首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
AIDS-associated Kaposi's sarcoma (KS) is a cytokine-mediated tumor, at least in the early stages of this disease; however, there is at present no definitive consensus regarding the exact role of intracellular signaling pathways involved in growth of KS cells. We found that KS cell growth factors oncostatin M, sIL-6R/IL-6, TNFalpha, and IL-1beta all activate ERK1/2, and selective blockage of this kinase by PD98059 resulted in a profound inhibition of the cytokine-induced KS cell growth. Concurrently with activation of ERK1/2, these growth factors phosphorylated and activated p38MAPK. The selective inhibition of p38MAPK by SB203580 prominently enhanced the cytokine-induced proliferation of KS cells, thereby indicating that p38MAPK has a negative feedback on mitogenic signals. As these KS cell growth factors lead to simultaneous activation of ERK1/2 and p38MAPK signaling pathways, the concerted effects of these kinase activities may well determine the intensity of cellular proliferative responses to these growth factors.  相似文献   

2.
Matrix metalloproteinase-1 (MMP-1, collagenase-1) plays a pivotal role in the process of joint destruction in degenerative joint diseases. We have examined the regulation of MMP-1 production in human chondrocytic HCS-2/8 cells stimulated by tumor necrosis factor-alpha (TNF-alpha). In response to TNF-alpha, MMP-1 is induced and actively released from HCS-2/8 cells. The induction of MMP-1 expression correlates with activation of ERK1/2, MEK, and Raf-1, and is potently prevented by U0126, a selective inhibitor of MEK1/2 activation. In contrast, SB203580, a selective p38 mitogen-activated protein kinases (MAPK) inhibitor, had no effects on TNF-alpha-induced MMP-1 release. A serine/threonine kinase, Akt was not activated in TNF-alpha-stimulated HCS-2/8 cells. TNF-alpha stimulated the production of PGE(2) in addition to MMP-1 in HCS-2/8 cells. Exogenously added PGE(2) potently inhibited TNF-alpha-induced both MMP-1 production and activation of ERK1/2. The effects of PGE(2) were mimicked by ONO-AE1-329, a selective EP4 receptor agonist but not by butaprost, a selective EP2 agonist. In contrast, blockade of endogenously produced PGE(2) signaling by ONO-AE3-208, a selective EP4 receptor antagonist, enhanced TNF-alpha-induced MMP-1 production. Furthermore, the suppression of MMP-1 production by exogenously added PGE(2) was reversed by ONO-AE3-208. Activation of EP4 receptor resulted in cAMP-mediated phosphorylation of Raf-1 on Ser259, a negative regulatory site, and blocked activation of Raf-1/MEK/ERK cascade. Taken together, these findings indicate that Raf-1/MEK/ERK signaling pathway plays a crucial role in the production of MMP-1 in HCS-2/8 cells in response to TNF-alpha, and that the produced PGE(2) downregulates the expression of MMP-1 by blockage of TNF-alpha-induced Raf-1 activation through EP4-PGE(2) receptor activation.  相似文献   

3.
4.
Tumor necrosis factor-alpha (TNF-alpha) stimulates expression of endothelial cell (EC) genes that may promote atherosclerosis in part by an activation of mitogen-activated protein (MAP) kinases. Ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one), a selenoorganic compound, is effective for acute ischemic stroke; however, its effect on EC has not yet been elucidated. We examined the effect of ebselen on TNF-alpha-induced MAP kinase activation and adhesion molecule expression in cultured human umbilical vein endothelial cells (HUVEC). Extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 were rapidly and significantly activated by TNF-alpha in HUVEC. TNF-alpha-induced JNK activation was inhibited by ebselen, whereas ERK1/2 and p38 were not affected. Apoptosis signal-regulated kinase 1 (ASK1) was suggested to be involved in TNF-alpha-induced JNK activation because transfection of kinase-inactive ASK1 inhibited TNF-alpha-induced JNK activation. Ebselen inhibited TNF-alpha-induced TNF receptor-associated factor 2 (TRAF2)-ASK1 complex formation and phosphorylation of stress-activated protein kinase ERK kinase 1 (SEK1), which is an upstream signaling molecule of JNK. Finally, TNF-alpha-induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) activation and resultant intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions were inhibited by ebselen. Specific inhibitors for JNK and NF-kappaB also inhibited TNF-alpha-induced ICAM-1 and VCAM-1 expressions in HUVEC. These findings suggest that ebselen prevents TNF-alpha-induced EC activation through the inhibition of TRAF2-ASK1-SEK1 signaling pathway, which leads to JNK activation. Inhibition of JNK by ebselen may imply its usefulness for the prevention of atherosclerosis relevant to EC activation.  相似文献   

5.
The activation of extracellular signal-regulated kinases (ERK1/2) has been associated with specific outcomes. Sustained activation of ERK1/2 by nerve growth factor (NGF) is associated with translocation of ERKs to the nucleus of PC12 cells and precedes their differentiation into sympathetic-like neurons whereas transient activation by epidermal growth factor (EGF) leads to cell proliferation. It was demonstrated that different growth factors initiating the same cellular signaling pathways may lead to the different cell destiny, either to proliferation or to the inhibition of mitogenesis and apoptosis. Thus, further investigation on kinetic differences in activation of certain signal cascades in different cell types by biologically different agents are necessary for understanding the mechanisms as to how cells make a choice between proliferation and differentiation.It was reported that chitinase 3-like 1 (CHI3L1) protein promotes the growth of human synovial cells as well as skin and fetal lung fibroblasts similarly to insulin-like growth factor 1 (IGF1). Both are involved in mediating the mitogenic response through the signal-regulated kinases ERK1/2. In addition, CHI3L1 which is highly expressed in different tumors including glioblastomas possesses oncogenic properties. As we found earlier, chitinase 3-like 2 (CHI3L2) most closely related to human CHI3L1 also showed increased expression in glial tumors at both the RNA and protein levels and stimulated the activation of the MAPK pathway through phosphorylation of ERK1/2 in 293 and U87 MG cells. The work described here demonstrates the influence of CHI3L2 and CHI3L1 on the duration of MAPK cellular signaling and phosphorylated ERK1/2 translocation to the nucleus. In contrast to the activation of ERK1/2 phosphorylation by CHI3L1 that leads to a proliferative signal (similar to the EGF effect in PC12 cells), activation of ERK1/2 phosphorylation by CHI3L2 (similar to NGF) inhibits cell mitogenesis and proliferation.  相似文献   

6.
7.
8.
High-affinity binding of angiotensin II (ANG II) to the ANG II type 1 receptor (AT1R) results in the activation of ERK1/2 mitogen-activated protein kinases (MAPK). However, the precise mechanism of ANG II-induced ERK1/2 activation has not been fully characterized. Here, we investigated the signaling events leading to ANG II-induced ERK1/2 activation using a c-Src/Yes/Fyn tyrosine kinase-deficient mouse embryonic fibroblast (MEF) cell line stably transfected with the AT1R (SYF/AT1). ERK1/2 activation was reduced by 50% within these cells compared with wild-type controls (WT/AT1). The remaining 50% of intracellular ERK1/2 activation was dependent upon heterotrimeric G protein and protein kinase C zeta (PKC) activation. Therefore, ANG II-induced ERK1/2 activation occurs via two independent mechanisms. We next investigated whether a loss of either c-Src/Yes/Fyn or PKC signaling affected ERK1/2 nuclear translocation and cell proliferation in response to ANG II. ANG II-induced cell proliferation was markedly reduced in SYF/AT1 cells compared with WT/AT1 cells (P < 0.01), but interestingly, ERK2 nuclear translocation was normal. ANG II-induced nuclear translocation of ERK2 was blocked via pretreatment of WT/AT1 cells with a PKC pseudosubstrate. ANG II-induced cell proliferation was significantly reduced in PKC pseudosubstrate-treated WT/AT1 cells (P < 0.01) and was completely blocked in SYF/AT1 cells treated with this same compound. Thus ANG II-induced cell proliferation appears to be regulated by both ERK1/2-driven nuclear and cytoplasmic events. In response to ANG II, the ability of ERK1/2 to remain within the cytoplasm or translocate into the nucleus is controlled by c-Src/Yes/Fyn or heterotrimeric G protein/PKC signaling, respectively. Src family tyrosine kinases; angiotensin II  相似文献   

9.
We have previously shown that muscarinic acetylcholine receptors (mAChRs) enhance SNU-407 colon cancer cell proliferation via the ERK1/2 pathway. Here, we examined the signaling pathways linking mAChR stimulation to ERK1/2 activation and the subsequent proliferation of SNU-407 cells. The inhibition of the epidermal growth factor receptor (EGFR) by AG1478 or protein kinase C (PKC) by GF109203X significantly reduced carbachol-stimulated ERK1/2 activation and cell proliferation. Cotreatment of the cells with AG1478 and GF109203X produced an additive effect on carbachol-stimulated ERK1/2 activation, suggesting that the EGFR and PKC pathways act in parallel. The p90 ribosomal S6 kinases (RSKs) are downstream effectors of ERK1/2 and are known to have important roles in cell proliferation. In SNU-407 cells, carbachol treatment induced RSK activation in an atropine-sensitive manner, and this RSK activation was decreased by the inhibition of either EGFR or PKC. Moreover, the RSK-specific inhibitor BRD7389 almost completely blocked carbachol-stimulated cell proliferation. Together, these data indicate that EGFR and PKC are involved in mAChR-mediated activation of ERK1/2 and RSK and the subsequent proliferation of SNU-407 colon cancer cells.  相似文献   

10.
Asthmatic airways are characterized by an increase in smooth muscle mass, due mainly to hyperplasia. Many studies suggest that extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2, respectively), one group of the mitogen-activated protein (MAP) kinase superfamily, play a key role in the signal transduction pathway leading to cell proliferation. PGE(2) and forskolin inhibited mitogen-induced ERK activation. Inhibition of MAP kinase kinases 1 and 2 (MEK1 and MEK2, respectively), which are upstream from ERK, with the specific MEK inhibitor U-0126 blocked both cell proliferation and ERK activation. In addition, U-0126 inhibited mitogen-induced activation of p90 ribosomal S6 kinase and expression of c-Fos and cyclin D1, all of which are downstream from ERK in the signaling cascade that leads to cell proliferation. Antisense oligodeoxynucleotides directed to ERK1 and -2 mRNAs reduced ERK protein and cell proliferation. These results indicate that ERK is required for human airway smooth muscle cell proliferation. Thus targeting the control of ERK activation may provide a new therapeutic approach for hyperplasia seen in asthma.  相似文献   

11.
12.
The K-vitamin analog Cpd 5 or [2-(2-mercaptoethanol)-3-methyl-1,4-napthoquinone] is a potent cell growth inhibitor in vitro and in vivo, likely due to arylation of enzymes containing a catalytic cysteine. This results in inhibition of protein tyrosine phosphatase (PTPase) activity with resultant hyperphosphorylation of EGF receptors (EGFR) and ERK1/2 protein kinases, which are downstream to EGFR in the MAPK pathway. We used NR6 fibroblast cells, which lack endogenous EGFR and its variant cells transfected with different EGFR mutants to assess the contribution of the EGFR-mediated signaling pathway to Cpd 5-mediated ERK activation and cell growth inhibition. Cpd 5 treatment resulted in enhanced phosphorylation of EGFR at carboxyl-terminal tyrosines. This phosphorylation and activation of EGFR were found to be necessary neither for growth inhibition nor for the activation of the downstream kinases ERK1/2, since both occurred in EGFR-devoid mutant cells. U0126 and PD 098059, specific inhibitors of MEK1/2, the ERK1/2 kinases, antagonized both cell growth inhibition and ERK1/2 phosphorylation mediated by Cpd5. Cpd 5 was also found to inhibit ERK1/2 phosphatase(s) activity in lysates from all the cells tested, irrespective of their EGFR status. These results show that EGFR-independent ERK1/2 phosphorylation was involved in the mechanism of Cpd5 mediated growth inhibition. This is likely due to the observed antagonism of ERK phosphatase activity. A candidate PTPase was found to be Cdc25A, a recently identified ERK phosphatase.  相似文献   

13.
AimsInsulin-like growth factor (IGF)-1 is a major mitogenic growth factor for mesangial cells (MCs). Statins slow the progression of chronic kidney disease by affecting inflammatory cell signaling pathways, in addition to improving lipid profile, however, no studies have investigated the effects of fluvastatin on mitogen-activated protein (MAP) kinase activity or MC proliferation in kidney cells. We investigated the effects of fluvastatin on IGF-1-induced activation of intracellular signal pathways and MC proliferation, and examined the inhibitory mechanisms of fluvastatin.Main methodsWestern blotting and cell proliferation assay were used.Key findingsIGF-1 induced phosphorylation of extracellular-related kinase (ERK)1/2, MAP or ERK kinase (MEK)1/2, and Akt, expression of cyclin D1, and MC proliferation in cultured human MCs. Fluvastatin or PD98059, an MEK1 inhibitor, completely abolished IGF-1-induced MEK1/2 and ERK1/2 phosphorylation and MC proliferation, whereas inhibition of Akt had no effect on MC proliferation. Mevalonic acid prevented fluvastatin inhibition of IGF-1-induced MEK1/2 and ERK1/2 phosphorylation, cyclin D1 expression, and MC proliferation.SignificanceFluvastatin inhibits IGF-1-induced activation of the MAP kinase pathway and MC proliferation by mevalonic acid depletion, and might have renoprotective effects by inhibiting IGF-1-mediated MC proliferation.  相似文献   

14.
Aim of the present paper was to investigate the signaling pathways of P2Y2 in rat thyroid PC Cl3 cell line and its effects on proliferation. This study demonstrates that P2Y2 activation provoked: (a) a cytosol-to-membrane translocation of PKC-alpha, -betaI and -epsilon; (b) the phosphorylation of the extra cellular signal-regulated kinases 1 and 2 (ERK1/2); (c) the expression of c-Fos protein; (d) no effects on the G1/S progression and overall cell proliferation. The P2Y2-stimulated ERK1/2 phosphorylation was: (a) completely blocked by PD098059, a mitogen-activated protein kinase (MEK) inhibitor or by W-7, a Ca2+-calmodulin (CaM) antagonist; (b) reduced by GF109203X, inhibitor of PKCs, or AG1478, inhibitor of EGFR tyrosine kinase, or LY294002/wortmannin, inhibitors of phosphoinositide 3-kinases, or cytochalasin D, inhibitor of actin microfilament bundles polymerization. The c-Fos induction was greatly diminished by Go6976 or PD098059, and completely abolished when combined. In conclusion, data indicate that the P2Y2-induced phosphorylation of ERK1/2 and the induction of c-Fos are due to the operation of CaM, with PKC, PI3K, EGFR and receptor endocytosis mechanisms endorsing the signalling. On the other hand, no mitogenic effects of P2Y2 are whatsoever noticed in PC Cl3 cells.  相似文献   

15.
The matrix fibronectin protein plays an important role in vascular remodeling. Notoginsenoside R1 is the main ingredient with cardiovascular activity in Panax notoginseng; however, its molecular mechanisms are poorly understood. We report that notoginsenoside R1 significantly decreased TNF-alpha-induced activation of fibronectin mRNA, protein levels, and secretion in human arterial smooth muscle cells (HASMCs) in a dose-dependent manner. Notoginsenoside R1 scavenged hydrogen peroxide (H2O2) in a dose-dependent manner in the test tube. TNF-alpha significantly increased intracellular ROS generation and then ERK activation, which was blocked by notoginsenoside R1 or DPI and apocynin, inhibitors of NADPH oxidase, or the antioxidant NAC. Our data demonstrated that TNF-alpha-induced upregulation of fibronectin mRNA and protein levels occurs via activation of ROS/ERK, which was prevented by treatment with notoginsenoside R1, DPI, apocynin, NAC, or MAPK/ERK inhibitors PD098059 and U0126. Notoginsenoside R1 significantly inhibited H2O2-induced upregulation of fibronectin mRNA and protein levels and secretion; it also significantly inhibited TNF-alpha and H2O2-induced migration. These results suggest that notoginsenoside R1 inhibits TNF-alpha-induced ERK activation and subsequent fibronectin overexpression and migration in HASMCs by suppressing NADPH oxidase-mediated ROS generation and directly scavenging ROS.  相似文献   

16.
Identifying prosurvival mechanisms in stressed neuronal cells would provide protective strategies to hinder neurodegeneration. Recent evidence shows that vascular endothelial growth factor (VEGF), a well-established mitogen in endothelial cells, can mediate neuroprotection against damaging insults through the activation of its cognate receptor VEGFR2. In addition, growth factor receptor signaling pathways have been shown to crosstalk with cAMP-dependent Protein Kinase A (PKA) to protect neuronal cells from harmful stimuli. Whether a relationship exists between VEGFR2 and PKA in mediating neuroprotection under stressful conditions is unknown. Using SK-N-SH neuronal cells as a model system, we show that serum deprivation induces an upregulation in VEGF and VEGFR2 that concomitantly serves as a prosurvival signaling pathway. Inhibitor studies revealed that PKA functioned concurrently with VEGFR2 pathway to signal the activation of the extracellular signal-regulated protein kinases (ERK1/2) as protection against caspase-3/7 activation and a subsequent cell death. The loss in cell viability induced by VEGFR2 and PKA inhibition was prevented by caspase inhibition or overexpression of ERK1. Overexpression of the antiapoptotic protein Bcl-xL also promoted survival when VEGFR2 function was blocked. However, the protection elicited by all three treatments were prevented by the inclusion of a selective inhibitor of mitogen-activated protein kinase kinase (MEK), the upstream kinase that activates ERK1/2. Taken together, these findings suggested that PKA and VEGFR2 converge at the MEK/ERK1/2 pathway to protect serum starved neuronal cells from a caspase-dependent cell death. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Activation of extracellular-regulated kinases 1/2 (ERK) is involved in lipopolysaccharide (LPS)-induced cellular responses such as the increased production of proinflammatory cytokines. However, mitogen-activated protein kinases (MAPKs) such as p38 are also activated by LPS and have been postulated to be important in the control of these end points. Therefore, establishing the relative contribution of MAPKs in each cell type is important, as is elucidating the molecular mechanisms by which these MAPKs are activated in LPS-induced signaling cascades. We demonstrated in DC2.4 dendritic cells that ERK regulates tyrosine phosphorylation of phosphatidyl-inositol-3-kinase (PI3-K) and the production of TNF-alpha. We also demonstrated that Raf1 is phosphorylated and involved in the production of TNF-alpha and tyrosine phosphorylation of PI3-K via ERK. Raf1 also regulates the activation of NF-kappaB. We propose that Raf1 plays a pivotal role in LPS-induced activation of the dendritic cells.  相似文献   

18.
The proliferation and migration of Retinal Pigment Epithelium cells resulting from an epithelial-mesenchymal transition plays a key role in proliferative vitreoretinopathy, which leads to retinal detachment and the loss of vision. In neurons, glutamate has been shown to activate the Ras/Raf/MEK/ERK cascade, which participates in the regulation of proliferation, differentiation, and survival processes. Although glutamate-stimulation and the activation of ERK1/2 by different stimuli have been shown to promote RPE cell proliferation, the signaling pathway(s) linking these effects has not been established. We analyzed the molecular mechanisms leading to glutamate-induced proliferation by determining ERK1/2 and CREB phoshporylation in chick RPE cells in primary culture and the human-derived RPE cell line ARPE-19. This study shows for the first time, that glutamate promotes RPE cell proliferation by activating two distinct signaling pathways linked to selective glutamate receptor subtypes. Results demonstrate that glutamate stimulates RPE cell proliferation as well as ERK and CREB phosphorylation. These effects were mimicked by the mGluR agonist ACPD and by NMDA, and were prevented by the respective receptor inhibitors MCPG and MK-801, indicating a cause-effect relationship between these processes. Whereas mGluR promoted proliferation by activating the MEK/ERK/CREB cascade, NMDA stimulated proliferation through the MEK-independent activation of Ca(2+)/calmodulin-dependent kinases. The blockage of both signaling pathways to proliferation by KN-62 suggests the involvement of CaMKs in the control of glutamate-induced proliferation at a common step, downstream of CREB, possibly the regulation of cell cycle progression. Based on these findings, the participation of glutamate in the development of PVR can be considered.  相似文献   

19.
The MEK1-ERK1/2 signaling pathway has been implicated in the regulation of renal epithelial cell proliferation, epithelial-to-mesenchymal transition and the induction of an invasive cell phenotype. Much less information is available about the MEK5-ERK5 module and its role in renal epithelial cell proliferation and differentiation. In the present study we have investigated the regulation of these two families of extracellular signal-regulated kinases in epidermal growth factor (EGF)-stimulated human kidney-2 (HK-2) cells and a possible interaction between ERK1/2 and ERK5. Here we report that 5 ng/ml EGF led to a strong stimulation of HK-2 cell proliferation, which was largely U0126-sensitive. Both synthetic MEK1/2 inhibitors U0126 and Cl-1040, when used at 10 and 1 microM, respectively, inhibited basal and EGF-induced ERK1/2 phosphorylation but not ERK5 phosphorylation. Long-term inhibition of MEK1/2-ERK1/2 signaling and/or vanadate-sensitive protein phosphatases enhanced and prolonged EGF-induced ERK5 phosphorylation, while transient expression of an adenoviral constitutively active MEK1 (Ad-caMEK1) construct completely blocked EGF-induced ERK5 phosphorylation. Expression of Ad-caMEK1 in HK-2 cells resulted in the upregulation of the dual-specificity phosphatases MKP-3/DUSP6, MKP-1/DUSP1, and DUSP5. The EGF-mediated time-dependent induction of MKP-3, MKP-1 and DUSP5 mRNA levels was U0126-sensitive at a concentration, which blocked EGF-mediated ERK1/2 phosphorylation but not ERK5 phosphorylation. Furthermore, U0126 inhibited EGF-induced MKP-3 and MKP-1 protein expression. Both MKP-3 and MKP-1 co-immunoprecipitated with ERK5 in unstimulated as well as in EGF-stimulated HK-2 cells. These results suggest the existence of an ERK1/2-driven negative feed-back regulation of ERK5 signaling in EGF-stimulated HK-2 cells, which is mediated by MKP-3, DUSP5 and/or MKP-1.  相似文献   

20.
Recent studies have provided evidence that Zn2+ plays a crucial role in ischemia- and seizure-induced neuronal death. However, the intracellular signaling pathways involved in Zn2+-induced cell death are largely unknown. In the present study, we investigated the roles of mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinase (JNK), p38 MAPK and extracellular signal-regulated kinase (ERK), and of reactive oxygen species (ROS) in Zn2+-induced cell death using differentiated PC12 cells. Intracellular accumulation of Zn2+ induced by the combined application of pyrithione (5 microM), a Zn2+ ionophore, and Zn2+ (10 microM) caused cell death and activated JNK and ERK, but not p38 MAPK. Preventing JNK activation by the expression of dominant negative SEK1 (SEKAL) did not attenuate Zn2+-induced cell death, whereas the inhibition of ERK with PD98059 and the expression of dominant negative Ras mutant (RasN17) significantly prevented cell death. Inhibition of protein kinase C (PKC) and phosphatidylinositol-3 kinase had little effect on Zn2+-induced ERK activation. Intracellular Zn2+ accumulation resulted in the generation of ROS, and antioxidants prevented both the ERK activation and the cell death induced by Zn2+. Therefore, we conclude that although Zn2+ activates JNK and ERK, only ERK contributes to Zn2+-induced cell death, and that ERK activation is mediated by ROS via the Ras/Raf/MEK/ERK signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号