研究进展   总被引:3,自引:0,他引:3  
在欧美等地区的林业发达国家,多种森林所有制长期并存,至今,多种所有制影响下森林景观和生境格局的变化以及与动物保护之间的关系成为研究热点和重点.本文首先阐述了森林所有制对森林景观格局和动物生境的影响,以及林权分散和林权流转的加剧带来的生态后果,包括提供多样化的生境和导致原有大面积生境的破碎化;其次,总结了林业发达国家解决林权分散与生物保护之间矛盾的两个理论途径--改变所有制格局和相对统一各所有制的管理行为,分析现多采用后一种途径的原因,并指出目前森林所有制研究中模拟方法的局限;最后,论述我国的研究现状以及面临的机遇和挑战,提出近期发展建议.  相似文献   

6.
The relative contributions of habitat structure and composition to biodiversity are often scale-dependent. Although bird communities in boreal forest have been largely altered and threatened by forest harvesting, bird habitat selection in this ecosystem has not been fully understood. Our study aimed to assess the relative contributions of habitat structure and composition on the assemblages of boreal birds at multiple spatial scales characterized by radii ranging from 100 to 1,000?m. We recorded bird species occurrence at 96 stations located in an old-growth forest in the C?te-Nord region of Québec, Canada. We characterized habitat structure using the proportion of dense, open, and sparse stands, and habitat composition using the proportions of coniferous, mixedwood, and deciduous stands. We used partial canonical correspondence analyses and hierarchical variance partitioning to assess the relative contribution of habitat structure and composition on bird assemblage, and logistic regression to model the probability of occurrence for individual species in response to habitat variables. Our results revealed that habitat structure and composition explained similar proportions of the variance in bird assemblage (21.7 vs. 21.6?%), regardless of spatial scale. Whilst logistic regression yielded fair predictions in the occurrence of individual species (i.e., area under the receiver-operating characteristic curve >0.70 for 90?% of the species), it further confirmed our findings in community level analysis. Our study indicates that habitat structure and composition are both important in shaping bird assemblages, but spatial scale draws little influence on their relative contributions.  相似文献   

7.
The once extensive native forests of New Zealand’s central North Island are heavily fragmented, and the scattered remnants are now surrounded by a matrix of exotic pastoral grasslands and Pinus radiata plantation forests. The importance of these exotic habitats for native biodiversity is poorly understood. This study examines the utilisation of exotic plantation forests by native beetles in a heavily modified landscape. The diversity of selected beetle taxa was compared at multiple distances across edge gradients between each of the six possible combinations of adjacent pastoral, plantation, clearfell and native forest land-use types. Estimated species richness (Michaelis–Menten) was greater in production habitats than native forest; however this was largely due to the absence of exotic species in native forest. Beetle relative abundance was highest in clearfell-harvested areas, mainly due to colonisation by open-habitat, disturbance-adapted species. More importantly, though, of all the non-native habitats sampled, beetle species composition in mature P. radiata was most similar to native forest. Understanding the influence of key environmental factors and stand level management is important for enhancing biodiversity values within the landscape. Native habitat proximity was the most significant environmental correlate of beetle community composition, highlighting the importance of retaining native remnants within plantation landscapes. The proportion of exotic beetles was consistently low in mature plantation stands, however it increased in pasture sites at increasing distances from native forest. These results suggest that exotic plantation forests may provide important alternative habitat for native forest beetles in landscapes with a low proportion of native forest cover.  相似文献   

8.
Downscaling is an important problem because consistent large-area assessments of forest habitat structure, while feasible, are only feasible when using relatively coarse data and indicators. Techniques are needed to enable more detailed and local interpretations of the national statistics. Using the results of national assessments from land-cover maps, this paper demonstrates downscaling in the spatial domain, and in the domain of the habitat model. A moving window device was used to measure structure (habitat amount and connectivity), and those indicators were then analyzed and combined with other information in various ways to illustrate downscaling.  相似文献   

9.
10.
11.
森林冠层地面叶面积指数光学测量方法研究进展   总被引:7,自引:1,他引:6  
邹杰  阎广建 《应用生态学报》2010,21(11):2971-2979
作为表征植被冠层结构的核心参数之一,叶面积指数(LAI)控制着植被冠层的多种生物物理和生理过程,如光合、呼吸、蒸腾、碳循环、降水截获、能量交换等.本文首先阐述了森林冠层地面LAI光学测量方法的理论基础和数学模型;其后介绍了目前主流光学测量方法的测量原理及其优缺点;归纳了LAI光学测量方法的主要误差来源(聚集效应、非光合作用组分、观测条件和地形效应),并分析总结了聚集效应、非光合作用组分和地形效应的定量评估现状;最后展望了森林冠层地面LAI光学测量方法的未来发展方向.  相似文献   

12.
13.
Andreas Kruess 《Ecography》2003,26(3):283-290
The effects of local habitat and large-scale landscape factors on species diversity and species interactions were studied using the insect community in stems of the creeping thistle Cirsium arvense . Thistle abundance was higher in fallows than in crop fields and field margins, with fallows providing 67% of thistle abundance within 15 study areas on a landscape scale. Species richness of the herbivores was positively related with thistle abundance, parasitoid species richness was influenced by habitat type and was positively correlated with herbivore species richness. The abundance of herbivores and parasitoids was affected by local factors such as habitat type and host abundance, but also by landscape factors such as the percentage of non-crop area and the isolation of habitats. The infestation rate caused by the agromyzid Melanagromyza aeneoventris was positively related to percent non-crop area, whereas the parasitism rate of this fly increased with increasing habitat diversity on the landscape scale. For these two interactions and for total herbivore abundance, a scale-dependency of the landscape effects was found. The results emphasize that biological diversity and ecological functions within a plant-insect community are not only affected by local habitat factors but also by large-scale landscape characteristics. Hence, to improve future agri-environmental schemes for biodiversity conservation and biological control large-scale landscape effects and their scale-dependency should be considered.  相似文献   

14.
It is generally well understood that some ecological factors select for increased and others for decreased dispersal. However, it has remained difficult to assess how the evolutionary dynamics are influenced by the spatio-temporal structure of the environment. We address this question with an individual-based model that enables habitat structure to be controlled through variables such as patch size, patch turnover rate, and patch quality. Increasing patch size at the expense of patch density can select for more or less dispersal, depending on the initial configuration. In landscapes consisting of high-quality and long-lived habitat patches, patch degradation selects for increased dispersal, yet patch loss may select for reduced dispersal. These trends do not depend on the component of life-history that is affected by habitat quality or the component of life-history through which density-dependence operates. Our results are based on a mathematical method that enables derivation of both the evolutionary stable strategy and the stationary genotype distribution that evolves in a polymorphic population. The two approaches generally lead to similar predictions. However, the evolutionary stable strategy assumes that the ecological and evolutionary time scales can be separated, and we find that violation of this assumption can critically alter the evolutionary outcome.  相似文献   

15.
Forest landscape models simulate forest change through time using spatially referenced data across a broad spatial scale (i.e. landscape scale) generally larger than a single forest stand. Spatial interactions between forest stands are a key component of such models. These models can incorporate other spatio-temporal processes such as natural disturbances (e.g. wildfires, hurricanes, outbreaks of native and exotic invasive pests and diseases) and human influences (e.g. harvesting and commercial thinning, planting, fire suppression). The models are increasingly used as tools for studying forest management, ecological assessment, restoration planning, and climate change. In this paper, we define forest landscape models and discuss development, components, and types of the models. We also review commonly used methods and approaches of modeling forest landscapes, their application, and their strengths and weaknesses. New developments in computer sciences, geographic information systems (GIS), remote sensing technologies, decision-support systems, and geo-spatial statistics have provided opportunities for developing a new generation of forest landscape models that are increasingly valuable for ecological research, restoration planning and resource management.  相似文献   

16.
Forest landscape models simulate forest change through time using spatially referenced data across a broad spatial scale (i.e. landscape scale) generally larger than a single forest stand. Spatial interactions between forest stands are a key component of such models. These models can incorporate other spatio-temporal processes such as natural disturbances (e.g. wildfires, hurricanes, outbreaks of native and exotic invasive pests and diseases) and human influences (e.g. harvesting and commercial thinning, planting, fire suppression). The models are increasingly used as tools for studying forest management, ecological assessment, restoration planning, and climate change. In this paper, we define forest landscape models and discuss development, components, and types of the models. We also review commonly used methods and approaches of modeling forest landscapes, their application, and their strengths and weaknesses. New developments in computer sciences, geographic information systems (GIS), remote sensing technologies, decision-support systems, and geo-spatial statistics have provided opportunities for developing a new generation of forest landscape models that are increasingly valuable for ecological research, restoration planning and resource management.  相似文献   

17.
18.
19.
林窗内光照强度的测量方法   总被引:3,自引:0,他引:3  
林窗内光强存在复杂的时空变化,对植物更新和生长有着重要影响,因此,林窗光照强度的快速测量方法是生态学家十分关注的问题.目前,测量林窗光强的方法可分为3类:(1)直接测量法采用光量子探头等仪器直接测量光强,但测量林窗光强异质性时十分费时费力.(2)模型估测法通过几何计算可快速估测林窗任意位置光强,但模型估测法将林窗简化为圆柱体或椭圆柱体,并忽略了许多林窗光强的影响因素,这极大影响了它的测量精度.(3)相片法采用半球面影像等相片间接计算相片拍摄点的光强,但测量林窗光强异质性时需要在林窗内拍摄大量相片;相片法具有较高精度,可区分直射光和散射光,其中,基于半球面影像的林窗光指数(gap light index)精度最高,使用广泛;基于几何计算的林窗光指数不仅具有较高精度,且可以快速测量林窗任意位置光强,该方法适用于林窗光强水平分布格局、垂直结构以及光组成成分(直射光和散射光)特征研究.  相似文献   

20.
Estimates of denitrification are one of the key uncertainties in the terrestrial nitrogen (N) cycle, primarily because reliable measurements of this highly variable process—especially the production of its terminal product (N2)—are difficult to obtain. We evaluated the ability of gas-flow soil core and 15N tracer methods to provide reliable estimates of denitrification in forest soils. Our objectives were to: (1) describe and present typical results from new gas-flow soil core and in situ 15N tracer methods for measuring denitrification, (2) discuss factors that affect the relevance of these methods to actual in situ denitrification, and (3) compare denitrification estimates produced by the two methods for a series of sites in a northern hardwood forest ecosystem. Both methods were able to measure accumulations of N2 over relatively short (2–5 h) incubations of either unamended or tracer-amended intact soils. Denitrification rates measured by the direct flux soil core method were very sensitive to incubation oxygen (O2) concentration and decreased with increased O2 levels. Denitrification rates measured by the in situ 15N tracer method were very sensitive to the 15N content of the nitrate (NO3 ?) pool undergoing denitrification, which limits the applicability of this method for quantifying denitrification in N-poor ecosystems. While its ability to provide accurate estimates of denitrification was limited, the 15N tracer method provided estimates of the short-term abiotic and biotic transformations of atmospheric N deposition to gas. Furthermore, results suggest that denitrification is higher and that N2O:N2 ratios are lower (<0.02) than previously thought in the northern hardwood forest and that short-term abiotic and biotic transformations of atmospheric N deposition to gas are significant in this ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号